
        Zhanying Jin et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 3(5), September-October 2014, 94-96 

94 
 

 

 
Abstract : We combined the frameworks Lucene and Heritrix, to 

design a restaurant blog search system. We crawl the Citysearch 
web page using Heritrix and try to extend the FrontierScheduler 
class which is part of Heritrix. In order to extract the full text 
without html tags, we parse the crawled html pages with Jsoup. We 
then pre-process the crawled pages to eliminate unnecessary 
contents via Web page purification. We build the indexes for these 
content using Lucene in Eclipse, and extend the ranking as well as 
implement the search UI page with JSP. 
 

Key words : blog, crawling, Lucene, ranking, search  
 

1. INTRODUCTION 
The Restaurant search system can be divided into four 

main parts, namely the data collection module, Web 
pre-processing module, indexing module, and search 
module. Among them, the page pre-processing module 
includes another sub-module which is the module to perform 
the purification of Web pages. The main contributions of this 
paper can be outlined as follows: 

First, we introduce how the Web page crawler Heritrix [1] 
works, and the details of how it can be used to crawl Web 
pages. We added a URL matching function to make it crawl 
the much more adequate pages which are extracted. 

Second, we introduced the Web purification technique 
using HtmlParser, and gave a complete algorithm of how to 
use the HtmlParser to parse a page in order to achieve the 
purpose of purification. Web page elimination has always 
been an indispensable part in search engine systems. We 
described the purification method which was used as well. 

 

2. RELATED RESEARCH 

2.1 Web Crawler 
Web crawlers are programs that exploit the graph 

structure of the Web to move from page to page. The web 
crawler’s responsibility is to travel from the seed domains to 
their linked pages and then go further to these linked pages
’ linked pages. In this way, the crawler can visit almost the 
whole Internet or visit almost all the assigned Web domains 
[2][3]. Heritrix is a web crawler designed for Web archiving. 
It’s written in Java and provides a free software license.  The 

 
 
* This research was supported by Basic Science Research Program through 

the National Research Foundation of Korea(NRF) funded by the Ministry of 
Education, Science and Technology(No. 2012R1A1A2006850).  

This work was also supported by the National Research Foundation of 
Korea grant funded by the government (Ministry of Education, Science and 
Technology) (NRF-2012M3A9D1054744). 

main interface is accessible using a Web browser, and there 
is a command-line tool that can optionally be used to initiate 
crawls.  

2.2 Web page Purification 
Web pages are written in HTML consisting of plain texts, 

tags and links to image, audio and video files, and other 
pages. The html pages consist of tags. Most HTML tags work 
in pairs. Each pair consists of an open tag and a close tag 
indicated by < > and </> respectively. Jsoup [4] is a Java 
library for working with real-world HTML. It provides a very 
convenient API for extracting and manipulating data [5]. We 
use Jsoup to eliminate the html tags. 

2.3 Web-based search UI 
Once a search index is created, usually a simple search 

user interface is provided to use the index. A Web-based user 
interface can be built using JSP. JSP have access to the entire 
family of Java APIs, including the JDBC API to access 
enterprise databases.  

3. SYSTEM DEVELOPMENT 

3.1 Data Extraction 
We collect html files from Citysearch [6] using Heritrix. 

Citysearch is an online city guide that provides information 
about businesses in the categories of dining, entertainment, 
retail, travel, and professional services in cities throughout 
the United States. Visitors to each of the local city guides in 
Citysearch will find contact information, maps, driving 
directions, editorial, and user reviews for the businesses 
listed. The Main page of searching for a restaurant is shown 
in Figure 1. 

 

 
Figure 1: Restaurant search page of CitySearch[3] 

Implementation of a Lucene based Blog Search Engine* 
Zhanying Jin1, Sujoung Oh2, Minsoo Lee3 

1Dept. Computer Science and Engineering, Ewha Womans University, Korea, jxy5130@gmail.com  

2Dept. Computer Science and Engineering, Ewha Womans University, Korea, sujoung0719@naver.com 
3Dept. Computer Science and Engineering, Ewha Womans University, Korea, mlee@ewha.ac.kr 

 
 

                                                                                                                             
ISSN 2278-3091   

Volume 3, No.5,  September - October  2014 
International Journal of Advanced Trends in Computer Science and Engineering 

Available Online at http://warse.org/pdfs/2014/ijatcse03352014.pdf 

 



        Zhanying Jin et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 3(5), September-October 2014, 94-96 

95 
 

 

After downloading Heritrix from the URL 
http://crawler.archive.org/downloads.html, we imported it 
into Eclipse and run the project.  At this point, the Heritrix 
server is running in the background and is listening to port 
8080 and can be accessed through the URL  
http://localhost:8080 through the browser. We could then 
enter the user name and password which was set in the 
Heritrix.properties configuration file and create a crawler job 
and run the job as shown in Figure 2.  

