
Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 990 - 998

990

ABSTRACT

Big data is about collecting, storing, managing, processing

massive quantities of daa, but it is also about presenting

various insights into the collected data through visualization.

Visualization layer is located on the top of a layered

architecture composed of Data Sources, Ingestion, Storage,

Management, Monitoring, and Security layers. While each of

these layers has its own challenges, visualization is presenting

a particular challenge because of physical limitations of the

display area and the chosen mode of data presentation. Along

with the visualization modes, OLAP is a powerful technology

for data discovery, including capabilities for limitless report

viewing, complex analytical calculations, predictive scenario

planning, and visualization. Based on our previous

comparative studies in which we identified key concepts of

visualization layer of major Big Data distributions, we propose

in this paper to map this layer to OLAP visualization

technology. To achieve this goal, we apply techniques related

to Model Driven Engineering “MDE” to propose a universal

meta-model for visualization layer in a Big Data systems, in

which we integrated a meta-model of OLAP for data

presentation.

Key words: Meta-model, Model Driven Engineering, Big

Data, Visualization layer, OLAP, Data Viz.

1. INTRODUCTION

The field of visualization is concerned with how to transform

data into a graphical representation. This graphic

representation is called visualization. At this point, we deem it

necessary to point out that we have identified earlier the key

concepts of visualization layer through our comparative

studies of major Big Data distributions [1,2]. Our main goal

there was to outline the benefits and shortcomings of each

distribution and thus gather the pertinent raw material

necessary for the study. Yet, the following work is an interim

report of our previous proposals for meta-models for layers:

Data Sources, Ingestion [3], Storage [4,5], and Management

[6,34]. In this article, we are proposing a universal meta-model

for visualization layer and OLAP by applying techniques

related to Model Driven Engineering 'MDE' [7]. These

meta-models together with the previous ones, which we have

proposed for the other layers, can be used as an independent

cross-platform Domain Specific Language.

2. RELATED WORK

The amount of data created by people, machines, and

corporations around the world is growing every year. Thanks

to innovations such as the Internet of Things, this trend will

continue, giving rise to the creation of Big Data. Indeed, many

researchers have worked on big data, particularly on its

visualization tools. Accordingly, in our previous works [1,2],

we provide a specific comparison of the top five big data

distributions. These comparatives studies along with the

evaluations done by Forrester Wave [8], Robert D. Schneider

[9] and V. Starostenkov [10] on the same Hadoop distributions

led us to define key concepts and features of visualization

layer. At the level of the global architecture of a big data

system, the common architecture is composed of Data sources,

Ingestion, visualization, Hadoop Platform management,

Hadoop Storage, Hadoop Infrastructure, Security, and

Monitoring Layers. In our way for a unified abstract

implementation, we proposed in a previous work a

meta-model for data sources, ingestion [3], and Storage layers

[4,5]. In this paper, we continue our effort by proposing a

universal meta-model for visualization layer in a Big Data

system including OLAP. The main goal of this universal

meta-modeling is to enable Big Data distribution providers to

offer standard and unified solutions for a Big Data system.

3. MDA-MDE

The model approaches proposed by the Model Driven

Architecture (MDA) [11] and the Model Driven Engineering

(MDE) [12] are approaches that come from the field of

software engineering. Their primary goal is to streamline and

simplify software design processes. For this purpose, they rely

on the concepts of models, modeling languages and model

transformations. Historically, the goal of the MDA was to

reduce the gap between the software (and its abstract models)

and the platform on which it must run. MDA's main idea was to

rationalize and capitalize on good software development

practices. The MDA then considers the software architecture

from two points of view: platform-specific (Platform Specific

Model) and platform independent model (PIM). The MDA is

built around a Y cycle [13]. The objective of this approach is

to start from a model realized in a generic framework and to

project it in various contexts, according to languages and

platforms of specific executions. This approach has brought

one of the first important concepts that will be found in the

Meta-Modeling of Big Data visualization layer using On-Line Analytical

Processing (OLAP)

Allae Erraissi1, Abdessamad Belangour2
1,2Laboratory of Information Technology and Modeling, Hassan II University, Faculty of sciences Ben M’Sik,

Casablanca, Morocco, erraissi.allae@gmail.com

 ISSN 2278-3091

Volume 8, No.4, July – August 2019

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse02842019.pdf

https://doi.org/10.30534/ijatcse/2019/02842019

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse02842019.pdf
https://doi.org/10.30534/ijatcse/2019/02842019

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 990 - 998

991

MDE: the reuse of models. The second important notion

introduced by the MDA is that of the modeling language

model, also called meta-model. From this notion, the MDA

proposed the 4-level pyramid (figure 1) defining the levels of

abstraction existing between the different types of possible

models.

