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ABSTRACT 
This research article proposes a generalized SVPWM method for 

multilevel inverters with fixed computational time. In this proposed 
modulation process the reference vector is located triangle is 
identified very quickly by using 1200 co-ordinate system in first 
sector. The switching states of the remaining sectors are determined 
by using the relationship with the first sector. The proposed 
modulation method procedure is invariant with the voltage level of 
the multilevel inverter and this method need not to use any look-up 
table’s information. Therefore the computational time and data 
storage space is very less and very easy to implement in real time 
with cost-effective. The capacity of the generalized SVPWM 
method is verified by MATLAB/SIMULINK. 

 
Key words: Multi-level Inverters; Cascaded H-Bridge 

Inverters; SVPWM.  

I. INTRODUCTION 

 The applications of Multi-level inverters are widely spread 
in all industries due to its advantages like lesser THD, 
reduction in switch capacity, lower rate change of voltage 
and lower operating switching frequency. The basic 
classification of multilevel inverter topologies are Diode 
Clammped inverter, Flying capacitor type inverter and 
Cascaded H-Bridge Multilevel inverter. Among these 
Cascaded H-Bridge inverter having flexibility with modular 
option and having requirement of lesser power electronics 
components. 
 There are different modulation methods are used for 
Multilevel inverters such as phase shifted PWM, Level 
shifted PWM and Space Vector PWM (SVPWM). Among all 
comparatively SVPWM is more convenient due to be 
redundancy in the switching sequence selection and possible 
of effective implementation using Digital signal Processors. 
However, with conventional SVPWM [1-10] there are 
generally 6(n-1)2 triangles n3 switching states in the space 
vector diagram of 3-phase n-level inverter. In this modulation 
method exact location of the triangle and proper switching 
states is to be estimated. The real time needed to do these 
operations decides the performance of the inverter. 
 In [11] author had proposed a SVPWM method that the 
NTV are determined and their duty ratio of the vectors are 
found through 600 co-ordinate system. But, this system more 
complicated than proposed 1200 co-ordinate system. 
Thesolution to get quick calculation of duty ratio of the NTV 
is given in [12] but, this method is implemented with look-up 
table’s information. References [13, 14] proposed a SVPWM 
which depends on iterative method to find NTV but, the 

 
 

 

computational time increases with voltage level. In [15-17] 
authors had proposed the decomposition method to solve the  
SVD of the different multilevel inverters. This method is also 
uses the look-up tables to find the switching functions.  
  

This article proposes a generalized SVPWM that has fixed 
computational time to any voltage level multilevel inverters. 
In the proposed SVPWM the identification of nearest three 
vectors (NTV) are done very quickly with 1200 coordinated 
system. There after the duty ratios of NTV and switching 
sequence is computed as simple two level inverter SVPWM 
methods. The computation (execution) time and memory 
required to the proposed SVPWM is not varied which is fixed 
to any level multilevel inverter. 
 
II. DESCRIPTION OF THE PROPOSED 
GENERALIZED SVPWM METHOD 
 
 The reference voltage vector of general  multilevel 
inverterVref is generated by 

푉 = 퐸(푆 + 푆 푒 + 푆 푒 )      (1)  
 

Where E is the Voltage source of basic module of the inverter 
and 푆 ,푆 푎푛푑푆 are the switching states of three phases 
respectively. 
 

A. Determination of Vref locus triangles and finding 
nearby three vectors of the triangle 
 

 The proposed generalized SVPWM scheme process 
consists of general procedure of any level of inverter with 
fixed computational time. Fig.1shows the four level SVD 
diagram is used for analyzing the proposed scheme. The SVD 
diagram is separated into six sectors of 600 each. The 
reference voltage vector sector position(S= 1, 2...6) is 
determined by  

   푆 = 푖푛푡푒푔푒푟 + 1           (2) 

 The general principle of SVPWM contains conversion 
from stationary axis (abc) to αβ axis system. But, in this 
conversion process it is not possible to utilize the symmetry 
of the SVD effectively to simplify computation process. 
Fig.2 shows the SVD of the sector 1 in αβ plane, which 
indicted as vertex points are not a integer values. Whereas in 
SVD of the sector 1 in 1200 coordinate system shown in 
Figure.3 the vertex coordinate are points are exact integer 
values. This makes system computation procedure more 
convenient than αβ axis system. 
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Figure 1: SVD diagram for four-level 
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Figure 2: SVD of First sector in α-β axis system 