 

 
Figure 2: Creating a crawler job with Heritrix [1] 

 
We improved the main classes of the FrontierScheduler 

as shown in Figure 3. The scheduler method was extended to 
include the URL matching constraints, namely only when the 
conditions are satisfied the URL will be transferred to 
Frontier in a scheduled manner. Finally, as shown in Figure 
4, the extension of the module prohibits certain results from 
joining the results after the collecting and gathering is done. 

 

 
Figure 3: Customizing the crawling task 

 
Figure 4: Resulting file directory after crawling 

 

3.2 Web page purification 
After Web page crawling is completed, the next step is to 

pre-process the page. Web crawlers take the original page 
which contain a lot of useless information, such as 
advertising, and there exist a large number of Websites with 
duplicate pages. While you browse the Web, you will find 
pages not only giving you the information you want, but also 
with a lot of useless information such as advertising links, 
navigation bar, etc. Using Jsoup can solve this problem to 
extract undesired content from html pages. 

 

 
Figure 5: Code for Web page purification with Jsoup[4] 

 

3.3 Index Creation and UI Implementation 
When pre-processing is completed, the next step is to 

build indexes with Lucene [7][8][9]. The code for building 
indexes is relatively simple. Once the building indexes is 
completed, we implement the simple search page with JSP. 
Building of the indexes and the simple Web-based UI for the 
search pages are shown in Figure 6 and Figure 7, 
respectively. 

 



        Zhanying Jin et al.,  International Journal of Advanced Trends in Computer Science and Engineering, 3(5), September-October 2014, 94-96 

96 
 

 

 
Figure 6: Building the search index 

 

 
Figure 7: Main search page 

 

3.4 Enhancing the Ranking 
The following is the scoring formula which is used to sort 

the results in Lucene [10] : 

 
Boost is the indexing factor for each excitation field 

which is set to the default value 1.0. The higher boost value 
represents the more  importance of term t. There are two 
ways to set the value for the boost.  One is set in the index, 
and the other is in the query item. When setting the boost 
value while building the index, Field.setBoost (boost) 
indicates that the field is more important than the other 
fields; Document.setBoost (boost) indicates that the 
document is more important than the other documents 

When building indexes the count for like in Facebook can 
be viewed as somewhat related to the boost value. The Boost 
value of a document is set to the default value (1.0) and we 
can add the value of the like count in Facebook. After this 
modification is done, a document with a high like count by 
others will also have a higher boost value. And the higher the 
score of the document, the more likely it will be in the top 
ranked results. 
 

 
Figure 8: Result page of search 

4. CONCLUSION AND FUTURE WORK 
We have proposed a search engine for blogs by 

combining the Lucene and Heritrix frameworks. We extend 
the FrontierScheduler class which is part of Heritrix, and 
crawl the Web pages using this extended module of Heritrix. 
We then pre-process the crawled pages to eliminate 
unnecessary contents via Web page purification using Jsoup. 
We build the indexes for these content using Lucene in 
Eclipse, and extend the ranking as well as implement the 
search UI page with JSP.  

For future research directions, when parsing the crawled 
html pages, we can further extract the text and check the 
similarity with the title and use it to calculate the similarity. 
We could further fine-tune and enhance the ranking idea of 
the Facebook like count. Other approaches to extend the 
scoring formula in Lucene can also be explored by 
investigating each component in the scoring formula. 

 

REFERENCES 
1. Heritrix, [Online] Available:  

http://crawler.archive.org/index.html  
2. Web Crawler, Wikipedia, [Online] Available: 

http://en.wikipedia.org/wiki/Web_crawler 
3. V. Shkapenyuk and T. Suel. Design and 

implementation of a high performance distributed 
web crawler, In Proc.  18th Int’l Conf. Data 
Engineering, San Jose, California, 2002, pp. 357-368. 

4. Jsoup, [Online] Available: http://jsoup.org 
5. N. Derouiche. Automatic Extraction of Structured 

Web Data with Domain Knowledge, in Proc. 28th 
Int’l Conf. Data Engineering, Washington, DC, 2012, 
pp. 726-737. 

6. Citysearch, [Online] Available:  
http://www.citysearch.com 

7. Lucene, [Online] Available: http://lucene.apache.org 
8. R. Gao, D. Li, W. Li, and Y. Dong. Application of Full 

Text Search Engine based on Lucene, Advances in 
Internet of Things, Vol. 2 No. 4, pp. 106-109, 2012. 
doi: 10.4236/ait.2012.24013. 

9. Y. C. Li and H. F. Ding. Research and Application of 
Full-Text Search Engine Based on Lucene, 
Computer Technology and Development, Vol. 20, No. 
2, pp. 4-56, 2010. 

10. X. Zhang and Y. Zhou. Improvement of an Algorithm 
for Ranking Pages Based on Lucene, Computer 
System Application, Vol. 18, No. 2, pp. 155-158, 2009. 


