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 

ABSTRACT 

 

This article explores modern approaches to forecasting 

technological risks using simulation modeling and machine 

learning algorithms. It analyzes typical failure scenarios, 

methods for constructing digital twins, and the architecture of 

interaction between simulation environments and intelligent 

modules. The effectiveness of hybrid systems is emphasized in 

the context of unstable technological regimes, including 

aggressive environments and equipment failure prevention. 

The study presents simulation results of a manufacturing 

process using the SimPy environment and embedded ML 

classifiers, which demonstrated a reduction in emergency 

shutdowns and production losses. The findings confirm the 

practical applicability of intelligent systems for adaptive 

control and enhanced resilience of industrial processes under 

uncertainty.  

 

Key words : simulation modeling, digital twin, technological 

risk, machine learning, predictive analytics, intelligent 

systems, process resilience. 

 

1. INTRODUCTION 

New manufacturing systems are becoming automated and 

complex, and this is accompanied by expansion in 

technological hazards of equipment instability, departures 

from operating regimes, and the effects of hostile 

environments. With high downtime costs and potential 

environmental effect, the importance of proactive risk 

management is increasingly rising. Traditional control 

processes, based on predetermined checks and expert 

appraisal, are inadequate for timely response in the context of 

fluctuating environments. Smart systems with an integration of 

simulation modeling and machine learning algorithms are of 

particular importance in this context because they enable 

forecasting of emergency development and making real-time 

recommendations. 

The goal of the research is to compare intelligent methods of 

forecasting technological risks based on simulation modeling. 

The study presents the application of digital twins and 

trainable models to approximate the probabilities of failure  

 
 

 

and establish process parameters in actual production 

conditions. 

 

2. MAIN PART. THEORETICAL FOUNDATIONS OF 

TECHNOLOGICAL RISK FORECASTING USING 

SIMULATION MODELING 

 

Technological risks in production systems represent a set of 

probabilities associated with events that may disrupt the stable 

operation of technological processes, leading to economic 

losses, environmental incidents, or threats to personnel safety. 

For instance, in the oil and gas industry, where equipment 

operates under aggressive chemical and thermobaric 

conditions, risk classification becomes particularly important 

for constructing digital models and trainable predictive 

systems (table 1). 

Table 1: Classification of technological risks and typical failure 

scenarios (based on the oil and gas industry) 

Risk category Description Typical failure 

scenarios 

Technical Arises from 

equipment wear, 

design flaws, or 

mechanical failure. 

Pump housing rupture, 

motor overheating, 

valve unit breakdown 

(e.g., during inhibitor 

injection). 

Technological Caused by 

deviations from 

operational 

parameters. 

Reactor overpressure, 

uneven inhibitor 

distribution, pH 

imbalance in the water 

treatment loop. 

Physicochemical Related to 

aggressive 

environments, 

corrosion, 

deposits, or 

chemical reactions. 

Local pipeline wall 

failure due to acid 

corrosion, cavitation, 

paraffin deposition in 

flowlines. 

Energy-related Caused by failures 

in power supply or 

transmission 

systems. 

Voltage fluctuations, 

shutdown of pumping 

stations, UPS failure 

during drilling 

operations. 

Software / 

algorithmic 

Control system 

errors, logic faults 

Incorrect activation of 

inhibitor valve, SCADA 
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in automation system crash, flow 

control script failure. 

Human factor Operator mistakes, 

procedural 

violations, 

insufficient 

training. 

Incorrect inhibitor 

concentration setting, 

delayed response to 

alarm signals. 

 

 

External 

influences 

Natural or 

technogenic events 

beyond the plant’s 

control. 

Reservoir 

breakthrough, inflow of 

aggressive components 

into formation water, 

external thermal or 

vibrational stress. 

 

Despite differences among industries, the nature of 

technological risks in most production systems is 

fundamentally similar. They are the result of an interaction 

among technical, organizational, human, and environmental 

factors. Equipment failure, deviations from regulatory 

parameters, operator error, and destabilization of 

environmental conditions are all typical sources of potential 

failure. Therefore, a detailed elaboration and introduction of 

general risk modeling techniques are of particular 

significance, since they allow for the potential creation of 

adaptive digital models capable of reproducing the real 

dynamics of processes in diverse industrial sectors. 

