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ABSTRACT 

 

Big data is about collecting, storing, managing, processing 

massive quantities of daa, but it is also about presenting 

various insights into the collected data through visualization. 

Visualization layer is located on the top of a layered 

architecture composed of Data Sources, Ingestion, Storage, 

Management, Monitoring, and Security layers. While each of 

these layers has its own challenges, visualization is presenting 

a particular challenge because of physical limitations of the 

display area and the chosen mode of data presentation. Along 

with the visualization modes, OLAP is a powerful technology 

for data discovery, including capabilities for limitless report 

viewing, complex analytical calculations, predictive scenario 

planning, and visualization. Based on our previous 

comparative studies in which we identified key concepts of 

visualization layer of major Big Data distributions, we propose 

in this paper to map this layer to OLAP visualization 

technology. To achieve this goal, we apply techniques related 

to Model Driven Engineering “MDE” to propose a universal 

meta-model for visualization layer in a Big Data systems, in 

which we integrated a meta-model of OLAP for data 

presentation. 

 

Key words: Meta-model, Model Driven Engineering, Big 

Data, Visualization layer, OLAP, Data Viz.  

 

1. INTRODUCTION 

 

The field of visualization is concerned with how to transform 

data into a graphical representation. This graphic 

representation is called visualization.  At this point, we deem it 

necessary to point out that we have identified earlier the key 

concepts of visualization layer through our comparative 

studies of major Big Data distributions [1,2]. Our main goal 

there was to outline the benefits and shortcomings of each 

distribution and thus gather the pertinent raw material 

necessary for the study. Yet, the following work is an interim 

report of our previous proposals for meta-models for layers: 

Data Sources, Ingestion [3], Storage [4,5], and Management 

[6,34]. In this article, we are proposing a universal meta-model 

for visualization layer and OLAP by applying techniques 

related to Model Driven Engineering 'MDE' [7]. These 

meta-models together with the previous ones, which we have 

proposed for the other layers, can be used as an independent 

cross-platform Domain Specific Language.  

 

2. RELATED WORK 

 

The amount of data created by people, machines, and 

corporations around the world is growing every year. Thanks 

to innovations such as the Internet of Things, this trend will 

continue, giving rise to the creation of Big Data. Indeed, many 

researchers have worked on big data, particularly on its 

visualization tools.  Accordingly, in our previous works [1,2], 

we provide a specific comparison of the top five big data 

distributions. These comparatives studies along with the 

evaluations done by Forrester Wave [8], Robert D. Schneider 

[9] and V. Starostenkov [10] on the same Hadoop distributions 

led us to define key concepts and features of visualization 

layer. At the level of the global architecture of a big data 

system, the common architecture is composed of Data sources, 

Ingestion, visualization, Hadoop Platform management, 

Hadoop Storage, Hadoop Infrastructure, Security, and 

Monitoring Layers. In our way for a unified abstract 

implementation, we proposed in a previous work a 

meta-model for data sources, ingestion [3], and Storage layers 

[4,5]. In this paper, we continue our effort by proposing a 

universal meta-model for visualization layer in a Big Data 

system including OLAP. The main goal of this universal 

meta-modeling is to enable Big Data distribution providers to 

offer standard and unified solutions for a Big Data system. 

 

3. MDA-MDE 

 

The model approaches proposed by the Model Driven 

Architecture (MDA) [11] and the Model Driven Engineering 

(MDE) [12] are approaches that come from the field of 

software engineering. Their primary goal is to streamline and 

simplify software design processes. For this purpose, they rely 

on the concepts of models, modeling languages and model 

transformations. Historically, the goal of the MDA was to 

reduce the gap between the software (and its abstract models) 

and the platform on which it must run. MDA's main idea was to 

rationalize and capitalize on good software development 

practices. The MDA then considers the software architecture 

from two points of view: platform-specific (Platform Specific 

Model) and platform independent model (PIM). The MDA is 

built around a Y cycle [13]. The objective of this approach is 

to start from a model realized in a generic framework and to 

project it in various contexts, according to languages and 

platforms of specific executions. This approach has brought 

one of the first important concepts that will be found in the 
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MDE: the reuse of models. The second important notion 

introduced by the MDA is that of the modeling language 

model, also called meta-model. From this notion, the MDA 

proposed the 4-level pyramid (figure 1) defining the levels of 

abstraction existing between the different types of possible 

models. 

