
 Goodubaigari Amrulla et al., International Journal of Advanced Trends in Computer Science and Engineering, 3(3), May - June 2014, 53-60

53

A Survey of Improving Computer Program Readability to Aid Modification

 Goodubaigari Amrulla 1, Murlidher Mourya 2, Abdul Ahad Afroz3 and Syed Kashif Ali 4

 1 Assistant Professor Deportment of CSE,
Vardhaman College of Engineering, JNTU Hyderabad, A.P, India

amrushafi12@gmail.com
2 Assistant Professor Deportment of CSE,

Vardhaman College of Engineering, JNTU Hyderabad, A.P, India
murli_cool9@yahoo.com

3 Assistant Professor Deportment of IT,
Green Fort Engineering College, JNTU Hyderabad, A.P, India

abdulahadafroz@gmail.com
4 Assistant Professor Deportment of IT,

 Green Fort College of Engineering, JNTU Hyderabad, A.P, India
Kashif556@gmail.com

ABSTRACT

A consensus exists that readability is an essential
determining characteristic of code quality, but not about
which factors contribute to human notions of software
readability the most. We define readability as a human
judgment of how easy a text is to understand. The readability
of a program is related to its maintainability, and is thus a
key factor in overall software quality. Typically,
maintenance will consume over 70 percent of the total life-
cycle cost of a software product. While software complexity
metrics typically take into account the size of classes and
methods and the extent of their interactions, the readability
of code is based primarily on local, line-by-line factors. Our
notion of readability arises directly from the judgments of
actual human annotators who do not have context for the
code they are judging. We present a descriptive model of
software readability based on simple features that can be
extracted automatically from programs. This model of
software readability correlates strongly with available)
notions of software quality, such as defect detectors and
software changes.

Key words: Find Bugs, modifiability, software Quality,
readability, program Style, Software maintenance.

1. INTRODUCTION

We define readability as a human judgment of how easy a
text is to understand. The readability of a program is related
to its maintainability, and is thus a key factor in overall
software quality. Typically, maintenance will consume over
70 percent of the total life-cycle cost of a software product
.claim that source code readability and documentation
readability are both critical to the maintainability of a
project.

The topic of source code readability has paramount
importance in software engineering. Literature exists on how
to write readable code; how to create analytical models and
automatically predict readability; and how readability
influences software cost and eventually the economy. In this
article we follow a different path; we explore the question of
why and how unreadable code gets written.

Other researchers have noted that the act of reading code is
the most time-consuming component of all maintenance
activities. Readability is so significant, in fact, that, after
recognizing that many commercial programs were much
more difficult to read than necessary, proposed adding a
development phase in which the program is made more
readable. Knight and Myers suggested that one phase of
software inspection should be a check of the source code for
readability to ensure maintainability, portability, and
reusability of the code. proposed adding a dedicated
readability and documentation group to the development
team, observing that, “without established and consistent
guidelines for readability, individual reviewers may not be
able to help much” .We hypothesize that programmers have
some intuitive notion of this concept, and that program
features, such as indentation (e.g., as in Python), choice of
identifier names, and comments, are likely to play a part.
Dijkstra, for example, claimed that the readability of a
program depends largely upon the simplicity of its
sequencing control (e.g., he conjectured that go to
unnecessarily complicates program understanding), and
employed that notion to help motivate his top-down
approach to system design. We present a descriptive model
of software readability based on simple features that can be
extracted automatically from programs. This model of
software readability correlates strongly with human
annotators and also with external (widely available) notions
of software quality, such as defect detectors and software
changes.

 ISSN 2278-3091
Volume 3, No.3, May – June 2014

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://warse.org/pdfs/2014/ijatcse02332014.pdf

 Goodubaigari Amrulla et al., International Journal of Advanced Trends in Computer Science and Engineering, 3(3), May - June 2014, 53-60

54

To understand why an empirical and objective model of
software readability is useful, consider the use of readability
metrics in natural languages. The Flesch-Kincaid Grade
Level, the Gunning-Fog Index, the SMOG Index, and the
Automated Readability Index are just a few examples of
readability metrics for ordinary text. These metrics are all
based on simple factors, such as average syllables per word
and average sentence length. Despite this simplicity, they
have each been shown to be quite useful in practice. Flesch-
Kincaid, which has been in use for over 50 years, has not
only been integrated into popular text editors including
Microsoft Word, but has also become a United States
governmental standard. Agencies, including the Department
of Defense, require many documents and forms, internal and
external, to meet have a readability grade of 10 or below).
Defense contractors also are often required to use it when
they write technical manuals.

1.1 Objective

 To improve the quality of maintainability.

 Enhance the chances to reusability.

 To make portability easier and flexible.

 Mechanically predict human readability judgments.

 Determine code features that are predictive of
readability.