Figure 1: OMG modeling pyramid [14].

A specific action led by the CNRS and bearing the name of

Specific Action MDA gave birth to the publication of the book

[15] and laid the foundations of the MDE that generalize the

MDA. Yet, MDE or Model Driven Engineering puts models at

the heart of software development. Like the MDA, MDE is

based on the notions of model, meta-model, modeling

language, and model transformation. It is crucial since it

makes it possible to envisage a more rational implementation

of software systems and thus allowing the integration of

heterogeneous domains. Eventually, model transformations

allow the analysis, modification or synthesis of a model

according to rules defined at the meta-model level. In fact,

several types of transformations are possible: exogenous

transformations and endogenous transformations. On the one

hand, exogenous transformations are used to translate a model

defined in a modeling language into a model in another

modeling language. a typical example is code generation. On

the other hand, endogenous transformations are used for

transforming a model into another model within the same

modeling language. The best example is the optimization of a

model (refactoring, etc.).

4. VISUALIZATION

4.1 History of visualization:

The field of visualization is concerned with how to transform

data into a graphical representation. This graphic

representation is called visualization. At this stage, it is

important to give a brief history of visualization by presenting

two examples: one by William Playfair [16] and the other by

Dr. Jhon [18]. Although visualizations, especially in the form

of maps, have existed since antiquity, the graphic

representation of abstract information emerges especially in

the nineteenth century. William Playfair (1759-1823) is one of

the pioneers of the graphic representation of information. This

Scottish engineer and economist is the inventor of several

types of visualization. His inventions such as the temporal

curve and the histogram are widely used today. One of his

best-known visualizations, visible in Figure 2, combines these

two idioms to compare the evolution of the price of wheat and

the weekly salary of a "good mechanic". This visualization,

along with a few others, accompanies Playfair's letter on

agriculture to the British Parliament in 1821 [16]. It goes on to

say that the price of wheat has never been so cheap relative to

the cost of labor. Here, the visualization is used to expose the

conclusion of an analysis to convince an interlocutor. We are

talking about descriptive visualization.

Figure 2: Diagram of wheat price by William Playfair [16,17]. This

visualization puts the evolution of the wheat price in perspective with

that of a weekly reference wage. Playfair wants to show here that

wheat has never been cheaper if we take into account the evolution of

wages. Even if the information is well contained in the diagram, the

conclusion still requires an additional analysis step. In representing

the relationship between the two values, this conclusion would be

more obvious.

Visualization can also help the decision by making the data

collected clearer. This is clearly illustrated by the map

produced by Dr. John Snow during the London cholera

outbreak in 1854 (see Figure 3) [18].

Figure 3: Detail of the map of London established by Dr. John Snow

during the 1854 cholera outbreak. If we look closely at the map, we

can realize that each point represents a death attributed to the disease.

The map also shows the location of the pumps used by the population

to draw drinking water. As Dr. Jhon found a greater density of deaths

around the Broad Street pump (1), he deduced that the area was

probably infected. However, two areas of the low density of deaths

can be detected in the map despite their proximity to the pump. The

first one is a "workhouse" (2), where only 5 of the 530 residents

became ill. The second one is a brewery (3), where no case was

recorded. In both cases, the inhabitants did not consume water from

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 990 - 998

992

the Broad Street pump. The "workhouse" had its own well and the

brewery gave a ration of beer to its employees.

In brief, these visualizations, like all those of their time, were

specially designed for a particular case. Besides, they were

made by hand because no automation process was available at

that time. The realization of visualization needed a lot of time

and its image remained statics. Conversely, today and with the

rise of computing, it is possible to automate many aspects of

visualization. Firstly, the final drawing (conversion into an

image) can be done automatically. Secondly, the processing of

the information to produce a type of visualization can be

entrusted to algorithms, and thus making the comparison of

several datasets easier and faster. Lastly, visualization is no

longer conceived as a static image, but as an interactive

system, on which the end user has feedback power. The raw

data must follow certain steps before being presented to the

user, who can then act on each transformation to modify the

final visualization and learn new lessons. This process is

summarized in the visualization pipeline (see Figure 4),

originally developed by Haber and McNabb [19] for scientific

visualization and later enriched by Dos Santos and Brodlie

[20] for information visualization.