 
Figure 1: OMG modeling pyramid [14]. 

 

A specific action led by the CNRS and bearing the name of 

Specific Action MDA gave birth to the publication of the book 

[15] and laid the foundations of the MDE that generalize the 

MDA. Yet, MDE or Model Driven Engineering puts models at 

the heart of software development. Like the MDA, MDE is 

based on the notions of model, meta-model, modeling 

language, and model transformation. It is crucial since it 

makes it possible to envisage a more rational implementation 

of software systems and thus allowing the integration of 

heterogeneous domains. Eventually, model transformations 

allow the analysis, modification or synthesis of a model 

according to rules defined at the meta-model level. In fact, 

several types of transformations are possible: exogenous 

transformations and endogenous transformations. On the one 

hand, exogenous transformations are used to translate a model 

defined in a modeling language into a model in another 

modeling language. a typical example is code generation. On 

the other hand, endogenous transformations are used for 

transforming a model into another model within the same 

modeling language. The best example is the optimization of a 

model (refactoring, etc.). 

 

4. VISUALIZATION 

 

4.1 History of visualization: 

 

The field of visualization is concerned with how to transform 

data into a graphical representation. This graphic 

representation is called visualization. At this stage, it is 

important to give a brief history of visualization by presenting 

two examples: one by William Playfair [16] and the other by 

Dr. Jhon [18]. Although visualizations, especially in the form 

of maps, have existed since antiquity, the graphic 

representation of abstract information emerges especially in 

the nineteenth century. William Playfair (1759-1823) is one of 

the pioneers of the graphic representation of information. This 

Scottish engineer and economist is the inventor of several 

types of visualization. His inventions such as the temporal 

curve and the histogram are widely used today. One of his 

best-known visualizations, visible in Figure 2, combines these 

two idioms to compare the evolution of the price of wheat and 

the weekly salary of a "good mechanic". This visualization, 

along with a few others, accompanies Playfair's letter on 

agriculture to the British Parliament in 1821 [16]. It goes on to 

say that the price of wheat has never been so cheap relative to 

the cost of labor. Here, the visualization is used to expose the 

conclusion of an analysis to convince an interlocutor. We are 

talking about descriptive visualization.  

 
Figure 2: Diagram of wheat price by William Playfair [16,17]. This 

visualization puts the evolution of the wheat price in perspective with 

that of a weekly reference wage. Playfair wants to show here that 

wheat has never been cheaper if we take into account the evolution of 

wages. Even if the information is well contained in the diagram, the 

conclusion still requires an additional analysis step. In representing 

the relationship between the two values, this conclusion would be 

more obvious. 
 

Visualization can also help the decision by making the data 

collected clearer. This is clearly illustrated by the map 

produced by Dr. John Snow during the London cholera 

outbreak in 1854 (see Figure 3) [18]. 

 
Figure 3: Detail of the map of London established by Dr. John Snow 

during the 1854 cholera outbreak. If we look closely at the map, we 

can realize that each point represents a death attributed to the disease. 

The map also shows the location of the pumps used by the population 

to draw drinking water. As Dr. Jhon found a greater density of deaths 

around the Broad Street pump (1), he deduced that the area was 

probably infected. However, two areas of the low density of deaths 

can be detected in the map despite their proximity to the pump. The 

first one is a "workhouse" (2), where only 5 of the 530 residents 

became ill. The second one is a brewery (3), where no case was 

recorded. In both cases, the inhabitants did not consume water from 
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the Broad Street pump. The "workhouse" had its own well and the 

brewery gave a ration of beer to its employees. 

