
 Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 112 - 118

112



ABSTRACT

In this paper, a novel approach is considered, based on
Particle Swarm Optimization (PSO) technique, using two
concepts: evolutionary neighborhood topology associated to
parallel computation for complex optimization problems.
The idea behind using dynamic neighborhood topology is to
overcome premature convergence of PSO algorithm, by well
exploring and exploiting the search space for a better
solution quality. Parallel computation is used to accelerate
calculations especially for complex optimization problems.
The simulation results demonstrate good performance of the
proposed algorithm in solving a series of significant
benchmark test functions.

Key words: Optimization, metaheuristic, PSO, Dynamic
neighborhood, Parallel computing.

1.INTRODUCTION

After the ongoing evolution of material resources in IT,
computers had their number of processors / cores increased
in recent years to compensate for limits of the increasing
power for a single processor and obtain an acceleration
factor, since with more computing power a problem could be
solved quickly. To fully exploit this computing power, it
should implement applications capable of performing several
tasks in parallel [1].

Threads are the technology used in Java to make
multitasking applications. We were interested in this
technology to take advantage of parallelism in terms of
reduction in computing time and good use of material
resources of the machine.

PSO is a metaheuristic designed to finding the optimum of a
function at a reasonable time, except for large instances
where scientific computing is intensive requiring a
considerable computing time. The use of appropriate parallel
models reduces the computation time and gives better results
than the sequential models [2] [3]. Escaping the premature
convergence of the method is also a key point on which
several researchers conducted their studies and suggested

several versions [4-7]. The model we suggest in this paper is
a version based on the PSO algorithm using threads for
parallel computing, and a new concept of dynamic
neighborhoods to avoid premature convergence of the
method.

In our experimentations, the tests conducted on the program
have given satisfactory results of our model compared to the
basic PSO algorithm.

The remainder of this paper is organized as follows: Section
2 contains the description of PSO method. Section 3 is a
presentation our proposed approach. The testing and
interpretation of results will be subject to Section 4, followed
by a conclusion.

2.OVERVIEW OF PARTICLE SWARM OPTIMIZATION

Particle Swarm Optimization is a very known metaheuristic,
proposed in 1995 by the two American inventers James
Kennedy “psychologist” and Russel Eberhart “electrical
engineer” in order to solve discrete and continuous
optimization problems [8].

It is inspired from the social behavior of individuals evolving
in swarm, i.e. the "social interactions" between "agents"
called "particles" representing a "swarm", in order to achieve
a given goal in a common search space where each particle
has a certain capacity for memorizing and processing
information.

Unlike other evolutionary algorithms such as the genetic
algorithm where the search for the optimal solution evolves
by competition between individuals using operators of
crosses and mutations, the PSO algorithm uses cooperation
between individuals (which makes the method very
powerful).

2.1 PSO algortithm

PSO algorithm is a stochastic process, where the particles
move around a search space in search of the optimum. It is
proposed by [8], starts with a random initialization of the
particles in their search space, by attributing their initial
positions and velocities. At each iteration of the algorithm
particles move and the objective functions (fitness) of
particles are calculated in order to calculate the global best
position Gb. The update of Pb and Gb is made at each
iteration according to the algorithm cited in Figure 1. The
process is repeated until the stopping criterion is met.

A modified Particle Swarm Optimization algorithm linking dynamic

neighborhood topology to parallel computation

Maria Zemzami1, Norelislam Elhami2, Mhamed Itmi3, Nabil Hmina4
1LITIS-INSA-Rouen, France, maria.zemzami@gmail.com
2LGS-ENSA-Kenitra, Morocco, norelislam@outlook.com

3 LITIS-INSA-Rouen, France, itmi@insa-rouen.fr
4LGS-ENSA-Kenitra, Morocco, hmina5864@gmail.com

 ISSN 2278-3091
Volume 8, No.2, March - April 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse03822019.pdf

https://doi.org/10.30534/ijatcse/2019/03822019

 Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 112 - 118

113

Figure 1: Basic PSO algorithm

2.2 Configuration of the method
There are several parameters involving and influencing the
PSO performance. The choice of these parameters remains
critical and generally depends on the optimization problem
[9] [10] but has a high influence on the convergence of the
algorithm. Among these parameters:
- The dimension of the problem;
- Acceleration coefficients;
- The inertia weight;
- The constriction factor;
- The concept of neighbourhoods;
- The number of particles;
- The disposition of particles;
- The stopping criterion;
- The maximum speed;
We will then focus on the last four parameters.

