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ABSTRACT 

 

The study integrated CSP with ACO to tackle complex 

scheduling challenges, demonstrating the robust capabilities 

of this approach. The results indicate that the integrated 

approach not only maintained high success rates across a range 

of constraints but also revealed the importance of precise 

parameter tuning in enhancing algorithm performance. 

Particularly, constraints that showed variations in success rates 

underlined the potential for further optimization to achieve 

consistent and effective outcomes. The effectiveness of the 

optimization algorithm was evaluated by measuring its success 

and performance rates. This approach proved to be a robust 

strategy for optimizing the study's problem structure, 

providing valuable insights into the dynamics of algorithmic 

performance. 

 

Key words : ant colony, constraints, optimization, 

pheromone, scheduling. 

 

1. INTRODUCTION 

 

In optimization, metaheuristic algorithms have been a 

cornerstone, offering versatile and robust solutions to complex 

problems; this evolution is well-documented and explores 

adaptability [1]. The field transitioned to evolutionary 

algorithms; a concept further refined. These algorithms mimic 

natural evolutionary processes like selection and mutation [2]. 

As explored in the comprehensive analysis, nature-inspired 

algorithms draw from a broader spectrum of natural 

phenomena for problem-solving [3]. A nature-inspired 

population-based algorithm that dynamically adjusts its 

population size, selects specific modification operators for 

everyone, and controls the sampling period of optimized 

systems to simplify the fitness function and balance new 

solution searches with fine-tuning [4]. Within this domain, 

population-based algorithms stand out for their effectiveness 

in exploring vast search spaces [5].  

 

Ant Colony Optimization (ACO), a prime example of this 

approach, leverages the foraging behaviour of ants to find 

optimal solutions, demonstrating a robust, adaptive method for 

complex optimization challenges [6]. The ACO algorithm is a 

new evolutionary algorithm, which is gradually applied due to 

its easy robustness with other methods and excellent 

distributed computing mechanism [7]. ACO, introduced in the 

1990s and part of the broader field of swarm intelligence, 

mimics real ant behaviors to solve combinatorial optimization 

problems, where artificial ants construct solutions and 

communicate their effectiveness like actual ants. 

 

Nurse scheduling, the assignment of nurses to specific tasks, is 

complicated by differing objectives and constraints that vary 

by country and hospital, with resource shortages adding to this 

complexity. Despite its complexity, many hospitals still 

manage nurse scheduling manually, a tedious process that may 

not comply with hospital rules. Research on medical staff 

allocation has predominantly focused on single aspects, with 

limited investigation into comprehensive allocation planning 

or staff preferences [8]. In Emergency Medical Services 

(EMS) systems, efficient staff scheduling is critical as it 

directly impacts patient care quality and the influence of shift 

sequences on staff competency [9]. Nurse scheduling, 

assigning nurses to various hospital tasks over a specific 

period, faces challenges such as resource scarcity and the risk 

of non-compliance with nursing regulations through manual 

scheduling [10]. The importance of healthcare scheduling 

research in optimizing costs, enhancing patient flow, and 

ensuring effective treatment administration in hospitals 

highlights the need for maximal resource utilization [11]. An 

objective function for nurse scheduling that minimizes 

constraints and balances workloads proved particularly 

effective in small to medium-sized problems with a 

semi-random initialization; their method achieved 

significantly lower objective values, highlighting its efficiency 

in optimizing nurse workloads [12]. ACO enhances 

maintenance, repair, and overhaul scheduling. They focused 

on reducing scheduling time and job tardiness and adapting to 

frequent shop floor changes; their findings indicated that the 

algorithm outperformed commercial software in solution 

quality and identified ways to accelerate its convergence time 

[13]. A cloud computing task scheduling algorithm using the 

ant colony algorithm achieves greater efficiency in minimizing 

makespan, reducing costs, and balancing system load [14]. A 

maintenance scheduling framework using ACO aims to 

optimize preventive and predictive maintenance schedules. 

