
Nurul Haszeli Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 15- 20

15

ABSTRACT

The researcher propose the ontology model for C overflow
vulnerabilities (COV) Ontology which include the
relationship between vulnerabilities and its properties. Many
current ontology were developed similar to constructing
taxonomies or classifications whereby meaning of
relationship were ignored resulting in ineffectiveness in
describing the relationship between vulnerabilities and its
properties. Eventually, the ineffectiveness affect the tools
efficiencies. Studies on current ontology in static analysis of
COV also shown that most current ontology focuses on
symptoms rather than the root cause of COV occurrences.
Therefore the designed of the propose model for C overflow
vulnerabilities (COV) will cater this limitation. The Ontology
Model consist of sixteen new classes and four new object
properties. Based on the evaluation, the new Ontology model
could supply and retrieve the right information and
consenquently will be reliable to use in the semantic analysis
of COV.

Key words: Ontology Model, C overflow vulnerabilities (COV)

1. INTRODUCTION

Program analysis is the key important to understand the
computer systems. Studies in the area started in the ‘70s
focusing on debugging, verifying and understanding
programs [1]. In the year 2000 onwards, the program analysis
capability further extended to security analysis tool according
to Viega et al in [2], after the first unintended exploitation on
software vulnerabilities according to One in [3].Since then,
software vulnerabilities have become a common platform in
exploiting computer system along with other Data Security
issue such as in [4][5].

Among all vulnerabilities, overflow vulnerabilities (OV) is
the most prominent and predicted to continue its existence in

the future [6]. It occur in almost all systems that are poorly
developed. It is potentially been produced in program
languages like Java and PHP. Compared to other
programming languages, OV are prominent in C [7]. Due to
its behaviour and nature, lack of defensive and preventive
mechanism [8]. From this onward, overflow vulnerabilities in
C is referred as COV.

There are many ways to inject COV invasion. Morris Worm,
as an example, abused vulnerabilities exist in sendmail,
fingerd, and rsh/exec command in UNIX platform by
overflowing the memory stack [3]. The vulnerability was in C
printf() function. When a string longer than the buffer is used,
the function replaces to subsequent stack address, allowing an
attacker to force the system to run his/her function stored in
the following address in the computer system.

There are numbers of C functions e.g. scanf(), gets(), and
sprint() that are considered unsafe, which, if mishandled, will
become vulnerable. Memory related functions such as free()
in [9], mismatch variable conversion and arithmetic
operation in [10], null termination in [11], and uninitialized
variable in [12], are few examples of overflow vulnerabilities.
These COV, if not identified and detected, may cause
unnecessary consequences and serious mishaps.

Recently, ontology approaches was brought into software
security domain such as by H. Gomes in [13] and specifically
for program analysis by Harshal et al in [14]. One of the
reason was to improve the semantic-based method by
ensuring the methods understand the relation within the code
[14]. Ontology approach were used together with
classifications or taxonomies as using either ontology alone or
only taxonomy is insufficient. The ontology model gives
meaning to each classes, hence improve the understanding of
taxonomy’s user [13]. The use of ontology will help to capture
the relationship between the classes in the taxonomy and its
characteristics, and provide a readable specifications between
the taxonomy and source code in a structure model [14]. This

Ontology Model for C-Overflow Vulnerabilities Attack

Nurul Haszeli Ahmad1, Syed Ahmad Aljunid2, Normaly Kamal Ismail3, Muthukkaruppan Annamalai4,
Shaiful Bakhtiar bin Rodzman5

1 Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia,
haszeli.ahmad@yahoo.com

2 Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia,
aljunid@fskm.uitm.edu.my

3 Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia,
normaly@fskm.uitm.edu.my

4 Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia, mk@fskm.uitm.edu.my
5 Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Shah Alam, Malaysia, shybug_2@yahoo.com

 ISSN 2278-3091
Volume 9, No.1.3, 2020

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse0391.32020.pdf

https://doi.org/10.30534/ijatcse/2020/0391.32020

Nurul Haszeli Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 15- 20

16

will enhance the analysis capability such as in [15] especially
in a complicated source code or application in [16].

