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 
ABSTRACT 
 
In this article, we have described a mathematical model for 
tumor-immune system with impact of small molecules drug, 
and solved by multi step differential transform method. The 
mathematical model has four compartments; population of 
tumor cell, CD8 T-killer cell, CD4 T-helper cell and amount 
of drug in the blood stream. Calculations are presented to 
verify the theoretical results so obtained for tumor free 
equilibrium point. The model is fit for removing tumor with 
passage of time irrespective of the initial population or size of 
the tumor. 
 
Key words: Mathematical model, Tumor-immune system, 
Molecule drug, MsDTM.  
 
1. INTRODUCTION 
 
Tumor is an endemic around the globe, and yet not much is 
known in about its development and demolition. The tumor 
cells spread to body by the phenomenon called metastasis, and 
they can be classified into two kinds: non-cancerous and 
cancerous. However, dangerous tumor is a multi factorial 
sickness, the hazard elements of which incorporate utilization 
of tobacco items, unfortunate eating routine, air 
contamination and so on.  
 
CD4 T-helper cells and CD8 T-killer cells are two most 
insusceptible cells for securing against malignant cells. CD4 
T-helper cells generally help all types of body cells of the 
immune system in contamination, and CD8 T-killer cells 
protect and set out infected cells. According to law of mass 
action, as stated by Sharma [15], CD4 T-helper cells are 
transformed into CD8 T-killer cells; it may be direct contact 
with them, or other case interaction with cytokines generated 
by the CD4 T-helper cells. At some point, the immune system 
neglects to battle such tumor cells because of conceivable after 
reasons, (i) tumor-tolerance; and (ii) regardless of whether 
the immune systems perceive tumor cells the safe reaction 
may not to be sufficiently strong to eradicate them. Thus, the 
immune system needs external effective measure to eradicate 
the tumor cells. 
 

 

 
There are different tumor treatment such as; surgery, 
radiotherapy, immunotherapy, targeted treatment, hormone 
treatment, chemotherapy (CTx) and many more. Targeted 
chemotherapy is a medication that piece the dynamic idea of 
tumor by meddling with particular particles which are 
associated with the development and spread of the growth, 
though standard CTx follow up on all rapidly separating solid 
and cancerous cells. In addition to that, experimental results 
indicate that tumor cells are killed 91% more by targeted CTx 
than CTx [12]. A particular type of targeted CTx called 
“small-molecule drugs” can reach tumor cells very easily as it 
has low molecular weight. The moment this drug enters the 
tumor cells, it attack the other molecules which cause 
malignancy. In the year 2006, Ganguly [5] mentioned that 
with efficacies of drugs towards cell populations a chemo- 
therapeutic drug can be designed. 
 
In 2013, Sharma [14] introduced a tumor-growth model 
considering cytotoxic T-cells and controlling the number of 
tumor cells and drug administered. In 2017, Liu [12] 
modified a tumor-immune model with the help of Pillis et. al 
[3] by taking monoclonal antibodies into account. These 
drugs have large molecular weight in comparison to small 
molecule drug and therefore unable to get into the tumor cells 
eventually forming a layer outside the tumor region. But Liu 
failed to eradicate the large tumor cells population (107) from 
the system. In the same year, Sharma [15] presented another 
tumor growth model with the help of tumor-immune 
communications and immunotherapeutic / chemotherapeutic 
drugs, to reduce the number of tumor cells and supervision of 
drugs. There are so many works in the literature on tumor 
growth models, which can be found in [1, 2, 6, 8, 9, 11, 12, 
and 16].  
 
The aim of this work is to find an adequate condition and to 
carry out the dynamics of the model in order to eradicate the 
tumor cells of any size of population. 