1.2 Existing system

The system provided the unbeliever to calculate the quality
of software by the automation. The tester who’s calculate the
coding of application to be quality so who’s verified the bulk
of coding which‘s dominated by them. While it can be used
to predict human readability judgments for existing
software, it can be directly interpreted to prescribe changes
that will improve readability.

1.3 Disadvantages

 The tester should know the language whish’s
developed by.

 Time consuming is high so we can’t deliver the
product in time.

 The result of quality should not be accurate.

1.4 Proposed System

We proposed that this metric correlates strongly with three
measures of software quality: code changes, automated
defect reports, and defect log messages. These metrics can
help organizations gain some confidence that their
documents meet goals for readability very cheaply, and have
become ubiquitous for that reason. We believe that similar

metrics, targeted specifically at source code and backed with
empirical evidence for effectiveness, can serve an analogous
purpose in the software domain. It is important to note that
readability is not the same as complexity, for which some
existing metrics have been empirically shown useful. Brooks
claims that complexity is an “essential” property of
software; it arises from system requirements, and cannot be
abstracted away. In the Brooks model, readability is
“accidental” because it is not determined by the problem
statement.

1.5 Advantages

 We have to generate three measures of software
quality together like as code changes, automated
defect reports, and defect log messages.

 Time consuming is low.

 It may help developers to write more readable

software by quickly identifying code that scores
poorly.

 A technique for the construction of automatic

software readability metric based on local code
features.

2. MODULES DESCRIPTION

A. Authentication

B. Source code

C. Code readability

D. Defects log message

A. Authentication

This module is used to secure our application from the
unauthorized persons so it wants to ask the user to submit
those details into our database so only valid users can login
into the application.

B. Source Code

Source code is the means most often used
by programmers to specify the actions to be performed by a
computer. The source code which constitutes a program is
usually held in one or more text files sometimes stored in
databases as stored procedures and may also appear as code
snippets printed in books or other media. A computer
program's source code is the collection of files needed to
convert from human-readable form to some kind of
computer-executable form. The source code may be
converted into an executable file by a compiler, or
executed on the fly from the human readable form with the
aid of an interpreter.

 Goodubaigari Amrulla et al., International Journal of Advanced Trends in Computer Science and Engineering, 3(3), May - June 2014, 53-60

55

C. Code Readability

 We present a descriptive model of software readability
based on simple features that can be extracted automatically
from programs. This model of software readability correlates
strongly with human annotators and also with external
(widely available) notions of software quality, such as defect
detectors and software changes. To understand why an
empirical and objective model of software readability is
useful, consider the use of readability metrics in natural
languages.

D. Automated Defect Log Messages

 We present a descriptive model of software readability
based on simple features that can be extracted automatically
from programs. This model of software readability correlates
strongly with human annotators and also with external
(widely available) notions of software quality, such as defect
detectors and software changes.

 3. Motivation

The software community is increasingly concerned about the
code readability (Buse et al. 2010):
The readability of source code is related to its
maintainability, and is thus a key factor in overall software
quality. Typically, maintenance consumes over 70% of the
total lifecycle cost of a software product (Boehm 2001).
Aggarwal claims that source code readability and
documentation readability are both critical to the
maintainability of a project. Other researchers have noted
that the act of reading code is the most time-consuming
component of all maintenance activities. Readability is so
significant, in fact, that Elshoff and Marcotty, after
recognizing that many commercial programs were much
more difficult to read than necessary, proposed adding a
development phase in which the program is made more
readable. In this article, we first explore the various
importance of readability. Later, we explore how and why
readability gets compromised.

3.1 Importance of Readability

The importance of code readability is clearly stated in the
book Structure and Interpretation of Computer Programs
(Abelson and Sussman 1996): Programs must be written for
people to read, and only incidentally for machines to
execute. Readability of source code is important for various
reasons, as highlighted in this section.

3.2 Understanding
A portion of code written by a programmer (author) must be
understandable by current stakeholders, e.g. the author’s
immediate team members (and even the author at a future
time). But that is not all; the code must be understandable by

future stakeholders, e.g. rest of the programmers in the
project or organization, especially programmers who might
be hired in future. A program might be an application
program, a library, a framework, or any other software.
Understanding code has many perspectives, the two main
ones are: application-level understanding and programming
language-level understanding

3.3 Interfacing

New modules interface with existing modules. At that time,
the author(s) of a new module has to understand the
interfaces exposed by the existing module. In theory,
understanding only the interface is enough. But, in reality,
the inner details of the existing modules need to be
understood, at least at a high level.

3.4 Extending/Enhancing

When a module is extended or enhanced, the existing model
and concepts need to be understood so that the extension
aligns with the existing code

3.5 Fixing

This is perhaps the most cited reason for readability. Many
times, a programmer is responsible for fixing an unfamiliar
module. The existing code, the classes, the methods, the
variables, their names, 3 Origins of Poor Code Readability
and the control flow, must be understandable enough so that
such a newcomer to the module can easily identify the place
to fix and the nature of the fix.