Considering multiple constraints, this approach sought to 

reduce maintenance time and production losses [15]. Using the 
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ant colony algorithm in university teaching management 

systems enhances efficiency through automated and manual 

course scheduling and adapts to intelligent teaching 

environments [16]. Another novel maintenance scheduling 

framework using Ant Colony Optimization focuses on 

efficient preventive and predictive maintenance scheduling to 

minimize maintenance time and production losses while 

managing multiple constraints [17].  

 

The Constraint Satisfaction Problem (CSP) provides a robust 

framework for modeling and solving combinatorial problems 

in various domains by seeking feasible solutions that adhere to 

specific constraints [18]. It involves finding the optimal 

solution from a set of feasible options within constrained 

optimization models, which are influenced by the problem's 

context aimed at achieving a particular goal [19]. 

Metaheuristics, derived from diverse mathematical 

disciplines, are crucial in tackling complex optimization 

problems by exploring the solution space efficiently and 

effectively. These algorithms excel in navigating constraints 

and finding feasible solutions, offering valuable strategies 

for a wide range of optimization issues, especially in CSPs. By 

exploring the dynamic relationship between decision 

variables, objective functions, and constraints, metaheuristic 

algorithms can identify optimal or near-optimal solutions 

while strictly complying with the problem's structural 

constraints. 

 

The primary objective of this study is to effectively integrate 

Constraint Satisfaction Problems (CSP) with Ant Colony 

Optimization (ACO) to enhance staff scheduling processes, 

ensuring that schedules not only meet predefined constraints 

but are optimized. The study aims to meticulously apply and 

assess various parameter fine-tuning techniques to ACO, 

seeking to determine the optimal settings that yield the best 

outcomes regarding objective function values. Additionally, it 

will evaluate the influence of these parameter adjustments on 

the efficiency and effectiveness of ACO in managing the 

intricate demands of staff scheduling. By achieving these 

goals, the research provides a comprehensive understanding of 

how CSP-integrated ACO can be specifically tailored and 

refined for effective application in real-world scheduling 

scenarios, potentially offering valuable insights into its 

broader applications in organizational resource management. 

 

2. ANT COLONY OPTIMIZATION (ACO) 

 

The Ant Colony Optimization (ACO) concept, first 

introduced by Dorigo in 1992, explores artificial systems 

inspired by the behavior of actual ant colonies, which are 

utilized for solving discrete optimization problems [20].  ACO 

algorithm mimics actual ant behavior, using artificial 

pheromones for communication among artificial ants to solve 

problems collectively. This indirect communication allows the 

ants to share information and adapt their strategies based on 

experience, distinguishing ACO from other heuristic methods 

by enabling ongoing solution refinement [21]. The ACO 

algorithm is based on the natural foraging behavior of ants, 

which use pheromone trails to signal the location and quality 

of food sources to their colony. This process naturally 

optimizes the search for resources by favoring shorter, more 

resource-rich paths, a principle applied in the ACO to solve 

complex optimization problems efficiently [22]. Figure 1 

presents the ACO algorithm process. 

=========================================== 

 
=========================================== 

Figure 1: ACO Pseudocode [23] 

 

Ants face a decision to either go left or right, making this 

choice randomly. The accumulation of pheromones is more 

rapid on the shorter path. This variance in pheromone density 

between the paths over time guides the ants to opt for the 

shorter one. During the algorithm's execution, ants initially 

create a range of solutions at random. These solutions are then 

refined by adjusting the pheromones based on the specific 

problem and the method of navigating the graph, with 

pheromones being drawn on the graph's vertices or edges. The 

process of moving between two nodes, i and j, is influenced by 

the probability associated with that edge, presented in (1). The 

(1) helps determine the likelihood that an ant will choose a 

specific path from one point to another. This decision is based 

on two main factors: the amount of pheromone on the path 

(𝜏(𝑡)𝑖𝑗) and other helpful path qualities (𝜂𝑖𝑗), like how direct or 

safe the path is. The equation compares one option's 

pheromone level and path quality to the sum of these values for 

all possible paths the ant could take from its current position. 