2. THE MODEL 
 
2.1 Model Description 
 
Here, we build a mathematical model for tumor growth 
including with immune response as well as small molecule 
drug, which is described by the following set of ODEs: 
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 CTfETTbTrT k  )1( 11
 ,         (1) 

 CEfEdETEEE kkkkhkk )1(1   ,    (2) 

 CEfEEEbErE hhkhhh )1()1( 222   ,    (3) 

 CvC  0
 ,                 (4) 

with initial conditions, 
 0)0( TT  , 0)0( kk EE  , 0)0( hh EE  , 0)0( CC  ,      (5) 
where T(t), Ek(t), Eh(t) are the population of tumor cells, CD8 
T-killer cells, CD4 T-helper cells, respectively, and C(t) is the 
amount of small molecule drug in the blood stream at time t.  
 

Paramete
r 

Value Units 

1r  0.46 per day 

2r  0.0246 per day 

1b  9105   per cells 

2b  10101.1   per cells 
  710101.1   per cells per day 

k  1010423.3   per cells per day 
  9103.6   per cells per day 
  0.01 per day 
f  0.9 per day 

1f  10102   per day 

2f  10-4 per day 
d  0.0413 per day 

0v  [0, 0.5] per day 
  [0, 1]  

 
Table 1: The estimated parameter values for the proposed system (1)-(4) 
are taken from [8, 12, 15]. 
 
The proposed model goes through some assumptions which 
are mentioned as: 
i) All the parameters used in the model are positive constants 
and all cells are taken in small volume of tissue. 
ii) The population of tumor cells and that of CD4 T-helper 
cells are assumed to emerge logistically with rates r1 and r2, 
respectively in the absence of CD8 T-killer cells and 
chemotherapeutic drug. The growth rate r1 is also due to 
hazard elements stated in the section 1. 
iii) The tumor cells and CD8 T-killer cells are being killed at 
rates α and αk, respectively, proportional to the product 
densities of tumor cells and CD8 T-killer cells. Also d is per 
capita degradation rate of CD8 T-killer cells. 
iv) Due to law of mass action CD4 T-helper cells transform to 
CD8 T-killer cells with rate β. 
v) After the administration of drug into the blood stream it 
destroys tumor cells, CD8 T-killer cells and CD4 T-helper 
cells with rates f,  f1 (1−μ) and  f2 (1−μ), respectively. Here, μ 
is the efficacy term. In pharmacology, efficacy is the 
maximum response achievable from an applied or dosed drug. 
vi) The drug dosage is denoted by v0 and γ is the per capita 
decay rate of drug. 
 
 

2.2 Basic properties 
 
Theorem 1. (see [4]) The solution of the system (1)-(4) with 
initial conditions (5) exists in the interval [0, ξ], where 0 ≤ ξ< 
∞, i.e., T(t) ≥ 0, Ek(t) > 0, Eh(t) > 0, C(t) > 0  for all t ≥ 0. 
 
Theorem 2. (see [4]) The feasible region S is defined by 

  0,0,0,0|,,, 4   CEETCEETD hkhk  
is a positive invariant set of the system (1)-(4) and is also 
bounded. 

3. MODEL ANALYSIS 
 
From Theorem 1 and Theorem 2, D is a positive invariant set 
of the proposed system. Hence, we refer the entire region D as 
a “Global” domain. The system (1)-(4) has four equilibrium 
points as follows: 
i) trivial equilibrium:  

0,0,0,01
vS  

ii) dead equilibrium:  
0,0,0,2

vTS ,  
0,,0,3

v
hETS ,  

iii) tumor-free equilibrium:  
0,,0,04

v
hES , 

 
0

55
,,,05

v
hk EES , 

iv) co-existing equilibrium:  
0,,, **** v

hk EETS ,  

where, 0
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3.1 Biological clarification of equilibrium points 
 
For S1, each of the cells gets pulverized and it implies that the 
treatment is not worthwhile. In S2 and S3, tumor cells exist 
which implies that after the drug injection either of the T cells 
or CD8 T-killer and CD4 T-helper cells are obliterated, 
however the tumor cells holds on. Henceforth, the stability of 
this point isn’t helful for treatment. In S4 and S5, tumor cells 
are eradicated after the drug injection. We also see that either 
CD8 T-killer cells or CD4 T-helper cells gets destroyed but 
not both at a time. Hence, stability of this point is useful for 
the therapy. Lastly in *S , all the cells exist but if this 
equilibrium point is stable then tumor cells will remain as a 
constant in the system and will neither grow nor shrink. 
 