 
 

 
Figure 3: SVD of First sector 1200 axis system 

 
 The general principle of SVPWM contains conversion 
from stationary axis (abc) to αβ axis system. But, in this 
conversion process it is not possible to utilize the symmetry 
of the SVD effectively to simplify computation process. 
Figure.2 shows the SVD of the sector 1 in αβ plane, which 
indicted as vertex points are not a integer values. Whereas in 
SVD of the sector 1 in 1200 coordinate system shown in 
Figure.3 the vertex coordinate are points are exact integer 
values. This makes system computation procedure more 
convenient than αβ axis system. 
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Figure  4: Proposed SVPWM flow chart 
 

 The Vref voltage vector tip can be placed in any nine 
triangles of sector 1. The 1200 coordinated system 
transformed vertex points are given by 
 
  푉 = 푉∝ +

√
,			푉 =

√
          (3) 

  푘 = 푖푛푡푒푔푒푟(푉 ),푘 = 푖푛푡푒푔푒푟 푉      (4) 
Where K1 and K2  are the rounded integer values of Vx and Vy 
respectively. 
 

 After finding the coordinates of Vx and Vy the origin point 
‘O’ is shifted to new base point near to tip of the ‘OP’ vector. 
After shifting there is an intricacy to find specific triangle 
typedue to  the new reference vector may touch in any basic 
triangles has common base reference  point. It is observed in 
Figure 2 is point ‘P4’ is common base point to triangles 
P7P4P8 and P4P8P5. The specific modulation triangle is 
determined from the factor ‘dec’ as follows 
 

   푑푒푐 = 푉 − 푉 − (푘 − 푘 )        (5) 
 

 If dec ≥ 0, the position of the new reference vector is 
present on the upward triangle whereas if dec ˂ 0, the 
position of the new base reference vector there on the 
downward triangle. After finding the exact modulation 
triangle type the next step is to determine the coordinates of 
reaming two points. The NTV are used to implement general 
two-level PWM method.  
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B. Calculation of Duty ratio of the NTV 
 

 The duty ratio of each NTV are to find the position of the 
new reference vector. The Voltage-Second average law of 
reference vector of identified triangle type I shown in Figure 
3 is given as 
  
   (푂푃)푇 = (푂푃 )푡 + (푂푃 )푡 + (푂푃 )푡    (6) 
 
Then  푡 = 푉 −푉 + 푘 − 푘 푇 
 
   푡 = (푉 − 푘 )푇 
 
III. SIMULATION RESULTS 
 
 Simulation results are analyzed with MATLAB/Simulink 
to authenticate the proposed generalized SVPWM method. 
The simulation system parameters are considered as 2 kHz 
switching frequency, 50 Hz fundamental frequency, the DC 
input voltage is 100V and modulation index Ma=1.0. 
 

 
Figure 5:  5-level H-Bridge output (a) Phase Voltage (b) 

Line Voltage (c) THD 
 
 Fig. 5 shows the output waveforms of a five level cascaded 
H-bridge inverter with proposed 1200 coordinate system 
technique. The obtained results are extracted with resistive 
loading conditions. It is observed from the results waveform 
that the fundamental voltage is 397.7 V and the THD is 18.40 
%. The computational time of the simulation to the proposed 
SVPWM method is noted as 25 μs CPU time which is same 
for seven, thirteen and twenty one level inverters with the 
proposed method shown in Fig. 6, Fig. 7 and Fig. 8 
respectively. 

 
Figure 6: 7-level H-Bridge output (a) Phase Voltage (b) Line 

Voltage (c) THD. 
 

 
Figure  7: 13- level output (a) Phase Voltage (b) Line 

Voltage (c) Phase current (d) THD. 
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Figure 8: 21- level output (a) Phase Voltage (b) Line Voltage 

(c) Phase current (d) THD. 

IV. CONCLUSION 

 In the proposed generalized SVPWM method the type of 
the modulation triangle is and NTV are located very easily 
based on 1200 coordinate method transformation. Then the 
duty ratios and switching combinations of NTV are 
computed without insertion of any look-up table data. This 
will creates the fixed computation time as well as less 
memory requirement to processor leads to the improvement 
in the computational time compared to other methods. 
Therefore with the above advantages the proposed SVPWM 
method is cost effective to any level of inverters. 
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