To date, ontology was implemented in education such as by
H. Gomes et al in [13], static analysis on web vulnerabilities
by Harshal et al in [14], static analysis on Java vulnerabilities
by Lian et al [16] and security analysis on requirement by
Souag et al in [17]. With regards to static analysis on COV,
the initial recorded works utilizing ontology is identified in
2012 by Ellison & Rosu in [18] and further improvised by
Hatthorn in [19].

However, regardless of many improvement on analysis
method including implementing ontology into semantics
static analysis to detect COV, the success rate of detection and
preventing COV from occurring is still low. It is either the
limitation of the method such as causing overhead, limited
COV coverage, flow in-sensitive, require annotation and
require extensive vulnerability definition. These current
issues has impact on the implementation of the method
causing ineffectiveness and inefficiency of analysis.

Even though being a promising approach to improve
semantic analysis capability, ontology approach seem to have
shortcoming too. Many current ontology were developed
similar to constructing taxonomies or classifications whereby
meaning of relationship were ignored resulting in
ineffectiveness in describing the relationship between
vulnerabilities and its properties such as the of Alqahtani et
al. in [20]. Eventually, the ineffectiveness affect the tools
efficiencies. Studies on current ontology in static analysis of
COV also shown that most current ontology focuses on
symptoms rather than the root cause of COV occurrences
[20]. Therefore the designed of the propose model in this for
C overflow vulnerabilities (COV) will cater this limitation.

2. RESEARCH METHOD

2.1 Ontology Framework Design

The following diagram depicted the activities in this phase.

Figure 1: Ontology Framework Design Phase

In this phase, the activities start with studies on various
ontology technology including semantics web to understand
the technology for ontology development. Upon
understanding the technology, the friendliest technology will
be used to design the ontology model. Friendliest technology
is defined based on the ease of used, available community
support and easily accessible by researcher.The activities
continue with ontology development based on the design
before informal validation is done on the model. Upon the
design is completed, subsequent phase is activated without the
need to fulfill the model validation activity. The reason is
because the development of the tool will help in the
refinement and validation process.

2.2 Ontology Construction

At this stage, the pre-processing of ontology indexed was
developed. The ontology for domain of C-Overflow
Vulnerabilities was created consists of 16 topics. The
ontology was classified under the language expressivity and
formality and the focus in on software ontology. The focus
was chosen as the ontology is used to develop a computer
system. According to [21], the Ontology must be designed in
intention to meet the purpose and reasons of their
development and it involves the sequence of stage before it
being evaluated such as, first, planning phase, where the
domain of the ontology research area is determined. Through
the previous research, the researcher has identified the 10
types C-Overflow that can be the basis of the Classes with
additional frequent class that always appeared and related in
the domain such as Activity, Function, Vulnerable Criteria,
Location, Other Attack and Situation. Each class may have
their own unique sub class according to the knowledge of
specific topic of classes. The example of date can be seen in
table 1

Table 1: The example data of C-Flow Vurnerabilities

The second phase is the data collection and analysis, where,
the data and suggested class were analyzed according to the
previous taxonomy in [22]. The third phase, is to design the
ontology according to the step that suggest by [23], as shown in
Figure 2 is followed:

Class Vulnerable
Criteria

Function Activity Location Other
Attack

Situation

Array Out
of Bound

✔ ✔

Unsafe
Function

✔ ✔ ✔ ✔

Memory
Function

✔ ✔ ✔

Nurul Haszeli Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 15- 20

17

:

Figure 2: The steps of Ontology design according to N. F., &
McGuinness, (2001)

The first step is to determine the scope, which is the C
Overflow Vulnerabilities Attack. The Second step is reuse, in
this issue, C Overflow Vulnerabilities Attack have no previous
Ontology, and however the research have the previous
taxonomy in [22], to be used as the guideline. The third step is
to enumerate the term that related to C Overflow
Vulnerabilities Attack, which are divided to section such as
class and subclass similar as in the previous hierarchical
taxonomy in [22], where the class of Vulnerable Attack has
subclasss such as for Class Unsafe Function like Criteria,
Most Attack and Similar Attack. Then, the researchers need
to define the properties and facets that suitable for the class. In
the last step the researcher then define the individual
instances for the class. After the construction model have
been done, the evaluation phase can be conducted using
Protégé and SPARQL query to test that the ontology may
produce the expected information or not. All this steps will be
presented in the Result and Analysis Section.