In brief, these visualizations, like all those of their time, were 

specially designed for a particular case. Besides, they were 

made by hand because no automation process was available at 

that time. The realization of visualization needed a lot of time 

and its image remained statics. Conversely, today and with the 

rise of computing, it is possible to automate many aspects of 

visualization. Firstly, the final drawing (conversion into an 

image) can be done automatically. Secondly, the processing of 

the information to produce a type of visualization can be 

entrusted to algorithms, and thus making the comparison of 

several datasets easier and faster. Lastly, visualization is no 

longer conceived as a static image, but as an interactive 

system, on which the end user has feedback power. The raw 

data must follow certain steps before being presented to the 

user, who can then act on each transformation to modify the 

final visualization and learn new lessons. This process is 

summarized in the visualization pipeline (see Figure 4), 

originally developed by Haber and McNabb [19] for scientific 

visualization and later enriched by Dos Santos and Brodlie 

[20] for information visualization. 

Raw data
Processed 

data

Data of interest Geometric data Visualization 

(Image)

Data analysis Filtering
Encodage 

visuel
Rendering

Interaction

User

  

Figure 4: The pipeline of visualization, adapted from [20]. In an interactive system, it can be executed many times per second. 

 

This pipeline is divided into several stages that allow you to go 

from raw data to visualization: 

 

 The data preparation stage makes it possible to choose 
what will be visualized. At this stage, the raw data are 
refined in order to keep the interesting aspects or to 
derive existing data values (average, difference, map 
projection ...). The result of this step is a set of more or 
less structured data ready to be transformed into 
visualization.  

 The prepared data is then filtered to retain only a subset 
of interest. This filtering can be, for example, temporal 
(the result of the exploitation of a particular year), 
semantic (only the friends of a person of interest) or 
even geographical (election results on a commune).  

 Once the data of interest is identified, the step of visual 
encoding comes. It there where it is decided in what 
form the data would be represented. Indeed, this step 
produces a geometric representation that describes the 
desired visualization. It is at this stage that data is 
transformed into visualization. 

 Finally, the rendering step consists of drawing the 
geometry produced by the visual encoding step. This 
step is most often performed by a computer and may 
involve the use of a graphics processor. The resulting 
image is the final visualization that can be presented to 
the user. 

As a matter of fact, all steps in this pipeline can be modified at 

any time by user interaction. Accordingly, when using an 

interactive system, part or even the entire pipeline can be 

executed several times per second. In most cases, the user's 

interactions focus on the filtering and visual encoding steps. 

The purpose of an information visualization system is to allow 

the user to derive meaning from what is presented to him. The 

various steps followed by the user in his exploration of the data 

are summarized in Shneiderman's mantra: "Overview first, 

zoom and filter, then details-on-demand." (Ben Shneiderman 

[21]). The system must first present an overview of the data, 

permit to filter and enlarge interactively, and hence display the 

details on request of the user. 

 

4.2 Big Data visualization tools: 

 

It is sometimes difficult to present data in an understandable 

way to people who are not specialized. Fortunately, some tools 

make it easy to visualize data. These are Data Visualization 

tools, abbreviated as "Dataviz" [22]. Data visualization is a 

general term that describes an effort to help staff understand 

the meaning of data by placing it in a visual context. 

Therefore, data visualization software will highlight and 

identify patterns, trends, and correlations, which might go 

unnoticed within textual data. 

Today's data visualization tools go beyond the standard charts 

and curves used by Excel spreadsheets. They display data in 

more sophisticated modes, particularly through infographics, 

dials and gauges, maps, sparklines, heat maps, and detailed bar 

graphs in sectors and progress (fever chart). 