A. The number of particles
One of the key PSO parameters is the number of particles, it
greatly influences the performance of the algorithm,
especially in terms of computational time, since the presence
of each particle in the algorithm causes a calculation:
evaluation of the position and the movement of the particle.
The number of particles allocated to solving a problem
depends on several parameters, namely: the dimension of the
problem to be optimized (the size of the search space), the
ratio between the computing capacity of the machine and the
time maximum research, and particularly the complexity of
the optimization problem.
The choice of an adequate value for this parameter is not an
easy task, since there is no rule to determine it, only a
massive experimentation by doing many tests makes it
possible to acquire the necessary experience to the
apprehension of this parameter.

B. The disposition of particles
Before starting the algorithm, the positions of the particles
and their initial velocities must be initialized randomly
according to a uniform law on [0..1]; this initial disposition
affects the next movement of each particle and thus the

convergence of the algorithm, especially in the case where
we have geographical neighborhoods.
However, there is a set of automatic position generators, to
assign different positions to the entire swarm.
The SOBOL sequence generator is one of the most efficient
in this field, for a homogeneous disposition of particles in a
n-dimensional space [11].

C. The stopping criterion
The stopping criterion is an important parameter for any
optimization method. It differs depending on the
optimization problem and the constraints of the user, it is
strongly recommended to provide the algorithm with this
parameter since the convergence to the optimal solution is
not guaranteed in all cases even if the experiments denote the
great performance of the method. As a result, several studies
have been conducted in this direction [12], different
propositions have taken place: the algorithm must then
execute as long as one of the convergence criteria has not
been reached. This can be: the maximum number of
iterations; the global optimum is known a priori; we can
define an "acceptable accuracy".
Other stopping criteria can be used depending on the
optimization problem and user constraints.

D. The maximum speed
The maximum speed was proposed by [13] in 1996, as a
solution to the problem of deflecting particles during their
movement.
The objective was to limit the particle velocity by the
interval [-vmax, vmax] in order to control the movement of
each particle in the search space.
The introduction of Vmax allowed better control of particle
motion for a more optimal convergence.
The use of this parameter has resulted in several publications
[14]-[18].

3.THE PROPOSED APPROACH

This section presents a new model based on PSO algorithm,
using a novel dynamic neighborhood topology associated to
parallel computation for complex optimization problems.
The idea behind the combination of these two concepts came
after a deep study of the PSO algorithm and its different
versions (improvements).
The use of a static neighborhood is less expensive in terms of
computation time (there is no updating of the neighborhoods
at each iteration); the neighborhoods remain the same from
the beginning of the program until its end. As well as their
easy implementation, but for our approach, we opted for a
version using a dynamic neighbourhood.
The use of a dynamic neighborhood, allows a better
exploration and exploitation of the search space in order to
improve the solution quality, but it is expensive in terms of
computation time, since it is necessary to update the
neighborhoods (at each iteration of the algorithm).
To overcome this constraint, we parallelize the calculations;
this parallelization has improved the proposed approach in
terms of computation time.

 Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 112 - 118

114

In the literature, several authors have proposed parallel
models of the PSO method [19]-[21], the one we
implemented in our approach allows the parallelization of
calculations using the concept of threads in Java: each thread
deals with the PSO processing for its neighborhood.
Below the flowchart of the proposed approach Figure 2.
For other models based on PSO algorithm the reader is
referred to [22]-[24].