Raw data
Processed

data

Data of interest Geometric data Visualization

(Image)

Data analysis Filtering
Encodage

visuel
Rendering

Interaction

User

Figure 4: The pipeline of visualization, adapted from [20]. In an interactive system, it can be executed many times per second.

This pipeline is divided into several stages that allow you to go

from raw data to visualization:

 The data preparation stage makes it possible to choose
what will be visualized. At this stage, the raw data are
refined in order to keep the interesting aspects or to
derive existing data values (average, difference, map
projection ...). The result of this step is a set of more or
less structured data ready to be transformed into
visualization.

 The prepared data is then filtered to retain only a subset
of interest. This filtering can be, for example, temporal
(the result of the exploitation of a particular year),
semantic (only the friends of a person of interest) or
even geographical (election results on a commune).

 Once the data of interest is identified, the step of visual
encoding comes. It there where it is decided in what
form the data would be represented. Indeed, this step
produces a geometric representation that describes the
desired visualization. It is at this stage that data is
transformed into visualization.

 Finally, the rendering step consists of drawing the
geometry produced by the visual encoding step. This
step is most often performed by a computer and may
involve the use of a graphics processor. The resulting
image is the final visualization that can be presented to
the user.

As a matter of fact, all steps in this pipeline can be modified at

any time by user interaction. Accordingly, when using an

interactive system, part or even the entire pipeline can be

executed several times per second. In most cases, the user's

interactions focus on the filtering and visual encoding steps.

The purpose of an information visualization system is to allow

the user to derive meaning from what is presented to him. The

various steps followed by the user in his exploration of the data

are summarized in Shneiderman's mantra: "Overview first,

zoom and filter, then details-on-demand." (Ben Shneiderman

[21]). The system must first present an overview of the data,

permit to filter and enlarge interactively, and hence display the

details on request of the user.

4.2 Big Data visualization tools:

It is sometimes difficult to present data in an understandable

way to people who are not specialized. Fortunately, some tools

make it easy to visualize data. These are Data Visualization

tools, abbreviated as "Dataviz" [22]. Data visualization is a

general term that describes an effort to help staff understand

the meaning of data by placing it in a visual context.

Therefore, data visualization software will highlight and

identify patterns, trends, and correlations, which might go

unnoticed within textual data.

Today's data visualization tools go beyond the standard charts

and curves used by Excel spreadsheets. They display data in

more sophisticated modes, particularly through infographics,

dials and gauges, maps, sparklines, heat maps, and detailed bar

graphs in sectors and progress (fever chart).

Images can incorporate interactive capabilities that allow the

user to manipulate or explore the data for querying and

analysis. These tools may also have indicators designed to

alert the user when the data is updated or when previously

defined conditions are met. The majority of Business

Intelligence (BI) [23] software vendors incorporate data

visualization tools into their products, either by developing

their own technology or by sourcing from visualization

vendors.

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 990 - 998

993

5. PROPOSED META-MODELS

5.1 Meta-model of data Sources and Ingestion Big Data

layer:

Relying on our previous work, we have succeeded to propose

meta-models for layers Data Sources, Ingestion [3], Hadoop

Storage [4,5], and Hadoop Platform Management [6] of Big

Data architecture. Correspondingly, our evaluation of the Big

Data architecture [24] lead us to find that there is a direct link

between the Data Sources, Ingestion and Management layers,

and that all sorts of data must pass through by the steps

constituting the layer of Ingestion before being used by the

other layers of the Big Data system. Yet, we have expressed

this link with the following meta-package diagram that

represents the meta-packages IngestionPkg, DataSourcesPkg,

HadoopPlatformManagementPkg, and VizualisationPkg and

the dependency relationship that links them:

Figure 5: Ingestion, Data Sources, Hadoop Management, and

Visualization Meta-Packages.

The following figure shows the meta-model that we proposed

for the two Data Sources and Ingestion layers:

Figure 6: Generic Meta-Model of Data Sources and Ingestion Big Data layers [3].