2.3 Result and Analysis

In this section, the researchers will be presented the classes
and object properties creation in 2.3.1, the relationships
between the classes and object properties in 2.3.2 and the
evaluation of of the ontology in section 2.3.3.

2.3.1 The Classes and Object Properties

In this research, 16 new classes such as Activity, Array Out of
Bound, Function, Function Pointer, IntegerRange/Overflow,
Location, Memory Function, Null Termination, Other Attack,
Pointer Scaling or Mixing, Return intolibc, Situation,
Uninitialized Variable, Unsafe Function, Variable Type

Conversion, and Vulnerable Criteria have been added which
can be seen in the Figure 3.

Figure 3: New classes inside the C-Overflow Vulnerabilities Attack

For some individual class may have its own subclasses
according to its taxonomy. An example, the Unsafe Function
class that contain three subclasses such as Criteria, Most
Attack and Similar Attach. Formally, the development of
ontology also use the knowledge reference from the previous
taxonomy by the researcher in [22].

Figure 4: Ontograph of Unsafe Function class in C-Overflow
Vulnerabilities Attack

The ontology model contains 4 object properties such as:
afffecFunction, hasCriteria, hasPart, and hasSituation.

Nurul Haszeli Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 15- 20

18

Figure 5: hasCriteria object property in C-Overflow
Vulnerabilities Attack Ontology

According to Figure 5, the object property of hasCriteria
include Criteria_Array_Out_of_Bound as its domain
and Imprope Handling, Upper Bound, Undesire
Behavior, Misuse, Beyond Bound of Array and Lower
Bound as its range.

2.3.2 Classes and Object Properties Relationship
Technically, all the new classes and object properties must be
connected to each other to have a connection which we called
as ontology. For example, a criteria of vulnerability of Array
out of
Bound.

Figure 6. Array Out of Bound and Activity classes are linked
through object properties

2.3.2 Evaluation of the Ontology

To evaluate whether the ontology can supply and provide the
retrieve the right information or not, Protégé and SPARQL
query is utilized to be executed inside the ontology model.

This method has been agreed by Dr. Hazrina binti Sofian from
Faculty of Computer Science & Information Technology,
Universiti Malaya and also from the literature review such as
in Hamiz et al in [24]. The list of SPARQL query for different
purposes to evaluate the ontology have been identified as
follows:

1. Find by Properties

Table 2: The example of SPARQL query for Find by Properties
Query Statement
Query 1 SELECT ?dataRange WHERE {

?subClass rdfs:subClassOf ?restriction.
?restriction owl:onProperty mo:hasCriteria;

Query 2 SELECT ?object WHERE { mo:hasCriteria rdfs:range ?object}
Query 3 SELECT ?domain ?range WHERE { mo:hasCriteria rdfs:domain

?domain; rdfs:range ?range .}

2. Find by Domain

Table 3: The example of SPARQL query for Find by Domain
Query Statement
Query 1 SELECT ?domain ?properties ?range

WHERE {
mo:Criteria_Array_Out_Ouf_Bound rdfs:subClassOf*
?domain.
?properties rdfs:range ?range.
?properties rdfs:domain ?domain}

Figure 7: The SPARQL query results of Criteria Unsafe

Function.

From Figure 7, Based on the result, the Ontology Model are
capable to provide reliable information, which is in this case
the Range and Object Property of Domain, Criteria Unsafe
Function attack with the specific SPARQL that had been used.

Nurul Haszeli Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 15- 20

19

Figure 8: The SPARQL query results of Bound Attack.