Figure 2: PPSO model flowchart

3.1 Used settings

Each parameter of the PSO algorithm has a major influence
on the behavior of particles and thus the convergence of the
algorithm; and even if the PSO method provides satisfactory
results, choosing the right parameter of the method remains a
critical issue as one of the keys to success for any PSO
algorithm.
In the previous section, we presented some parameters that
influence the behavior of particles in their travels in search of
the optimum. �The parameter set that we have developed in
our model consists of the use of multiple variable parameters
that can be modified from the user interface dedicated to this;
everything depends on the requirements of the optimization
problem.
We have implemented a version with the inertia factor; the
value of the latter is configurable from the user interface.
�Another version with the constriction coefficient, which is
computed automatically.
C1 and C2 acceleration coefficients are also variables, their
default values: C1 = 1.25 and C2 = 2.25, C3=1.25, providing
well results in the majority of experiments, but that can be

changed from the user interface. �For communication
topologies used, the three topologies "star, radial, and ring"
are implemented, and may be selected from the user interface.
The principle of creating neighborhoods, parallel processing,
the stopping criteria and the algorithm will be detailed below.

3.2 Evolutionary Neighbourhoods

The neighborhoods are dynamic spheres, with each iteration
the number of particles in different spheres changes
according to the new positions of the particles and the radius
value.
The creation of the spheres is as follows: �We initialize the
particle positions, we specify the initial value of the radius,
and it is considered a first particle Pc. It then represents the
center of the sphere S of radius r.�Pa is a particle adjacent to
particle Pc if Pa Euclidean distance to Pc is less than or equal
to the value of the radius r. Otherwise, it becomes the center
of a new sphere. Every new particle has its belonging which
is studied with respect to the different spheres created before
agreeing to create a new sphere. Furthermore, if the number
of field is reduced (preset number) then the common radius
of the spheres is reduced significantly. The peculiarity of the
neighborhoods of our model is that we benefit from the
advantages of the concept of neighborhood in the sharing of
information and cooperation between the sub-swarms,
without falling into the trap of premature convergence.�In
the model of the PSO algorithm with neighbors, sharing Pn
"the best of each neighborhood" is done at each iteration; and
based on a comparison of all the Pn obtained, the best of all
the Pg swarm is defined.�That said, if a particle of a
neighborhood links to a web- site developer (containing a
good solution), and it turns out to be best in it neighborhood
at the end of the iteration the information will be propagated,
and this particle will be declared the best of the whole
swarm, so it will influence the displacement formula of all
particles, which will lead to this site.�We assume that this
site contains a local optimum, and that there is obviously the
optimal solution somewhere in the overall search space, but
taking into consideration the influence of the information
propagated to each iteration in the displacement of particles,
the latter link to the wrong path, which leads to premature
convergence. What we are proposing in our model is that the
various neighborhoods look independently for the solution of
the of the Gb value. Each particle moves according to its best
Pb value, and the best in it Pn neighborhood.�Our model
always respects the basic principle of the PSO algorithm
based on cooperation between the particles, and the sharing
of information that still exist, since the neighborhoods are
dynamic. In every iteration particles change their
neighborhoods and thus they broadcast their information in
new neighborhoods.
Failure sharing Pg (overall best known position) with each
iteration enables better use of space research and gives more
opportunity for particles to avoid the anomaly of algorithm’s
premature convergence.

 Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 112 - 118

115

3.3 Parallel computation

Our parallel approach based on PSO algorithm, consists of
launching a set of processes (threads) simultaneously. Each
thread is responsible for processing a set of particles for all
iterations until stopping criterion is reached. At the end of
each iteration; a thread synchronization is done to assess the
results of each neighbourhood and update the
neighbourhoods to begin a new iteration.

3.4 Stopping criteria
To minimize computational time and obtain satisfactory
results, we opted in our program for three stopping criteria:
�
1) If the maximum number of iterations without
improvement is reached a specific number,
2) Or, when the fixed radius reached a precision,
3) Or, when the fixed distance of Gbest reached a precision,
�Regarding the first criterion, we specify a number of
iterations after which there is no remarkable improvement in
the solution and we stop the program. �The second criterion
relates to a value specifying the minimum radius allowed, if
this value is reached the program execution stops. �The
third criterion concerns the value of the best position of the
whole swarm, if the distance between the value of the best
position at iteration t and the best position at iteration t + 1 is
equal to a specified accuracy, that is to say that there is no
significant improvement in the solution then we stop the
program execution.�All these criteria are variables,
configurable from the user interface, depending on the
problem to be optimized.