This helps the ant decide on the most appealing route by 

looking at how well-traveled it is and how beneficial its 

characteristics are compared to other available paths. Before 

ants update the pheromone levels, which helps future ants 

make decisions, they look for minor improvements or better 

paths in the area. A local search is helpful. Updating the 

pheromone levels is followed, which helps reinforce good 

paths and diminish less useful ones over time. In (2) τij(t)+Δτij

(t) describes how the pheromone level on a path between two 

points (i and j) updates over time. At each time step, the 

existing pheromone amount (𝜏𝑖𝑗(𝑡)) is reduced slightly (by a 

factor of (1−ρ), where 𝜌 is the rate at which pheromone 

evaporates). Then, new pheromone (Δ𝜏𝑖𝑗(𝑡)) added by ants that 

recently traveled that path is added to this reduced amount. 

This process helps to gradually fade out older trails that aren't 

𝛼 𝛽 



Arcely Perez-Napalit,  International Journal of Advanced Trends in Computer Science and Engineering, 13(3), May - June 2024, 112 - 118 

114 

 

 

being used much anymore, while strengthening those that are 

frequently traveled, guiding future ants to follow the most 

successful routes discovered by previous ants. 

 
 

 
 

3.  PROBLEM STRUCTURING 

 

The study applied the problem structure and mathematical 

models [24] to address scheduling challenges effectively. 

Within this study, the subsequent policies for formulating a 

schedule within the given scenario have been identified. The 

mathematical formulation phase translates the constraints and 

objectives of the problem into mathematical terms. The model 

employed in the study consists of indices, data, decision 

variables, and penalty variables. Indices denote crucial 

components in scheduling, whereas data factors serve as 

constants. Decision variables represent the choices in 

scheduling that have a direct impact, and penalty variables 

account for the costs associated with breaching soft 

constraints. This formulation allows for effective analysis and 

optimization of scheduling in the study. The developed 

mathematical model optimizes scheduling by incorporating 

various constraints and input data values. A critical element in 

this model is the decision variable, which is pivotal in 

determining the optimal value for the objective function in a 

well-designed optimization problem. The constraints related 

to staff scheduling are as follows: 

Constraint 1: Each staff member works a maximum of one 

shift per day, expressed in (3)      

Constraint 2: Senior staff are eligible for the dawn shift, 

which requires at least one senior staff per shift, unless it’s a 

Sunday, expressed in (4)  

Constraint 3: Each shift must include at least one senior 

staff member, and no orderly staff are assigned to this shift, 

presented in (5). 

Constraint 4:  Orderly staff may be assigned to the morning 

shift, expressed in (6). 

Constraint 5: At least one orderly staff member is 

required per shift, and no senior staff can be assigned to this 

shift, presented in (7) 

Constraint 6: Staff are limited to a maximum of 22 working 

days per month, expressed in (8). 

Constraint 7: Staff must be assigned exactly one Sunday 

shift, expressed in (9). 

Constraint 8 : No staff member may work evening shifts on 

two consecutive days, presented in (10). 

Constraint 9 : A maximum of seven staff members are 

assigned from Monday to Saturday, expressed in (11). 

Constraint 10: Each day is either a working or a free day for 

staff, ensuring clear scheduling, expressed in (12). 

 

  

  

 

 

 
 

 

 

 
 

 
 

  

 
 

 
 

Given the nature of the problem in the study, it is classified 

as a Constraint Satisfaction Problem (CSP), which requires the 

state to fulfill various constraints. The goal is to identify 

combinations of values that meet all the specified constraints. 

Integrating CSP into an ACO framework necessitates adapting 

the algorithm to manage and adhere to these defined 

constraints effectively. 

 

Integrating CSP into ACO begins by representing the CSP as a 

graph where nodes are decision variables, and edges are 

potential variable values. Ants randomly generate initial 

solutions that tentatively meet CSP constraints, starting with 

an empty solution and gradually building a complete set of 

variable assignments. Pheromone levels guide the search, with 

trails being strengthened or weakened based on solution 

quality to influence subsequent ant decisions. During solution 

construction, ants evaluate and adhere to constraints, adjusting 

pheromone levels accordingly if constraints are violated. 