From Figure 8 above, the same reliable results have been
produced, this time the ontology model were successful in
retrieving the Range and Object Property of Domain, Criteria
Array out of Bound attack, such as Improper Handling,
Undesire Behavior, Upper Bound, Beyond Bound Of Array,
Lower Bound and Misusse. Consequently, shown to us the
classes and Object Properties that have been added on the
C-Overflow Vulnerabilities Attack Ontology Model have its
own purpose and can be utilized in further research and analysis
due to it can provide the correct and right information.

3. CONCLUSION

This article presents the C-Overflow Vulnerabilities Attack
Ontology Model was created consists of 16 topics. The
ontology was classified under the language expressivity and
formality and the focus in on software ontology. Various step
has been done in the Construction of this Ontology Model
such as the data collection, the analysis according to the
previous taxonomy in [22] and the agreement from the expert.
Through the previous research, the researcher has identified
the 10 types C-Overflow that can be the basis of the Classes
with additional frequent class that always appeared and
related in the domain such as Activity, Function, Vulnerable
Criteria, Location, Other Attack and Situation. Each class
may have their own unique sub class according to the
knowledge of specific topic of classes. Furthermore, four
object properties such as; afffecFunction, hasCriteria,
hasPart, and hasSituation also have been added to link and
provide the association among the classes. Based on the
evaluation using the SPARQL queries this classes and object
properties in C-Overflow Vulnerabilities Attack ontology
model may provide the correct and reliable information for
the further use. For the enhancements, the individuals and
example of the code must be put inside the ontology. In

overall, this constructed ontology model may reliable to use
and represent the knowledge and information of C-Overflow
Vulnerabilities attack especially in it classification. It might
be valuable and useful for the further analysis of C-Overflow
Vulnerabilities attack.

ACKNOWLEDGEMENT

This research is funded by the Ministry of Education (MOE)
Malaysia under FRGS Research Grant at Universiti
Teknologi MARA, Shah Alam (600-IRMI/FRGS 5/3
(021/2017)).

REFERENCES
1. P. Cousot, and R. Cousot, Abstract interpretation: a

unified lattice model for static analysis of programs
by construction or approximation of fixpoints, in
Proc. of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of programming languages (POPL), Los
Angeles, California, 1977.
https://doi.org/10.1145/512950.512973

2. J. Viega, J. T. Bloch, Y. Kohno and G. McGraw, ITS4: a
static vulnerability scanner for C and C++ code, in
16th Annual Conf. of Computer Security Applications
(ACSAC), New Orleans, LA, USA, 2000.

3. One, A. Smashing the Stack for Fun and Profit, in
Phrack Magazine, vol. 7, no. 49, 1996.

4. M. T. Basu and J.K.R. Sastry. Enhancing Data Security
under Multi-Tenancy within Open Stack,
International Journal of Advanced Trends in Computer
Science and Engineering, vol. 9, no. 1, pp. 533-544,
January – February 2020.
https://doi.org/10.30534/ijatcse/2020/73912020

5. K. Ahmad, Al Hwaitat, M. H. Qasem and R. A. Fabozzi.
Security of Data Access in Fog Computing using
Location-based Authentication, International Journal
of Advanced Trends in Computer Science and
Engineering, vol. 9, no. 1, pp. 247-254, January –
February 2020.
https://doi.org/10.30534/ijatcse/2020/37912020

6. L. Constantin, Attackers can turn Microsoft's exploit
defense tool EMET against itself, in InfoWorld.
Retrieved from
http://www.infoworld.com/article/3036850/security/atta
ckers-can-turn-microsofts-exploit-defense-tool-emet-aga
inst-itself.html, 24 February 2016.

7. D. Chechik, Prevalent Exploit Kits Updated with a
New Java Exploit, in M86 Security Labs. Retrieved
from http://labs.m86security.com/tag/java/, 16
December 2011.

8. Oracle Corporation. Java SE Security, in ORACLE,
Retrieved from
http://www.oracle.com/technetwork/java/javase/tech/ind
ex-jsp-136007.html, 2012.