5.2 Meta-model of Visualization Big Data layer:

In continuous efforts, we have found that companies are faced

with an increasing amount of data transiting through their

information system. This mass of information makes it

difficult for them to operate properly. Therefore, there was an

urgent need for a Big Data system to have a visualization layer

that will make it possible to exploit this large amount of data in

order to generate reports and make decisions.

At this point, it is important to show that the meta-model we

proposed for visualization layer includes a main meta-class

called Visualization, which groups the meta-classes:

HadoopAdministration, DataAnalystIDE/SDK, and

VisualizationTool. The meta-class Visualization

communicates directly with Big Data analytics applications.

The following figure shows the proposed meta-model for the

visualization layer within Big Data, as well as its relationship

to analytics applications:

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 990 - 998

994

Figure 7: Meta-model of visualization layer.

As seen before, we have managed to create the meta-models

for Data Sources, Ingestion, and management layers. In the

next step, we shall focus on the creation of models respecting

these meta-models. Then we shall define the transformation

rules between these meta-models using the transformation

language ATL (Atlas Transformation Language) [25,26].

5.3 Meta-model of OLAP

5.3.1 Major Classes and Associations

Nowadays, decision-makers need a synthetic and global vision

of the information circulating in their organization to guide

and adapt their decision-making. To facilitate this process,

they employ decision support systems. These tools allow

decision-makers to have a global view of a company's business

through quick and interactive access to a set of organized data

views to reflect the multi-dimensional nature of business data

[27]. In 1993, EF Codd, suggests the use of systems that

improve the decision-making process by consulting and

analyzing large amounts of data: online analysis systems,

"On-Line Analytical Processing (OLAP) [28]. These OLAP

systems are intended to provide a quick response to analytical

queries of a multidimensional nature. Analytical queries are

analyzes that rely on a data centralization tool called: Data

Warehouse [29,30].

The following figure shows the meta-model that we proposed

for OLAP:

Figure 8: OLAP meta-model: Major Classes and Associations.

The major classes and associations of the OLAP meta-model

are shown in Figure 8. Schema is the logical container of all

elements comprising an OLAP model. It is the root element of

the model hierarchy and marks the entry point for navigating

OLAP models. A Schema contains Dimensions and Cubes. A

Dimension is an ordinate within a multidimensional structure

and consists of a list of unique values (i.e., members) that share

a common semantic meaning within the domain being

modeled. Each member designates a unique position along its

ordinate. A Cube is a collection of analytic values (i.e.,

measures) that share the same dimensionality. This

dimensionality is specified by a set of unique Dimensions from

the Schema. Each unique combination of members in the

Cartesian product of the Cube's Dimensions identifies

precisely one data cell within a multidimensional structure.

CubeDimensionAssociation relates a Cube to its defining

Dimensions. Features relevant to Cube-Dimension

relationships (e.g., calcHierarchy) are exposed by this class.

A Dimension has zero or more Hierarchies. A Hierarchy is an

organizational structure that describes a traversal pattern

through a Dimension, based on parent/child relationships

between members of a Dimension. Hierarchies are used to

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 990 - 998

995

define both navigational and consolidation/computational

paths through the Dimension (i.e., a value associated with a

child member is aggregated by one or more parents). For

example, a Time Dimension with a base periodicity of days

might have a Hierarchy specifying the consolidation of days

into weeks, weeks into months, months into quarters, and

quarters into years. A specific Hierarchy may be designated as

the default Hierarchy for display purposes (e.g., a user

interface that displays the Dimension as a hierarchical tree of

members). CubeDimensionAssociation can also identify a

particular Hierarchy as the default Hierarchy for consolidation

calculations performed on the Cube. MemberSelection models

mechanisms capable of partitioning a Dimension's collection

of members. For example, consider a Geography Dimension

with members representing cities, states, and regions. An

OLAP client interested specifically in cities might define an

instance of MemberSelection that extracts the city members.