3.6 System Architecture

It was decided to use only programs written in high level
programming languages. These are widely used and they are
machine independent. Two kinds of programs can be used,
namely artificially constructed programs and real-world
programs. Weismann [5] used the former kind. In
investigating the mnemonicity of variable names he used
three programs for solving the eight queens’ problem with
three levels of mnemonicity: fully mnemonic, shortened
mnemonic, and meaningless, respectively. Real-world
programs are not written with artificially varied levels of
programming style characteristics, however. Therefore we
decided to use real-world programs.

The subjects determining the readability and modifiability of
a set of programs should evidently be familiar with the
programming language. They should also be familiar with
the task of the programs and the applied algorithms so as to
make their performances as far as possible independent of
these irrelevant matters. Readability can determine the
ease in which computer program code can be read by
humans, such as through embedded documentation

 Goodubaigari Amrulla et al., International Journal of Advanced Trends in Computer Science and Engineering, 3(3), May - June 2014, 53-60

56

 User first need to login with his ID and password to
see the defect log report.

 If user not created ID then user can create newly.

 For old users the ID and password check from the
database for authentication where they are stored in
the creation time through the software application.

 After login through the software program user can
give the source code as a input.

 It will be go through the software quality process
and do the readability.

 Then it will store the defect or error report in to the
database.

Finally from the database information it will fetch and will
generate the defect report.

 Figure: 1 System Architecture

3.7 Test Case

The purpose of testing is to discover errors. Testing is the
process of trying to discover every conceivable fault or
weakness in a work product. It provides a way to check the
functionality of components, sub assemblies, assemblies
and/or a finished product It is the process of exercising
software with the intent of ensuring that the Software system
meets its requirements and user expectations and does not
fail in an unacceptable manner.

Table 1: Test cases
Test

S. No
Input Expected

Behavior
Observed
Behavior

Status
P = Passed
F = Failed

1

Login as
user with
correct

login details

The window
will open

from which
.we can send

the file to
the

destination.

-do- P

2

Login as a
user with

wrong login
details

Error
message
will be

displayed

-do- P

3

Signup a
new User.

It should
add a new

record in the
database
with new

and unique
secret key

-do-

P

4

Choosing a
file and

load.

We can
upload the

file
For check
readability

-do-
P

 5

Check
source code
readability

It checks
against

Different
metrics

-do-
P

6

Generating
defects log
message

For every
readability

check it
generates
defect log
and send it

to
destination

-do-

P

7

Report
generation

For every
readability
check any

content
which is not

up to
metrics it
generate
error no
related

description

-do-
P

 User Software
Application Authenticati

on storage

Software program

Source
code

Software
quality

Reada
bility

Defect Report
Generation Defect

Details
Storage

 Goodubaigari Amrulla et al., International Journal of Advanced Trends in Computer Science and Engineering, 3(3), May - June 2014, 53-60

57

3.8 Project flow

 User first need to login with his ID and password to
see the defect log report.

 If user not created ID then user can create newly.

 For old users the ID and password check from the

database for authentication where they are stored in
the creation time through the software application.

 After login through the software program user can

give the source code as a input.

 It will be go through the software quality process
and do the readability.

 Then it will store the defect or error report in to the

database.

 Finally from the database information it will fetch and will
generate the defect report.

 Figure: 2 Shows a Project Flow Diagrams

4. IMPLEMENTATION

Implementation notes helps to improve readability as it
discusses difficult or subtle algorithms and data structures. It
includes graphs, drawing, charts and other representations
difficult to reproduce in source code library. It also
comprises photocopies of portions of books or articles
relevant to the design or implementation. All these
documentation enhance readability of program. The more
readable a module the faster and more accurately a rouser
can obtain information about it. Here readability can be
gauged by the average number of right answers to a series of
questions about the program in a given length of time.
Comments could indirectly rescue a not so modular program
and make it as readable as modular program by increasing
its readability.

 Create the ID to login, if already created.

 Do authentication from database.

 If match allow user to login else through error

message user is not valid.

 If user allows from step3 provide source code to
software programmer to do software quality check
through readability process.

 If any differences or unmatched write the error in to

data base else continue until the end.