3.2 Local stability analysis of 4S  and 5S  
 
Theorem 3. (see [4]) The system (1)-(4) consists the tumor 
free equilibrium point S4 and it also locally asymptotically 
stable if  dEfv h  )1(10

, and one more tumor free 
equilibrium S5 for the system (1)-(4) exists and it is locally 
asymptotically stable if )(

510 kErfv   . 
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4. DTM AND Ms-DTM 
 
4.1 Solution by DTM 
 
The detailed explanation of DTM can be found in works done 
by Gupta [7] and Kumari et al. [10]. Here, we will try to give 
a brief definition of DTM. 
 
Let us assume a general equation of nth order O.D.E 
    0,,'',',, )( nxxxxtf              (6) 
with initial conditions x(l) = dl and l = 0,1, ..., (n−1). Let x(t) be 
regular in the domain ],0[ T  and let t = t0 be any point in 
 . Then this function x(t) can be represented by a power 
series centering at t0. The differential transformation of the lth 
derivative of a function x(t) is defined as follows: 
  

0

)(
!

1)(
tt

i

i

tx
dt
d

l
lX












 , for all t .         (7) 

In equation (7), X(l) is the transformed equation of the 
function x(t). The inverse differential transformation of X(l) is 
presented as follows: 
  l

l
ttlXtx )()()( 00




 , for all t .        (8) 

Thus, from equation (7) and (8), we get 
  






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

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0

0

0

)(
!

)()(
l
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i

il

tx
dt
d

l
tttx , for all t .     (9) 

The function x(t), in real applications, is converted to a finite 
series because it is assumed that l

N
ttlX )()( 01




 is negligible 

and so equation (8) can be written as: 
  lN

l
ttlXtx )()()( 00

 
 , for all t .       (10) 

 
4.2 Solution by Ms-DTM 
 
The Ms-DTM is an algorithm for deducing precisely 
approximate solutions in a sequence of intervals for system of 
both weak and strong non-linear differential equations. We 
have seen that the approximate solution of the above initial 
value problem (9) can be expressed as  
  lN

l l tatx  


0
)(  

for all ],0[ Tt . Now, we make the partition of full interval 
],0[ T  into N sub-intervals [ts−1, ts], s = 1,2, ...,M of equal 

length 
M
Th   with the help of the nodes ts = s.h. The detailed 

Ms-DTM can be found in the work performed by Odibat [13]. 
We at first apply DTM to equation (9) over the interval [0, t1] 
and so obtain the following approximated solution, 
  lK

l l tatx  


0 11 )(  

for all ],0[ 1tt  with initial conditions l
l bx )0()(

1 .  
For s ≥ 2, for each subinterval [ts−1, ts], we define the initial 
conditions )()( 1

)1(
1

)(



  s

l
ss

l
s txtx , afterwards we apply DTM to 

equation (9) over the interval [ts−1, ts], where t0 in equation (9) 
is replaced by ts−1. This process is iterated and create a 
sequence of approximate analytical solutions xs(t), s = 1,2, 
...,M for the solution x(t), 
  l

s
K

l sls ttatx )()( 10 
             (11) 

where, 
M
NK  .  

In fact, the Ms-DTM assumes the following solution, 
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
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           (12) 

 
5. NUMERICAL SIMULATION 
 
First of all, we apply the DTM to the system (1)−(4), and get 
the following system of equations, 
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)()()1()1( 0 jCjvjCj    
where, T(j), Ek(j), Eh(j) and C(j) are the differential 
transformation of T(t), Ek(t), Eh(t) and C(t), respectively. The 
initial conditions are given by T(j) = T0, Ek(j) = Ek0, Eh(j) = Eh0 
and C(j) = C0. 
 