CubeRegion models a sub-unit of a Cube that is of the same

dimensionality as the Cube itself. Each "dimension" of a

CubeRegion is represented by a MemberSelection of the

corresponding Dimension of the Cube. Each

MemberSelection may define some subset of its Dimension's

members. CubeRegions are used to implement Cubes. A Cube

may be realized by a set of CubeRegions that map portions of

the logical Cube to physical data sources. The

MemberSelections defining CubeRegions can also be grouped

together via MemberSelectionGroups, enabling the definition

of CubeRegions with specific semantics. For example, one can

specify a CubeRegion containing only the "input level" data

cells of a Cube. A CubeRegion may own any number of

CubeDeployments. CubeDeployment is a metaclass that

represents an implementation strategy for a multidimensional

structure. The ordering of the CubeDeployment classes may

optionally be given some implementation-specific meaning

(e.g., desired order of selection of several possible deployment

strategies, based on optimization considerations).

5.3.2 Dimension and Hierarchy

Figure 9 shows Dimension and Hierarchy, along with several

other classes that model hierarchical structuring and

deployment mappings:

Figure 9: OLAP meta-model: Dimension and Hierarchy.

5.3.2.1 Dimension

The OLAP meta-model defines two special types of

Dimension: Time and Measure. A Time Dimension provides a

means of representing time-series data within a

multidimensional structure. The members of a Time

Dimension usually define some base periodicity (e.g., days of

the week). The implementation of a Time Dimension might

provide support for advanced "time-intelligent" functionality,

such as the ability to automatically convert between different

periodicities and calendars. The members of a Measure

Dimension describe the meaning of the analytic values stored

in each data cell of a multidimensional structure.

5.3.2.2 Hierarchy

The OLAP metamodel specifies two subclasses of Hierarchy:

LevelBasedHierarchy and ValueBasedHierarchy.

 LevelBasedHierarchy

LevelBasedHierarchy describes hierarchical relationships

between specific levels of a Dimension. LevelBasedHierarchy

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 990 - 998

996

is used to model both "pure level" hierarchies (e.g.,

dimension-level tables) and "mixed" hierarchies (i.e., levels

plus linked nodes). Dimensional levels are modeled by the

Level class, a subclass of MemberSelection that partitions a

Dimension's members into disjoint subsets, each representing

a distinct level. LevelBasedHierarchy contains an ordered

collection of HierarchyLevelAssocations that defines the

natural hierarchy of the Dimension. The ordering defines the

hierarchical structure in top-down fashion (i.e., the "first"

HierarchyLevelAssociation in the ordered collection

represents the upper-most level of the dimensional hierarchy).

A HierarchyLevelAssociation may own any number of

DimensionDeployments. DimensionDeployment is a

metaclass that represents an implementation strategy for

hierarchical Dimensions. The ordering of the

DimensionDeployment classes may optionally be given an

implementation-specific meaning (e.g., desired order of

selection of several possible deployment strategies, based on

optimization considerations).

 ValueBasedHierarchy

A ValueBasedHierarchy defines a hierarchical ordering of

members in which the concept of level has little or no

significance. Instead, the topological structure of the hierarchy

conveys meaning. ValueBasedHierarchies are often used to

model situations where members are classified or ranked

according to their distance from a common root member (e.g.,

an organizational chart of a corporation). In this case, each

member of the hierarchy has some specific "metric" or "value"

associated it with it. ValueBasedHierarchy can be used to

model pure "linked node" hierarchies (e.g., asymmetric

hierarchical graphs or parent-child tables). As with

LevelBasedHierarchy, ValueBasedHierarchy also has an

ordered collection of DimensionDeployments, where the

ordering semantics are left to implementations to define.

5.4 Generic meta-model for visualization layer

Figure 10: Generic meta-model for visualization layer.

These meta-models are platform independent according to

Model Driven Architecture pattern [31,33], which describes

visualization layer and its relation with the Big Data analytics

application independently from any specific platform.

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 990 - 998

997

6 FUTURE WORK

Visualization today has ever-expanding applications in

science, engineering, education, interactive multimedia,

medicine, etc. Model-based visualization components are

commonly more sophisticated. Our approach has been used to

generate meta-model for visualization layer using techniques

related to Model-driven Engineering, we have also proposed

meta-model for OLAP like a Big Data analytics application

that helps decision makers make a decision. We are currently

continuing our work by creating a complete library of

visualization meta-models and model-driven visualization

components. The meta-models for visualization layer and the

other layers, which we have proposed before in our previous

works, will be used for creating a universal meta-modeling of a

Big Data system. Model-based visualization components are

also being developed for integration within Eclipse using the

EMF framework.