Simulation modeling offers the ability to imitate the behavior 

of complex systems in the virtual world, taking into account a 

myriad of variables and interdependences. According to a 

report by Grand View Research, the global simulation 

software market was valued at $23.56 billion in 2024, with 

North America dominating the market share with 36.5% 

(figure 1). 

 

Figure 1: Simulation software market size, billion dollars [1] 

 

Simulation modeling, as a method of engineering analysis, is 

utilized to model the behavior of large technological systems 

in situations that are nearly identical to real operating 

situations. With this method, nonlinear system dynamics, 

random changes in parameters, and multiple point failures can 

be considered, an important condition when controlling 

high-risk industrial processes. 

2.1 Technological risk forecasting methods 

With the increasing complexity of production systems and 

growing demands for the reliability of technological 

processes, traditional risk assessment methods – such as expert 

judgment, statistical analysis, or regulatory inspections – are 

increasingly giving way to intelligent approaches that enable 

adaptive, predictive, and self-learning control. 

The intelligent methods applied in this domain can be broadly 

classified based on how they interact with the simulation 

model: ranging from passive data analysis to active control 

and agent-based learning through feedback. Some algorithms 

utilize the simulator as a source of training datasets; others are 

embedded directly into the simulation environment as 

surrogate components; and still others treat the simulator as a 

training environment for reinforcement learning agents (table 

2). 

Table 2: Intelligent methods for predicting technological risks based 

on simulation modeling [2, 3] 

Method 

class 

Description Typical 

algorithms 

Applicatio

ns 

ML on 

synthetic 

data 

ML models are 

trained on 

datasets 

generated by the 

simulator, 

including rare or 

failure scenarios 

XGBoost, 

Random 

Forest, 

SVM, 

Logistic 

Regression 

Failure 

classificati

on, 

remaining 

useful life 

estimation, 

critical 

state 

prediction 

ML as a 

surrogate 

in 

simulation 

Trained models 

replace complex 

or 

resource-intensi

ve blocks inside 

the simulation 

environment 

MLP, CNN, 

GPR 

(Gaussian 

Process 

Regression), 

LSTM 

Approxima

ting heat 

transfer, 

corrosion 

rates, flow 

dynamics 

Anomaly 

detection 

Identifies 

deviations from 

normal behavior 

modeled or 

learned from 

simulation data 

Autoencoder

, One-Class 

SVM, 

Isolation 

Forest 

Fault 

detection, 

early 

warning 

systems, 

deviation 

monitoring 
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Reinforce

ment 

Learning 

(RL) 

The simulator is 

used as an 

environment to 

train agents for 

optimal control 

strategies 

Q-Learning, 

DQN, PPO, 

SAC 

Inhibitor 

dosage 

control, 

operational 

mode 

optimizatio

n 

Probabilis

tic 

methods 

Forecasts are 

generated based 

on probabilistic 

distributions and 

confidence 

intervals 

Bayesian 

Neural 

Networks, 

Monte Carlo 

Dropout. 

Risk 

estimation, 

failure 

probability 

mapping 

Simulation

-based 

optimizatio

n 

Optimization of 

system 

parameters using 

the simulator as 

a black-box 

evaluator 

Genetic 

Algorithms, 

Bayesian 

Optimization

. 

Parameter 

tuning, 

fault-tolera

nt 

configurati

on, 

scenario 

analysis 

The advantage of these methods lies in their ability to account 

for complex, nonlinear, and stochastic characteristics of 

processes that are difficult to formalize through analytical 

equations. However, their successful application requires 

careful selection of the simulation platform to ensure 

compatibility with external ML libraries, as well as a reliable 

data exchange architecture between system components. 

Collectively, intelligent methods based on simulation 

modeling provide the technological foundation for developing 

adaptive and predictive production systems. 