Images can incorporate interactive capabilities that allow the 

user to manipulate or explore the data for querying and 

analysis. These tools may also have indicators designed to 

alert the user when the data is updated or when previously 

defined conditions are met. The majority of Business 

Intelligence (BI) [23] software vendors incorporate data 

visualization tools into their products, either by developing 

their own technology or by sourcing from visualization 

vendors. 
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5. PROPOSED META-MODELS 

 

5.1 Meta-model of data Sources and Ingestion Big Data 

layer: 

Relying on our previous work, we have succeeded to propose 

meta-models for layers Data Sources, Ingestion [3], Hadoop 

Storage [4,5], and Hadoop Platform Management [6] of Big 

Data architecture. Correspondingly, our evaluation of the Big 

Data architecture [24] lead us to find that there is a direct link 

between the Data Sources, Ingestion and Management layers, 

and that all sorts of data must pass through by the steps 

constituting the layer of Ingestion before being used by the 

other layers of the Big Data system. Yet, we have expressed 

this link with the following meta-package diagram that 

represents the meta-packages IngestionPkg, DataSourcesPkg, 

HadoopPlatformManagementPkg, and VizualisationPkg and 

the dependency relationship that links them: 

 

 
 

Figure 5: Ingestion, Data Sources, Hadoop Management, and 

Visualization Meta-Packages. 

 

The following figure shows the meta-model that we proposed 

for the two Data Sources and Ingestion layers: 

Figure 6: Generic Meta-Model of Data Sources and Ingestion Big Data layers [3]. 

5.2 Meta-model of Visualization Big Data layer: 

 

In continuous efforts, we have found that companies are faced 

with an increasing amount of data transiting through their 

information system. This mass of information makes it 

difficult for them to operate properly. Therefore, there was an 

urgent need for a Big Data system to have a visualization layer 

that will make it possible to exploit this large amount of data in 

order to generate reports and make decisions. 

At this point, it is important to show that the meta-model we 

proposed for visualization layer includes a main meta-class 

called Visualization, which groups the meta-classes: 

HadoopAdministration, DataAnalystIDE/SDK, and 

VisualizationTool. The meta-class Visualization 

communicates directly with Big Data analytics applications. 

The following figure shows the proposed meta-model for the 

visualization layer within Big Data, as well as its relationship 

to analytics applications: 
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Figure 7: Meta-model of visualization layer. 

As seen before, we have managed to create the meta-models 

for Data Sources, Ingestion, and management layers. In the 

next step, we shall focus on the creation of models respecting 

these meta-models. Then we shall define the transformation 

rules between these meta-models using the transformation 

language ATL (Atlas Transformation Language) [25,26]. 

 

5.3 Meta-model of OLAP 

 

5.3.1 Major Classes and Associations 

Nowadays, decision-makers need a synthetic and global vision 

of the information circulating in their organization to guide 

and adapt their decision-making. To facilitate this process, 

they employ decision support systems. These tools allow 

decision-makers to have a global view of a company's business 

through quick and interactive access to a set of organized data 

views to reflect the multi-dimensional nature of business data 

[27]. In 1993, EF Codd, suggests the use of systems that 

improve the decision-making process by consulting and 

analyzing large amounts of data: online analysis systems, 

"On-Line Analytical Processing (OLAP) [28]. These OLAP 

systems are intended to provide a quick response to analytical 

queries of a multidimensional nature. Analytical queries are 

analyzes that rely on a data centralization tool called: Data 

Warehouse [29,30].  

The following figure shows the meta-model that we proposed 

for OLAP: 

Figure 8: OLAP meta-model: Major Classes and Associations. 