Nurul Haszeli Ahmad et al., International Journal of Advanced Trends in Computer Science and Engineering, 9(1.3), 2020, 15- 20

20

9. P. Akritidis, C. Cadar, C. Raiciu, M. Costa and M.
Castro, Preventing Memory Error Exploits with WIT,
in Proc, of the 2008 IEEE Symposium on Security and
Privacy (18 May – 21 May 2008), Washington, DC, USA,
2008.
https://doi.org/10.1109/SP.2008.30

10. D. Pozza, and R. Sisto, A Lightweight Security
Analyzer Inside GCC, in 3rd International Conf. on
Availability, Reliability and Security (ARES '08),
Barcelona, Spain, 2008.
https://doi.org/10.1109/ARES.2008.26

11. L. A. Grenier, Practical Code Auditing, 2002.
12. J. J. Tevis, and J. A. Hamilton (2004). Methods for the

prevention, detection and removal of software
security vulnerabilities, in Proc. of the 42nd annual
South East regional conf. (2nd - 3rd Aprill 2004),
Huntsville, Alabama, USA, 2004.

13. H. Gomes, A. Zúquete and G. P. Dias, G, An Overview
of Security Ontologies, 2015.

14. H. A. Karande, P. A. Kulkarni, S. S. Gupta, D. Gupta.
Security against Web Application Attacks Using
Ontology Based Intrusion Detection System,
International Research Journal of Engineering and
Technology (IRJET), vol. 3, no. 1, pp. 89-92, 2016.

15. E. Atilla, Standard Ontology of Security of
Information and Networks? in 7th International Conf.
on Security of Information and Networks (SIN'14),
Glasgow, UK, 2014.

16. Y. Lian, W. Shi-Zhong, G. Tao, et al. Ontology
Model-Based Static Analysis of Security
Vulnerabilities, ICICS - Lecture Notes of Computer
Sciences, vol. 7043, pp. 330 – 344, 2011.
https://doi.org/10.1007/978-3-642-25243-3_27

17. A. Souag, C. Salinesi, I. Wattiau, and H. Mouratidis,
(2013). Using Security and Domain Ontologies for
Security Requirements Analysis, in 37th Annual
Computer Software and Applications Conference
Workshops (COMPSACW), Kyoto, Japan, 2013.

18. C. M. Ellison, and G. Rosu, Defining the undefinedness
of C, 2012.

19. C. Hathhorn, C. Ellison and G.Roşu, Defining the
undefinedness of C, in ACM SIGPLAN Notices, 2015.
https://doi.org/10.1145/2737924.2737979

20. S. S. Alqahtani, E. E Eghan, and J. Rilling, Tracing
known security vulnerabilities in software
repositories–A Semantic Web enabled modeling
approach, Science of Computer Programming, vol. 121,
pp. 153-175, 2016.
https://doi.org/10.1016/j.scico.2016.01.005

21. A. S. A. Latiff, H. Haryani and M. Annamalai, Software
Engineering Approach for Domain Ontology
Development: A Case Study of Islamic Banking
Product, Journal of Information Retrieval and
Knowledge Management, vol. 3, pp. 36-53. 2017.

22. N. H. Ahmad, S. A. Aljunid and J. A. Manan. Taxonomy
of C Overflow Vulnerabilities Attack, in Conf.

Communications in Computer and Information Science,
June 2011.
https://doi.org/10.1007/978-3-642-22191-0_33

23. N. F. Noy, and D. L. McGuinness, Ontology
Development 101: A Guide to Creating Your First
Ontology, Stanford Knowledge Systems Laboratory, vol.
25, 2001.

24. M. Hamiz, H. Haron, M. Bakri, N. L. M Lazim.
Ontology model for intake suggestion and
preparation for Malay confinement dietary recipes,
Indonesian Journal of Electrical Engineering and
Computer Science, vol. 17, no. 1,, pp. 481-488, January
2020.
https://doi.org/10.11591/ijeecs.v17.i1.pp481-488