These approaches are particularly important in technological 

domains characterized by physicochemical instability, where 

process dynamics are highly sensitive to slight deviations in 

input parameters. This is especially relevant for systems 

involving the treatment of aggressive environments and the 

prevention of corrosion-related degradation [4]. In such cases, 

not only accurate reproduction of current system states is 

required, but also timely correction of control actions. For 

instance, in systems for the metered injection of inhibitors, an 

effective control strategy can be implemented through the 

integration of predictive algorithms with chemical interaction 

models. This approach enables adaptation to variable 

conditions, optimization of dosing regimes, and, consequently, 

increased equipment reliability while reducing operational 

costs. 

2.2 Digital twins as a tool for simulation modeling 

In the context of increasing complexity and interdependence 

of industrial processes – particularly in sectors with a high 

degree of automation and elevated risk of failure – the digital 

twin has emerged as a critical component of forecasting 

systems [5]. It enables the integration of a physical object with 

its corresponding mathematical and informational 

representation. A digital twin is a high-fidelity virtual replica 

of a physical asset, synchronized with real-time data from the 

operational system (figure 2). 

 

Figure 2: Digital twin architecture 

A digital twin not only replicates the current parameters of a 

system but also enables predictive analysis, failure scenario 

evaluation, optimization of operating modes, and simulation 

of external influences. In industrial practice, digital twins are 

employed for equipment condition monitoring, process 

control, maintenance planning, and risk assessment during 

transitions to new operational regimes. 

The construction of digital twins is based on discrete-event, 

agent-based, system dynamics, or hybrid models, depending 

on the nature of the production process. The implementation 

of such models relies on specialized software tools (table 3). 

Table 3: Approaches to building digital twins and corresponding 

modeling tools [6, 7] 

Model type Brief 

description 

Applications Modeling 

tools 

Discrete-event Models the 

system as a 

sequence of 

events 

occurring over 

time. 

Production 

lines, queuing 

systems, 

logistics, 

service 

systems. 

AnyLogic, 

FlexSim, 

Arena, SimPy. 

Agent-based System is 

represented as 

a set of 

autonomous 

agents 

interacting 

with each 

other. 

Human 

behavior 

modeling, 

transport 

systems, 

autonomous 

entities, 

AnyLogic, 

NetLogo, 

GAMA 

Platform. 

System 

dynamics 

Uses 

differential 

equations and 

Chemical and 

energy 

processes, 

Vensim, Stella, 

Dymola, 

Matlab 



Mukayev Timur,   International Journal of Advanced Trends in Computer Science and Engineering, 14(4), July  – August  2025, 194 - 198 

197 

 

 

feedback 

loops to 

represent 

accumulations 

and flows. 

high-level 

process 

control. 

Simulink 

Hybrid Combines two 

or more 

modeling 

paradigms 

within a single 

model. 

Complex 

industrial 

systems, 

full-scale 

digital twins, 

integration 

with 

SCADA/PLC. 

AnyLogic, 

Modelica, 

OpenModelica, 

Matlab 

Simulink, 

custom Python. 

The practical implementation of a digital twin requires the 

construction of a multi-layered architecture that includes the 

physical layer (sensors, actuators), a data acquisition and 

preprocessing layer (e.g., SCADA, OPC UA, MQTT), 

simulation and analytics modules, and a user interface. As an 

intermediate layer, cloud-based solutions and industrial IoT 

platforms – such as Siemens MindSphere, GE Predix, and 

Azure IoT Hub – are increasingly employed to provide 

scalability and connectivity for distributed components [8]. 

The simulation module itself can be deployed either locally or 

in a cloud environment, supporting asynchronous scenario 

processing and feedback interaction with the physical asset. 