7 CONCLUSION AND PERSPECTIVES

In short, the exponential growth of data produced every day by

consumers and businesses makes it necessary to develop new

tools to make them easier to read. In fact, big data management

needs new methods and powerful technologies to deal with

these huge data sets. More precisely, the visualization layers

remains an efficient mean to exploit and deal with this large

amount of data. The trend that we have seen emerge for some

years now: data visualization (or DataViz). At this stage, it is

worth mentioning that in this article we applied the modeling

techniques (Model Driven Engineering) by proposing

meta-models for the Big Data layers. Our main goal is to create

standardized concepts at the Big Data level. In the MDA

(Model Driven Architecture) approach, the generic

meta-model proposed for Big Data layers can be used as an

independent cross-platform Domain Specific Language [32].

Thus, further work needs to be carried out in order to create a

powerful system capable of ensuring a more accurate and

reliable result for big data management.

REFERENCES

1. Allae Erraissi, Abdessamad Belangour, Abderrahim

Tragha. “A Big Data Hadoop Building Blocks

Comparative Study.” International Journal of Computer

Trends and Technology. Accessed June 18, 2017.

https://doi.org/10.14445/22312803/IJCTT-V48P109

2. Allae Erraissi, Abdessamad Belangour, and Abderrahim

Tragha, “Digging into Hadoop-based Big Data

Architectures,” Int. J. Comput. Sci. Issues IJCSI, vol. 14,

no. 6, pp. 52–59, Nov. 2017.

https://doi.org/10.20943/01201706.5259

3. Erraissi, A., & Belangour, A. (2018). Data sources and

ingestion big data layers: meta-modeling of key

concepts and features. International Journal of

Engineering & Technology, 7(4), 3607–3612.

https://doi.org/10.14419/ijet.v7i4.21742

4. Erraissi, Allae, and Abdessamad Belangour. « Hadoop

Storage Big Data Layer: Meta-Modeling of Key

Concepts and Features ». International Journal of

Advanced Trends in Computer Science and Engineering

8, nᵒ 3 (2019): 646‑53.

https://doi.org/10.30534/ijatcse/2019/49832019

5. A., Erraissi A., Belangour A. (2019) Capturing Hadoop

Storage Big Data Layer Meta-Concepts. In: Ezziyyani

M. (eds) Advanced Intelligent Systems for Sustainable

Development (AI2SD’2018). AI2SD 2018. Advances in

Intelligent Systems and Computing, vol 915. Springer,

Cham

6. A. Erraissi and A. Belangour, "Meta-modeling of

Zookeeper and MapReduce processing," 2018

International Conference on Electronics, Control,

Optimization and Computer Science (ICECOCS),

Kenitra, Morocco, 2018, pp. 1-5. doi:

10.1109/ICECOCS.2018.8610630.

7. Royer, Jean-Claude, and Hugo Arboleda. Model-Driven

and Software Product Line Engineering. 1st Edition.

London, UK : Hoboken, NJ, USA: Wiley-ISTE, 2012.

8. Read, W., Report, T., & Takeaways, K. (2016). The

Forrester WaveTM: Big Data Hadoop Distributions, Q1

2016.

9. R. D. Schneider, “HADOOP BUYER’S GUIDE,” 2014.

10. V. Starostenkov, R. Senior, and D. Developer, “Hadoop

Distributions ”.

11. Kleppe, A.G., Warmer, J., Warmer, J.B. and Bast, W.,

2003. MDA explained: the model driven architecture:

practice and promise. Addison-Wesley Professional.

12. Schmidt, Douglas C. "Model-driven

engineering." COMPUTER-IEEE COMPUTER

SOCIETY- 39.2 (2006): 25.

https://doi.org/10.1109/MC.2006.58

13. Booch, Grady. "UML in action." Communications of the

ACM42.10 (1999): 26-26.

https://doi.org/10.1145/317665.317672

14. ISO/IEC/JTC 1/SC 32. ISO/IEC 19502:2005,

Information Technology - Meta Object Facility.

Multiple. Distributed through American National

Standards Institute, 2007.

15. Favre, Jean-Marie, Jacky Estublier, and Mireille

Blay-Fornarino. L'ingénierie dirigée par les modèles:

au-delà du MDA. Hermes Science, 2006.

16. W. PLAYFAIR. A Letter on Our Agricultural

Distresses, Their Causes and Remedies: Accompanied

with Tables and Copper-plate Charts, Shewing and

Comparing the Prices of Wheat, Bread and Labour

from 1565 to 1821... Sams, 1822.