3.5 Algorithm framework

The main steps of our algorithm are as follows: �
Step 1: Generate randomly a set of particles and their
positions and speeds. �
Step 2: Creating neighborhoods on the basis of the radius
value.
Step 3: The processing of each neighborhood is attributed to
one of the created thread. �
Step 4: Each thread evaluates the velocity and the position of
all its own particles. �
Step 5: Update the neighborhoods according to the new
particles’ positions and radius’ value.

�Step 6: If the stopping criterion is satisfied, stop, otherwise
go to step 2.

3.6 Pseudo code

4.DESCRIPTION OF OUR EXPERIMENT AND RESULTS

The modification in the basic PSO algorithm for our
approach consists of three categories: a new version of
dynamic neighborhood, parallel computation, and adjustment
of the PSO parameters. These modifications of PPSO
algorithm enhance its performance.

4.1 Benchmark problems
To test the optimality of our proposed approach PPSO, we
used a set of test functions; they are created specifically to
test the performance of different optimization methods.
For this paper, we have chosen to present the results of 10
test functions (see Table 1), these so-called complex
functions (contain a large number of local optimum) and
high dimensions.

Table 1: Description of the used functions in our
experiments

Funtion Range

minf
Dim

1f Sphere ±5.12 0 30

2f Griewank ±600 0 30

3f Rosenbrock ±30 0 30

4f Rastring ±5.12 0 30

5f Schwefel ±500 0 30

6f Ackley
±32 0 30

7f Michalewicz ±p -9.66015 10

8f Shubert ±10 -186.739 10

9f Step
±100 0 30

10f Himmelblau ±30 -3.78396 2

4.2 Experimental Settings
As for all metaheuristics, PSO has a set of parameters that
must be defined by the user at the beginning of the program,
i.e. the number of particles, the size of the problem to be
optimized, the initial positions and velocities of the particles,
the communication topology, the values of acceleration
coefficients, the number of iterations... and of course for our
model, other parameters are added: the value of the radius,
the values relating to the stopping criteria, Etc.
For this study, which consists of an experiment with a set of
medium-sized problems: 2, 10 and 30 dimensions, the list of
the used PSO parameters which give satisfactory results are
taken from the study [25].
For our PPSO model, the parameters are defined in

For X number of iterations do
While (stopping criterion not reached)
If the number of neighborhoods is less than Z
Divide the radius by 2
End if
Create spherical neighborhoods based on the radius
value
For every N neighborhoods a Thread do
For each particle of a neighborhood
If new Localbest is better than old Localbest
Update Localbest of the neighborhood
End if
End for
End for
End While
End for

 Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 112 - 118

116

accordance with our approach, for example: The inertia
factor is variable and smaller for greater local search
capacity. As well as the communication topology, ring is the
best topology to implement in our approach for a better
exploration.
For the experimentation conducted to PPSO program, each
thread is assigned a neighborhood processing (the number of
used threads is equal to the number of neighborhoods
created). So, the number of used threads depends on the
objective function, i.e. the dimension of the search space.
The same thing for the stopping criteria, the value of each
criterion is chosen depending of the optimization problem.
The choice of radius value is very important, because
neighborhoods are created using this value; (a very large
radius value is equal to a small number of neighborhoods,
while a small value is equal to many. So the choice of this
criterion remains critical and depends on the problem to be
optimized).
For each test, the results for 1000 runs of each objective
function were averaged. �To demonstrate the quality of our
Java code, we used JUnit framework for the implementation
and execution of automated unit tests. Throughout the unit
test development process were made on the different classes
/ components of the program to ensure that the code still
meets the needs even after any changes.

4.3 Results
The carried out experiments are based on the launching of
the PSO parallel processing on a set of particles being
positioned in dynamic neighborhoods in search of the
"minimum" optimum of the objective function. The graphs
below show the detail of the average of results namely the
values of the execution time in seconds, the SR (Success
Rate): the success rate is the percentage of function
convergence to the right solution, and SD (Standard
Deviation) represents the standard deviation
SD = 1 / n((Xi- X*)2)

i=1

n

å
 where X*: the optimal solution and Xi:

the solution found for each test and for the sequential and
parallel program PSO model on a set of ten functions.
According to the results, we can say that the PPSO provides
the optimal solution with a higher probability and the
computation time in PPSO is lower than the sequential PSO.
The graphical results are illustrated in the figures below
(Figure 3, Figure 4 and Figure 5).