Heuristic information gauges how closely a solution meets all 

constraints, aiding decision-making. The solutions are 

regularly updated based on performance, with pheromone 

evaporation preventing premature convergence on suboptimal 

solutions. A global update enhances pheromones on effective 

paths after all ants have constructed their solutions, and the 

iterative process continues, using refined pheromone trails to 

seek improved solutions until a satisfactory outcome is 

achieved or the iteration limit is reached. Figure 2 displays the 

pseudocode illustrating how the CSP is incorporated into the 

ACO process. 

 

The study extensively explored the impact of α and βparameter 

settings on the ACO algorithm, with values ranging from 0.2 to 

2.0 across ant populations of 50, 100, 150, and 200. Each 

parameter configuration was tested 20 times to validate the 

results statistically. This rigorous experimentation, crucial in 

optimization problems, helps to understand how variable 

manipulation affects outcomes. The combination of 

computational and experimental tests aimed to identify the 

optimal solution, employing statistical metrics such as mean, 

standard deviation, maximum, and minimum values to assess 

the algorithm's performance thoroughly. The overall 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 
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effectiveness of the optimization strategy was quantified by 

evaluating the success and performance rates, providing a 

comprehensive view of how different settings influence the 

algorithm’s ability to solve complex scheduling scenarios 

efficiently and demonstrating the significant role of parameter 

tuning in enhancing the ACO's functionality. The study 

utilized a computer system equipped with an Intel(R) Core™ 

i5-7400 CPU @ 3.00GHz, 8.00GB of RAM, and running on 

Windows 10 Pro operating system. This setup was chosen to 

guarantee the optimization model's practical implementation 

and effective resolution. The data utilized in this study 

represents the actual scheduling of the technician staff from 

the case study organization. This real-world data offers 

valuable insights into the organization's scheduling practices 

and operations, providing a realistic representation of the 

challenges and complexities faced in the field. With the actual 

scheduling data, the study's findings are more credible and 

reliable, based on real-world scenarios, and applicable to 

real-world situations. 

 

Figure 2 effectively demonstrates the integration of the CSP 

framework with the ACO process within the study. This 

integration is visually represented through a schematic that 

highlights how elements of the CSP—variables, domains, and 

constraints—are incorporated into the ACO’s operational 

flow. The figure likely details the adjustments made to the 

standard ACO algorithm to include CSP elements, focusing on 

how ants generate solutions that adhere to predefined 

constraints. It illustrates modifications in pheromone updates 

and heuristic guidance to ensure that the solutions produced 

seek to optimize and strictly comply with the CSP stipulations. 

This approach optimizes the exploration of the solution space 

and provides the validity of solutions under CSP constraints, 

enhancing the algorithm’s effectiveness and applicability in 

complex problem-solving scenarios. 

 
Figure 2: ACO Pseudocode for the given CSP structure 

4. RESULTS 

 

The analysis of running times for varying numbers of ants and 

parameter settings (α and β) in the ACO algorithm presented in 

figure 3 reveals a correlation between higher ant counts and 

increased computation times, particularly evident under higher 

β values. For example, with 200 ants, running times peak 

significantly at β = 0.4 and 1.2. This trend suggests that 

increasing emphasis on pheromone strength (α) might help 

reduce computation time in specific scenarios, notably at α = 

2, where times are generally lowest across all ant counts. 

However, mid-range values of α and β often lead to longer 

running times, indicating that a balanced emphasis on 

pheromone trails and heuristic information necessitates greater 

computational resources due to more extensive solution space 

exploration. This pattern underscores the interplay between α, 

β, and ant counts in determining the algorithm's efficiency. 

 

 
Figure 3: ACO Computation time 

 

The data from figure 4 illustrates how the objective function 

values vary with different settings of α (alpha) and β (beta) 

parameters and other ant counts in an Ant Colony 

Optimization (ACO) framework. As the number of ants 

increases, there is a general trend toward better optimization of 

the objective function, especially at higher ant counts with 

specific parameter settings. For instance, with 200 ants, the 

best objective function values are observed at α = 1.6 and β = 

1.4 or 1.6, achieving values as low as 0 and 1, respectively. 