17. E. R. TUFTE. « The visual display of quantitative

information ». Edward R. Tufte. Cheshire, Conn.:

Graphics Press, c1983. (1983).

18. Brody, Howard, et al. "Map-making and myth-making

in Broad Street: the London cholera epidemic,

1854." The Lancet356.9223 (2000): 64-68.

https://doi.org/10.1016/S0140-6736(00)02442-9

19. R. B. HABER and D. A. MCNABB. « Visualization

idioms: A conceptual model for scientific visualization

https://doi.org/10.14445/22312803/IJCTT-V48P109
https://doi.org/10.20943/01201706.5259
https://doi.org/10.14419/ijet.v7i4.21742
https://doi.org/10.30534/ijatcse/2019/49832019
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1145/317665.317672
https://doi.org/10.1016/S0140-6736(00)02442-9

Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and Engineering, 8(4), July- August 2019, 990 - 998

998

systems ». Visualization in scientific computing 74

(1990), p. 93.

20. S. DOS SANTOS and K. BRODLIE. « Gaining

understanding of multivariate and multidimensional

data through visualization ». Computers & Graphics

28.3 (2004), p. 311–325.

https://doi.org/10.1016/j.cag.2004.03.013

21. B. SHNEIDERMAN. « The eyes have it: A task by data

type taxonomy for information visualizations ». Visual

Languages, 1996. Proceedings. IEEE Symposium on.

IEEE. 1996, p. 336–343.

22. Healy, Kieran. Data Visualization: A Practical

Introduction. 1 edition. Princeton, NJ: Princeton

University Press, 2018.

23. Steffine, Gregory P. Hyper: Changing the Way You

Think about, Plan, and Execute Business Intelligence

for Real Results, Real Fast! Aliquippa, Penn.:

Sanderson Press, LLC, 2015.

24. N. Sawant and H. (Software engineer) Shah, Big data

application architecture Q & A a problem-solution

approach. Apress, 2013.

https://doi.org/10.1007/978-1-4302-6293-0

25. “ATL: Atlas Transformation Language Specification of

the ATL Virtual Machine.”

26. “ATL: Atlas Transformation Language ATL Starter’s

Guide,” 2005.

27. Colliat, G. (1996). OLAP, relational, and

multidimensional database systems. SIGMOD Record

25(3), 64–69.

https://doi.org/10.1145/234889.234901

28. Providing OLAP to User-Analysts: An IT Mandate by

E F Codd, S B Codd and C T Salley, ComputerWorld, 26

July 1993.

29. Kimball, Ralph. The Data Warehouse Toolkit:

Practical Techniques for Building Dimensional Data

Warehouses. New York, NY, USA: John Wiley & Sons,

Inc., 1996.

30. Inmon, W. H. Building the Data Warehouse (2Nd Ed.).

New York, NY, USA: John Wiley & Sons, Inc., 1996.

31. Mouad Banane, and Abdessamad Belangour.

« RDFMongo: A MongoDB Distributed and Scalable

RDF Management System Based on Meta-Model ».

International Journal of Advanced Trends in Computer

Science and Engineering 8, no 3 (25 juin 2019): 734-41.

https://doi.org/10.30534/ijatcse/2019/62832019.

32. Pastor, Oscar, and Juan Carlos Molina. Model-Driven

Architecture in Practice: A Software Production

Environment Based on Conceptual Modeling. 2007

edition. Berlin ; New York: Springer, 2007.

33. Banane, M., & Belangour, A. (2019). New Approach

based on Model Driven Engineering for Processing

Complex SPARQL Queries on Hive. International

Journal of Advanced Computer Science and Applications

(IJACSA), 10(4).

34. Erraissi, Allae, and Abdessamad Belangour.

« Meta-Modeling of Big Data Management Layer ».

International Journal of Emerging Trends in Engineering

Research 7, no 7 (15 July 2019): 36-43.

https://doi.org/10.30534/ijeter/2019/01772019.

https://doi.org/10.1016/j.cag.2004.03.013
https://doi.org/10.1007/978-1-4302-6293-0
https://doi.org/10.1145/234889.234901
https://doi.org/10.30534/ijatcse/2019/62832019
https://doi.org/10.30534/ijeter/2019/01772019