Special attention is given to synchronization between the 

physical and virtual states of the system. This can be 

implemented as real-time synchronization or in 

quasi-real-time mode (batch updating), depending on the 

required response time. In industrial and supply chain 

environments, maintaining up-to-date digital representations 

plays a critical role in enabling timely decision-making and 

enhancing system fault tolerance [9]. The efficient operation 

of a digital twin also necessitates the implementation of model 

calibration mechanisms based on new incoming data, which is 

typically achieved through integration with learning 

algorithms (e.g., online learning or transfer learning). Thus, 

the digital twin becomes not merely a static simulation model, 

but a continuously evolving system capable of adapting to 

changes in both the external environment and the internal 

structure of the object. 

3. EVALUATION OF THE EFFECTIVENESS OF INTELLIGENT 

MODELS FOR FORECASTING TECHNOLOGICAL RISKS IN A 

PRODUCTION SYSTEM 

As part of this study, a digital model of a production process 

was developed to simulate the operation of a continuous 

manufacturing line consisting of four sequential modules: raw 

material loading, thermal processing, packaging, and quality 

control. The model incorporated stochastic elements, 

including random delays, component failure probabilities, and 

fluctuations in technological parameters such as temperature, 

speed, and pressure. It was implemented in the SimPy 

environment, enabling multiple scenario runs under varying 

initial conditions. 

The experiment assessed the potential for improving the 

resilience of the technological process by integrating 

predictive mechanisms based on existing machine learning 

algorithms. In particular, standard built-in classifiers from 

MATLAB (Classification Learner) were used to analyze the 

simulator-generated data and predict the likelihood of 

deviations beyond acceptable process limits. The model 

functioned as a predictive module capable of issuing early 

warnings about the accumulation of deviations that could lead 

to production stoppages or increased defect rates. Parameter 

adjustment scenarios were implemented through control 

signals in the simulator – such as conveyor speed changes, 

activation of cooling systems, or skipping of dosing cycles. 

The comparison was conducted across three operational 

modes: 

• standard (without prediction), 

• intelligent (with failure forecast-based adjustments), 

• stress (including external disturbances such as raw material 

supply interruptions, temperature spikes, and malfunctions in 

the packaging unit). 

Table 4 presents the averaged performance indicators based 

on 1,000 simulation iterations for each mode. 

Table 4: Performance indicators of the production process under 

different control modes 

Indicator Standard 

mode 

Intelligent 

mode 

Stress 

mode 

Number of 

critical 

shutdowns (per 

1000 cycles) 

62 19 87 

Average 

downtime 

duration, min 

178 71 239 

Defective 

product rate, % 

7.3 3.0 11.5 

Energy/resource 

savings, % 

– 11.8 – 

False alarm rate 

of the prediction 

system, % 

– 4.6 – 

The modeling results demonstrated that integrating a 

predictive module based on existing machine learning tools 

significantly enhances the resilience of the production process 

to both random and cumulative disturbances. By utilizing 

forecasts of the probability of exceeding acceptable 

technological parameter ranges, the simulation model 

exhibited a more than threefold reduction in the frequency of 

critical shutdowns, as well as reductions in product loss and 

downtime duration. These outcomes confirm the applicability 

of intelligent modeling not only for scenario analysis but also 

as a foundation for digital process control under uncertainty. 

4. CONCLUSION 

The advancement of intelligent methods based on 

simulation modeling represents a promising direction in 

engineering analytics aimed at proactive risk management in 

complex technological systems. The use of hybrid 

architectures that combine mathematical models with trainable 
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components enables not only the reproduction of production 

system behavior under uncertainty but also the formulation of 

adaptive response strategies to potential deviations. Digital 

twins integrated with machine learning modules serve as a 

foundation for predictive diagnostics, parameter optimization, 

and improved robustness to abnormal situations. 

The results of the analysis confirm the high practical relevance 

of such approaches in real industrial environments, 

particularly in sectors with a high degree of automation and 

sensitivity to internal and external fluctuations. Intelligent risk 

forecasting systems allow for a reduction in the number of 

emergency shutdowns, a decrease in defect rates, and 

optimization of resource consumption through anticipatory 

control. Future research in this area may focus on the 

development of online learning techniques, scalable 

architectures for digital twins, and standardization of data 

exchange models between simulators and ML services in 

industrial settings. 
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