Figure 3: Performance curves of the computation time for PSO and

PPSO

Figure 4: Performance curves of the Success Rate for PSO and

PPSO

Figure 5: Performance curves of the Standard Deviation for PSO

and PPSO

5.CONCLUSIONS AND FUTURE WORK

This paper contains a description of the implementation of a
parallel approach with evolutionary neighborhoods based on
the PSO algorithm. �PSO is a stochastic process where the
particles move around a search space in search of the
optimum. Although the method is well known for its

 Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 112 - 118

117

robustness in solving very complex optimization problems,
the latter has two major weaknesses: premature convergence
and high running time.
Several models based on the PSO algorithm have been
proposed to improve the method, and to avoid these two
defects, either by adding new parameters, by hybridizing
with other methods or by introducing the parallelization.
For our PPSO approach coupling two concepts: evolutionary
neighborhood and parallel computation. The obtained results
from the experimentation of 10 test functions prove the
effectiveness of the PPSO and show remarkable efficiency in
terms of reduced time and optimality convergence.
Finally, in the future we intend to test the PPSO on high
dimension functions, to study other variants of the proposed
parallel model and for various real optimization problems.

ACKNOWLEDGEMENT

This research is supported by « XTERM »:
Complex Systems, Territories Intelligence and
Mobility, co-financed by the European Union with
the European regional development fund (ERDF)
and Normandy Region.

REFERENCES

1. P.Sowndarya Mala, N.M.Ramalingeswara Rao,
V.Sreevani, M.Sai. Analysis and Reduction of high
power consumption using parallel prefix adder.
International Journal of Advanced Trends in Computer
Science and Engineering, vol.7, no.6, pp. 163- 165.
2018.
https://doi.org/10.30534/ijatcse/2018/21762018

2. Y.Zhou and Y.Tan. GPU-Based Parallel Particle
Swarm Optimization. In: Proceedings of the IEEE
Congress on Evolutionary Computation, vol. (9), pp.
1493–1500, 2009.
https://doi.org/10.1109/CEC.2009.4983119

3. M.Waintraub, R. Schirru and C. Pereira. Parallel
Particle Swarm Optimization Algoritms in Nuclear
Problems. In: International Nuclear Atlantic Conference
– INAC, 2009.

4. Ting, T.-O., Rao, M.V.C., Loo, C.K., Ngu, S.-S. A New
Class of Operators to Accelerate Particle Swarm
Optimization. In: Proceedings of the IEEE Congress on
Evolutionary Computation, vol. (4), pp. 2406– 2410,
2003.

5. Liu, H., Abraham, A., Zhang, W. A Fuzzy Adaptive
Turbulent Particle Swarm Optimization. International
Journal of Innovative Computing and Applications 1(1),
39–47, 2007.
https://doi.org/10.1504/IJICA.2007.013400

6. Paquet, U., Engelbrecht, A.P. A New Particle Swarm
Optimizer for LinearlyConstrained Optimization. In:
Proceedings of the IEEE Congress on Evolutionary
Computation, vol. (1), pp. 227–233, 2003.

7. Parsopoulos, K.E., Plagianakos, V.P., Magoulus, G.D.,
Vrahatis, M.N. Objective Function “Strectching” to

Alleviate Convergence to Local Minima. Nonlinear
Analysis, Theory, Methods and Applications 47(5),
3419–3424, 2001.
https://doi.org/10.1016/S0362-546X(01)00457-6

8. J. Kennedy and R. Eberhart. Particle Swarm
Optimization. In: Proceedings of the IEEE
International Joint Conference on Neural Networks,
IEEE Press, vol. 8, no. 3, pp. 1943–1948, 1995.

9. K. E. Parsopoulos and M. N. Vrahatis. Recent
approaches to global optimization problems through
particle swarm optimization. In: Natural Computing:
an international journal, 1(2-3), pp.235-306, 2002.

10. M.E. Hyass and P. Hyass. Good Parameters for
Particle Swarm Optimization. In: Laboratories
Technical Report no. HL1001. 2010.