The major classes and associations of the OLAP meta-model 

are shown in Figure 8. Schema is the logical container of all 

elements comprising an OLAP model. It is the root element of 

the model hierarchy and marks the entry point for navigating 

OLAP models. A Schema contains Dimensions and Cubes. A 

Dimension is an ordinate within a multidimensional structure 

and consists of a list of unique values (i.e., members) that share 

a common semantic meaning within the domain being 

modeled. Each member designates a unique position along its 

ordinate. A Cube is a collection of analytic values (i.e., 

measures) that share the same dimensionality. This 

dimensionality is specified by a set of unique Dimensions from 

the Schema. Each unique combination of members in the 

Cartesian product of the Cube's Dimensions identifies 

precisely one data cell within a multidimensional structure. 

CubeDimensionAssociation relates a Cube to its defining 

Dimensions. Features relevant to Cube-Dimension 

relationships (e.g., calcHierarchy) are exposed by this class. 

A Dimension has zero or more Hierarchies. A Hierarchy is an 

organizational structure that describes a traversal pattern 

through a Dimension, based on parent/child relationships 

between members of a Dimension. Hierarchies are used to 
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define both navigational and consolidation/computational 

paths through the Dimension (i.e., a value associated with a 

child member is aggregated by one or more parents). For 

example, a Time Dimension with a base periodicity of days 

might have a Hierarchy specifying the consolidation of days 

into weeks, weeks into months, months into quarters, and 

quarters into years. A specific Hierarchy may be designated as 

the default Hierarchy for display purposes (e.g., a user 

interface that displays the Dimension as a hierarchical tree of 

members). CubeDimensionAssociation can also identify a 

particular Hierarchy as the default Hierarchy for consolidation 

calculations performed on the Cube. MemberSelection models 

mechanisms capable of partitioning a Dimension's collection 

of members. For example, consider a Geography Dimension 

with members representing cities, states, and regions. An 

OLAP client interested specifically in cities might define an 

instance of MemberSelection that extracts the city members. 

CubeRegion models a sub-unit of a Cube that is of the same 

dimensionality as the Cube itself. Each "dimension" of a 

CubeRegion is represented by a MemberSelection of the 

corresponding Dimension of the Cube. Each 

MemberSelection may define some subset of its Dimension's 

members. CubeRegions are used to implement Cubes. A Cube 

may be realized by a set of CubeRegions that map portions of 

the logical Cube to physical data sources. The 

MemberSelections defining CubeRegions can also be grouped 

together via MemberSelectionGroups, enabling the definition 

of CubeRegions with specific semantics. For example, one can 

specify a CubeRegion containing only the "input level" data 

cells of a Cube. A CubeRegion may own any number of 

CubeDeployments. CubeDeployment is a metaclass that 

represents an implementation strategy for a multidimensional 

structure. The ordering of the CubeDeployment classes may 

optionally be given some implementation-specific meaning 

(e.g., desired order of selection of several possible deployment 

strategies, based on optimization considerations). 

 

5.3.2 Dimension and Hierarchy 

 

Figure 9 shows Dimension and Hierarchy, along with several 

other classes that model hierarchical structuring and 

deployment mappings: 

 
Figure 9: OLAP meta-model: Dimension and Hierarchy. 

 

5.3.2.1 Dimension 

 

The OLAP meta-model defines two special types of 

Dimension: Time and Measure. A Time Dimension provides a 

means of representing time-series data within a 

multidimensional structure. The members of a Time 

Dimension usually define some base periodicity (e.g., days of 

the week). The implementation of a Time Dimension might 

provide support for advanced "time-intelligent" functionality, 

such as the ability to automatically convert between different 

periodicities and calendars. The members of a Measure 

Dimension describe the meaning of the analytic values stored 

in each data cell of a multidimensional structure.  

 

5.3.2.2 Hierarchy 

 

The OLAP metamodel specifies two subclasses of Hierarchy: 

LevelBasedHierarchy and ValueBasedHierarchy. 