According to Ms-DTM taking N = K.M, where we have taken 
K = 20 and M = 550, the series solution for the system (1)−(4) 
is given by, 
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     (13) 

where T(t), Ek(t), Eh(t) and C(t) satisfy the equation (13). 
Simlarly, Ts(n), Eks(n), Ehs(n) and Cs(n), for s = 1,2, ...,M, 
satisfy the iterative relations, 

  
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 )()(
1

1)1( 0 jCjv
j

jC ss  



 

subject to 
i) T0(0) = T0, Ek0(0) = Ek0, Eh0(0) = Eh0, C0(0) = C0, and 
ii) Ts(0) = Ts−1(0), Eks(0) = Eks−1(0), Ehs(0) = Ehs−1(0), and   
Cs(0) = Cs−1(0). 
 
We have considered two cases where the initial population of 
tumor cell are taken as T0 =107 (large tumor size) and T0 =105 
(small tumor size). The initial population of CD8 T-killer cell 
is Ek0 =3×105, CD4 T-helper cell is Eh0 = 3×105 [12] and the 
initial amount of targeted chemotherapeutic drug C0 = 0.50, 
presented in for both the cases. This will help us to understand 
the behaviour of drug in the tumor prevailing system as well 
as in tumor recessive system. 
 
In Figure 1 and 2, we have considered three different values 
for v0, which are; 0.003 [14], 0.005 (estimated) and 0.007 
(estimated). These values of v0 do not hamper to any of the 
analytical findings associated with tumor free equilibrium. 
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Taking the dosage as v0 = 0.003, 0.005 and 0.007 
respectively, we encounter that number of tumor cells can be 
controlled and eventually the tumor free equilibrium point 
(S5) can be attained. The increase in tumor cells is observed 
due to low dosage of the drug into the bloodstream. 
 
In Figure 3 and 4, we have conducted a behavioral 
comparison in the population of tumor cells by both Ms-DTM 
and DTM. We have taken v0 = 0.007, and both the sizes of 
tumor cell and finally see that in case of Ms-DTM the 
population converges after sometime which is not in the case 
of DTM. In DTM, the population of tumor cell tends towards 
negative value which violates the tumor-free equilibrium 
point.  
 

 
(a) v0 = 0.003 

 
(b) v0 = 0.005 

 
(c) v0 = 0.007 

Figure 1: Plot of population of large tumor cell T(· · · · ·), CD8 
T-killer cell, Ek(−−−−), and CD4 T-helper cell, Eh(—–) vs. time t. 
 

 
(a) v0 = 0.003 

 
(b) v0 = 0.005 

 
(c) v0 = 0.007 

Figure 2: Plot of population of small tumor cell T(· · · · ·), CD8 
T-killer cell Ek(−−−−) and CD4 T-helper cell, Eh(—–) vs. time t. 
 
 

 
(a) T0 = 107 

 
(b) T0 = 105 

Figure 3: Plot of (a) large population, (b) small population of tumor 
cell vs. time t for MsDTM, when v0 = 0.007. 
 

 
(a) T0 = 107 
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(b) T0 = 105 

Figure 4: Plot of (a) large population, (b) small population of tumor 
cell vs. time t for DTM, when v0 = 0.007. 
 
Thus, in accordance with this calculation we see that both 
large tumor size and small tumor size can be removed rapidly 
by using small molecule drug such that population of both the 
killer and helper T-cells must be remain unaffected. 
6. CONCLUSION 
 
In this paper, we have focused on how a tumor can be 
removed from the system with administration of small 
molecule drug. As compared to [12], the advantage of the 
model is that any size of tumor gets eliminated with small 
molecule drugs and it also gives a rough estimation of quality 
and dosage of therapy that would be best supplement of the 
patient’s own protection process against the tumor cells. The 
essential mathematical results obtained for the system (1)-(4) 
under the condition (5) are also numerically verified in 
Mathematica 8.0. 
 
Our model construction and management is completely 
stationed on the after results and interactions amongst tumor 
cells, CD8 T-killer cells and CD4 T-helper cells, together 
with the effect of dosage of small molecule drug on these 
compartments. Alike other mathematical models, the model 
proposed in this manuscript, it should be considered with 
caution due to the suppositions made and the perplexity in the 
evaluation of the parameter values of the model. 
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