Figure: 3 Shows a User Login home page

Verify
Software
quality

Software
programs
Storage

Collecting
Source
Code File

User

Defect Log
Report
Generation

Code
Readabilit
y

 Goodubaigari Amrulla et al., International Journal of Advanced Trends in Computer Science and Engineering, 3(3), May - June 2014, 53-60

58

Figure: 4 Shows a User Login Process

Figure: 5 Shows a Code Files Loading

Figure: 6 Shows a Error Identification

Figure: 7 Shows a Errors List in Defect log

Figure: 8 Shows a Graphical view of Errors

 Goodubaigari Amrulla et al., International Journal of Advanced Trends in Computer Science and Engineering, 3(3), May - June 2014, 53-60

59

Figure: 9 Shows a Crystal Report Generations

4.1 Future Scope

The techniques presented in this paper should provide an
excellent platform for conducting future readability
experiments, especially with respect to unifying even a very
large number of judgments into an accurate model of
readability. While we have shown that there is significant
agreement between our annotators on the factors that
contribute to code readability, we would expect each
annotator to have personal preferences that lead to a
somewhat different weighting of the relevant factors. It
would be interesting to investigate whether a personalized or
organization-level model, adapted over time, would be
effective in characterizing code readability. Furthermore,
readability factors may also vary significantly based on
application domain. Additional research is needed to
determine the extent of this variability, and whether
specialized models would be useful. Another possibility for
improvement would be an extension of our notion of local
code readability to include broader features. While most of
our features are calculated as average or maximum value per
line, it may be useful to consider the size of compound
statements, such as the number of simple statements within
an if block. For this study, we intentionally avoided such
features to help ensure that we were capturing readability
rather than complexity. However, in practice, achieving this
separation of concern is likely to be less compelling.

5. CONCLUSION

In this paper, we have presented a technique for modeling
code readability based on the judgments of human
annotators. In a study involving 120 computer science
students, we have shown that it is possible to create a metric
that agrees with these annotators as much as they agree with
each other by only considering a relatively simple set of
low-level code features. In addition, we have seen that
readability, as described by this metric, exhibits a significant
level of correlation with more conventional metrics of
software quality, such as defects, code churn, and self
reported stability. Furthermore, we have discussed how
considering the factors that influence readability has
potential for improving the programming language design
and engineering practice with respect to this important
dimension of software quality. Finally, it is important to note
that the metric described in this paper is not intended as the
final or universal model of readability.

REFERENCES

1. Raymond P. L. Buse, Westley R. Weimer, “Learning a
Metric for Code Readability,” Transactions on Software
Engineering, vol. 36, no. 4, pp. 546-558, July/August 2010.
2. K. Aggarwal, Y. Singh, and J. K. Chhabra, “An integrated
measure of software maintainability,” Reliability and
Maintainability Sympo-sium, pp. 235–241, Sep. 2002.
3. B. Boehm and V. R. Basili, “Software defect reduction
top 10 list,”Computer, vol. 34, no. 1, pp. 135–137, 2001.
4. B. Boehm and V. R. Basili, “Software defect reduction
top 10 list,” Computer, vol. 34, no. 1, pp. 135–137, 2001.
5. L. Weissman: A methodology for studying the
psychological complexity of computer programs. Technical
Report CSRG-37, University of Toronto (1974).
6. Anker helms Jorgensen: A methodology for Measuring
The Readability and Modifiability Of computer programs
received September 27, 1979. Revised august 18,bit 20
1980.
7. Arun Saha: Origins of poor code readability, Short Paper,
Conjectural Fujitsu Network Communications 1250 E
Arques Avenue, Sunnyvale, CA, 94085

About The Authors

Mr. GOODUBAIGARI AMRULLA is assistant professor at
Vardhaman College of Engineering. He has 1.5 years of
experience in teaching field. He has received B.Tech
(Information Technology) degree from VVIT Chevella,
JNTUH University in the year 2010 and M.Tech (Software
Engineering) degree from NIET Deshmukhi, JNTUH
University in the year 2013.

Mr. MURLIDHER MOURYA is assistant professor at
Vardhaman College of Engineering. He has 5 years of
experience in teaching field. He has received B.Tech (CSE)

 Goodubaigari Amrulla et al., International Journal of Advanced Trends in Computer Science and Engineering, 3(3), May - June 2014, 53-60

60

degree from GRIET Bachupally, JNTUH University in the
year 2007 and M.Tech (CSE) degree from TKRCET
Medbowli, Meerpet, JNTUH University in the year 2010.

Mr. ABDUL AHAD AFROZ is assistant professor at Green
Fort Engineering College. He has 4 years of experience in
teaching field. He has received B.Tech (Information
Technology) degree from Green Fort Engineering College
Bandla Guda, Chandrayanagutta, JNTUH University in the
year 2008 and M.Tech (Software Engineering) degree from
NIET Deshmukhi, JNTUH University in the year 2013.

Mr. SYED KASHIF ALI is assistant professor at Green Fort
Engineering College. He has 2 years of experience in
teaching field. He has received B.Tech (CSE) degree from
RITS Chevella, JNTUH University in the year 2010 and
M.Tech (Software Engineering) degree from NIET
Deshmukhi, JNTUH University in the year 2013.