 LevelBasedHierarchy 

LevelBasedHierarchy describes hierarchical relationships 

between specific levels of a Dimension. LevelBasedHierarchy 
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is used to model both "pure level" hierarchies (e.g., 

dimension-level tables) and "mixed" hierarchies (i.e., levels 

plus linked nodes). Dimensional levels are modeled by the 

Level class, a subclass of MemberSelection that partitions a 

Dimension's members into disjoint subsets, each representing 

a distinct level. LevelBasedHierarchy contains an ordered 

collection of HierarchyLevelAssocations that defines the 

natural hierarchy of the Dimension. The ordering defines the 

hierarchical structure in top-down fashion (i.e., the "first" 

HierarchyLevelAssociation in the ordered collection 

represents the upper-most level of the dimensional hierarchy). 

A HierarchyLevelAssociation may own any number of 

DimensionDeployments. DimensionDeployment is a 

metaclass that represents an implementation strategy for 

hierarchical Dimensions. The ordering of the 

DimensionDeployment classes may optionally be given an 

implementation-specific meaning (e.g., desired order of 

selection of several possible deployment strategies, based on 

optimization considerations). 

 ValueBasedHierarchy 

 

A ValueBasedHierarchy defines a hierarchical ordering of 

members in which the concept of level has little or no 

significance. Instead, the topological structure of the hierarchy 

conveys meaning. ValueBasedHierarchies are often used to 

model situations where members are classified or ranked 

according to their distance from a common root member (e.g., 

an organizational chart of a corporation). In this case, each 

member of the hierarchy has some specific "metric" or "value" 

associated it with it. ValueBasedHierarchy can be used to 

model pure "linked node" hierarchies (e.g., asymmetric 

hierarchical graphs or parent-child tables). As with 

LevelBasedHierarchy, ValueBasedHierarchy also has an 

ordered collection of DimensionDeployments, where the 

ordering semantics are left to implementations to define. 

 

5.4 Generic meta-model for visualization layer 

 

Figure 10: Generic meta-model for visualization layer. 

These meta-models are platform independent according to 

Model Driven Architecture pattern [31,33], which describes 

visualization layer and its relation with the Big Data analytics 

application independently from any specific platform. 



Allae Erraissi et al., International Journal of Advanced Trends in Computer Science and  Engineering, 8(4), July- August 2019, 990 -  998 

997 

 

 

6 FUTURE WORK 

 

Visualization today has ever-expanding applications in 

science, engineering, education, interactive multimedia, 

medicine, etc. Model-based visualization components are 

commonly more sophisticated. Our approach has been used to 

generate meta-model for visualization layer using techniques 

related to Model-driven Engineering, we have also proposed 

meta-model for OLAP like a Big Data analytics application 

that helps decision makers make a decision. We are currently 

continuing our work by creating a complete library of 

visualization meta-models and model-driven visualization 

components. The meta-models for visualization layer and the 

other layers, which we have proposed before in our previous 

works, will be used for creating a universal meta-modeling of a 

Big Data system. Model-based visualization components are 

also being developed for integration within Eclipse using the 

EMF framework. 

 

7 CONCLUSION AND PERSPECTIVES 

 

In short, the exponential growth of data produced every day by 

consumers and businesses makes it necessary to develop new 

tools to make them easier to read. In fact, big data management 

needs new methods and powerful technologies to deal with 

these huge data sets. More precisely, the visualization layers 

remains an efficient mean to exploit and deal with this large 

amount of data. The trend that we have seen emerge for some 

years now: data visualization (or DataViz).  At this stage, it is 

worth mentioning that in this article we applied the modeling 

techniques (Model Driven Engineering) by proposing 

meta-models for the Big Data layers. Our main goal is to create 

standardized concepts at the Big Data level. In the MDA 

(Model Driven Architecture) approach, the generic 

meta-model proposed for Big Data layers can be used as an 

independent cross-platform Domain Specific Language [32]. 

Thus, further work needs to be carried out in order to create a 

powerful system capable of ensuring a more accurate and 

reliable result for big data management. 
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