This suggests that higher ant counts can more effectively 

explore and exploit the solution space, particularly when the 

influence of the pheromone trail strength (α) is balanced with 

the heuristic desirability (β). Notably, the parameter setting of 

α = 2 consistently shows improvements across all ant counts, 

achieving some of the lowest values in the dataset, indicating 

that a more substantial reliance on pheromone decay (higher β 

values) potentially leads to more optimal solutions. This 

pattern highlights the significant role of parameter tuning in 

achieving the best results in ACO, demonstrating that careful 

adjustment of α and β can lead to substantially different 

outcomes in the optimization process. 
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Figure 4: Best Objective Function Values 

 

The analysis of performance and success rates across various α 

and β settings in the algorithm demonstrates strong 

effectiveness in adhering to constraints, particularly noticeable 

in the data from 50, 100, 150, and 200 ants presented in Tables 

1 through 4. Success rates for nearly all constraints 

consistently hit the 100% mark under multiple parameter 

configurations, significantly when α and β values are set 

higher. This trend suggests that increasing these parameters 

enhances the algorithm's ability to meet specified constraints 

effectively. 

 

The analysis of success rates, presented in Table 1 with 50 ants 

population, reveals varying performance levels across settings 

of α and β. C3 consistently shows high success, demonstrating 

robust adherence under most parameter settings, with slight 

reductions in a few instances. In contrast, C6 and C7 exhibit 

more variability, with C6 generally performing well, 

especially at higher levels of α, indicating sensitivity to the 

balance between pheromone strength and heuristic 

information. C7, however, presents challenges, showing lower 

success rates, particularly at higher α values, but also offering 

a glimmer of hope for improvement through parameter tuning.  

 

Table 1: Performance and Success Rate of Constraints for 50 ant’s 

population 

α 

and 

β 

 

Success Rate 

Mean 

*P. 

Rate  

 C1 C2 C3 C4 C5 C6 C7 

0.2 100 100 100 100 100 96.88 90.63 98.21 

0.4 100 100 100 100 100 96.88 96.35 99.03 

0.6 100 100 97 100 100 96.88 93.75 98.23 

0.8 100 100 100 100 100 96.25 92.71 98.42 

1.0 100 100 100 100 100 97.50 93.75 98.75 

1.2 100 100 100 100 100 99.38 93.75 99.02 

1.4 100 100 99 100 100 98.13 93.23 98.62 

1.6 100 100 100 100 100 97.50 95.83 99.05 

1.8 100 100 100 100 100 99.38 94.27 99.09 

2.0 100 100 99 100 100 99.38 91.67 98.58 

*Performance Rate 

 

The results illustrated in Table 2 with 100 ants population 

reflect varied performance across different settings of α and β. 

C3 mostly maintains high success, indicative of the algorithm's 

strong capability in handling this constraint under a range of 

parameter settings. However, there is a notable dip at the 

highest α value. Meanwhile, C6 generally shows high 

compliance but with some fluctuations in success that could 

indicate areas sensitive to specific parameter adjustments. The 

most variability is observed with C7, where the success rate 

tends to decrease under certain conditions, suggesting that this 

constraint is particularly challenging for the algorithm, 

especially at higher α settings.  

 

Table 2: Performance and Success Rate of Constraints for 100 ant’s 

population 

α 

and 

β 

 

Success Rate 

Mean 

*P. 

Rate  

 C1 C2 C3 C4 C5 C6 C7 

0.2 100 100 100 100 100 98.75 92.71 98.78 

0.4 100 100 99 100 100 98.75 93.75 98.79 

0.6 100 100 100 100 100 95.63 92.71 98.33 

0.8 100 100 100 100 100 98.13 89.58 98.24 

1.0 100 100 99 100 100 98.13 93.23 98.62 

1.2 100 100 100 100 100 96.88 91.67 98.36 

1.4 100 100 100 100 100 100 91.67 98.81 

1.6 100 100 100 100 100 99.38 93.23 98.94 

1.8 100 100 100 100 100 99.38 90.10 98.50 

2.0 100 100 96 100 100 98.13 92.19 98.04 

*Performance Rate 

 

Table 3 presents the results for 150 ants population across 

various α and β settings, illustrating strong and consistent 

performance, with all constraints achieving near-perfect or 

perfect success rates in most configurations. The algorithm 

performs exceptionally well for C3, consistently maintaining a 

100% success rate, except at the highest α setting, where it 

slightly dips. While C6 is also generally high, the success rate 

shows some variability, reaching perfect compliance at the 

highest α level, suggesting that this constraint benefits from 

increased pheromone influence. Constraint C7 experiences 

slight variations in success across different settings, with the 

lowest performance observed at lower β values, indicating a 

potential area for tuning to consistently enhance the 

algorithm's ability to meet this more sensitive constraint.  