11. P. Bratley and B. L. Fox. Algorithm 659:
Implementing Sobol quasirandom sequence
generator. ACM Trans. Math. Software 14, p.88-100,
1988.
https://doi.org/10.1145/42288.214372

12. K. Zielinski and R. Laur. Stopping Criteria for
Differential Evolution in Constrained Single-
Objective Optimization. In: Advanced in Differential
Evolution, the series Studies in Computational
Intelligence Vol. 143, pp. 111-138 Springer, Berlin
Heidelberg. 2008.
https://doi.org/10.1007/978-3-540-68830-3_4

13. R.C. Eberhart, P. Simpson, R. Dobbins. Computational
PC Tools. Chapter 6, AP Professional. pp. 212-226,
1996.

14. R.C. Eberhart, Y. Shi. Comparing inertia weights and
constriction factors in particle swarm optimization.
Proceedings of the 6th IEEE Congress on Evolutionary
Computation, IEEE Press. pp. 84-88, 2000.

15. H.Y. Fan, Y. Shi. Study on Vmax of particle swarm
optimization. Proceedings of the 2001 Workshop on
Particle Swarm Optimization, Indiana University-
Purdue University Indianapolis Press. 2001.

16. K. Deep, J. C. Bansal. Hybridization of particle
swarm optimization with quadratic approximation.
OPSEARCH. Vol. 46, N° 1, pp. 3-24, 2009.
https://doi.org/10.1007/s12597-009-0002-5

17. X. Cai, Y.Tan. A study on the effect of vmax in
particle swarm optimization with high dimension.
International Journal of Bio-Inspired Computation
(IJBIC). Vol. 1, N°. 3, pp. 210 - 216, 2009.
https://doi.org/10.1504/IJBIC.2009.023816

18. J. Barrera, C. A.C. Coello. Limiting the velocity in
particle swarm optimization using a geometric series.
Genetic And Evolutionary Computation Conference,
Proceedings of the 11th Annual conference on Genetic
and evolutionary computation, pp. 1739-1740, 2009.
https://doi.org/10.1145/1569901.1570135

19. P. Rabanal, I. Rodríguez and F. Rubio. Parallelizing
Particle Swarm Optimization in a Functional
Programming Environment. In Algorithms2014 : vol.
7, pp. 554–581, 2014.
https://doi.org/10.3390/a7040554

20. K. Byung-I and G. Alan. Parallel asynchronous
particle swarm optimization. International Journal For

 Maria Zemzami et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(2), March - April 2019, 112 - 118

118

Numerical Methods In Engineering, vol. 67, pp. 578-
595, 2006.
https://doi.org/10.1002/nme.1646

21. J. Chang, S. Chu, J. Roddick and J. Pan. A Parallel
Particle Swarm Optimization Algorithm With
Communication Strategies. In : Journal of Information
Science and Engineering, 2005.

22. M. Zemzami, A. Elhami, A. Makhloufi, N. Elhami, M.
Itmi, and N. Hmina: Electrical Power Transmission
Optimization based on a New Version of PSO
Algorithm. (Published 22/02/17 DOI:
10.21494/ISTE.OP.2017.0127). 2017.
https://doi.org/10.21494/ISTE.OP.2017.0127

23. M. Zemzami, N.Elhami, M.Itmi and N.Hmina. A New
Parallel Approach For The Exploitation Of The
Search Space Based On PSO Algorithm. In IEEE 4th
International Colloquium in Information Science and
Technology (CIST’16). Tangier. Morocco. Scopus
Indexed, 2016.
https://doi.org/10.1109/CIST.2016.7805024

24. M. Zemzami, A. Elhami, A. Makhloufi, N. Elhami, M.
Itmi, and N. Hmina. Applying a new parallelized
version of PSO algorithm for electrical power
transmission. International Conference on Materials
Engineering and Nanotechnology (ICMEN’17). Kuala
Lumpur, Malizia. Indexed by Ei Compendex and
Scopus, 2017.
https://doi.org/10.1088/1757-899X/205/1/012032

25. Perdesen, M. E. H. Good parameters for partcile
swarm optimization. Hvass Lab., Denmark, Tech. Rep.
HL1001. 2010.