 

Table 3: Performance and Success Rate of Constraints for 150 ant’s 

population 

α 

and 

β 

 

Success Rate 

Mean 

*P. 

Rate  

 C1 C2 C3 C4 C5 C6 C7 

0.2 100 100 100 100 100 96.88 91.67 98.36 

0.4 100 100 100 100 100 97.50 88.54 98.01 

0.6 100 100 100 100 100 98.75 92.71 98.78 

0.8 100 100 100 100 100 97.50 92.71 98.60 

1.0 100 100 100 100 100 97.50 94.79 98.90 

1.2 100 100 100 100 100 95.00 92.19 98.17 

1.4 100 100 100 100 100 98.13 95.31 99.06 

1.6 100 100 100 100 100 99.38 93.75 99.02 

1.8 100 100 100 100 100 99.38 93.23 98.94 

2.0 100 100 99 100 100 100 93.75 98.96 

*Performance Rate 
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The success rates presented in Table 4 for 200 ants population 

across different α and β indicate an overall robust 

performance. The algorithm consistently achieves perfect or 

near-perfect success rates for C3, maintaining 100% in most 

configurations. For C6, success rates are generally high, 

demonstrating 100% success, suggesting optimal parameter 

alignment for this specific constraint. However, the variability 

is observed in constraint C7, particularly at higher β settings, 

with a notable dip in performance at the highest β value, 

indicating potential oversensitivity to parameter increases in 

this area.  

 

Table 4: Performance and Success Rate of Constraints for 200 ant’s 

population 

α 

and 

β 

 

Success Rate 

Mean 

*P. 

Rate  
 C1 C2 C3 C4 C5 C6 C7 

0.2 100 100 100 100 100 97.50 92.19 98.53 

0.4 100 100 100 100 100 95.00 94.27 98.47 

0.6 100 100 99 100 100 96.25 94.79 98.58 

0.8 100 100 100 100 100 98.75 93.23 98.85 

1.0 100 100 100 100 100 98.75 94.27 99.00 

1.2 100 100 100 100 100 99.38 94.79 99.17 

1.4 100 100 100 100 100 100 90.10 98.59 

1.6 100 100 100 100 100 99.38 93.75 99.02 

1.8 100 100 100 100 100 98.13 92.19 98.63 

2.0 100 100 100 100 100 98.75 93.75 93.93 

 

The analysis of the optimization results, as presented in Table 

5, reveals critical insights into the algorithm's performance, 

reflected in the objective function values and running times. 

The mean objective function value stands, indicating the 

average effectiveness of the algorithm across various runs, 

with a standard deviation of 6.25, which suggests a moderate 

variability in performance. Additionally, the mean running 

time, pointing to the average computational effort required by 

the algorithm is complemented by a standard deviation of 

17.50 seconds. This latter measure indicates some fluctuations 

in the running times, which may be attributed to differences in 

problem complexity or computational efficiency across 

different tests. Together, these statistics provide a 

comprehensive overview of the algorithm's operational 

efficiency and effectiveness, highlighting areas of stability and 

aspects that might benefit from further optimization to reduce 

variability and improve performance consistency. 

 

Table 5: ACO Algorithm result 

Analysis Result 

Mean Objective Function Value 13.03 

Std. Dev Objective Function Value 6.25 

Mean Running Time 78.08 

Std. Dev. Running Time 17.50 

 

The submitting author is responsible for obtaining agreement 

of all coauthors and any consent required from sponsors before 

submitting a paper. It is the obligation of the authors to cite 

relevant prior work. 

5. CONCLUSION 

A conclusion section is not required. Although a conclusion 

may review the main points of the paper, do not replicate the 

abstract as the conclusion. A conclusion might elaborate on the 

importance of the work or suggest applications and extensions.  
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