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ABSTRACT 

The optimal placement of distributed generation (DG) in 

power distribution systems involves identifying the best 

locations for the generators to be installed and sizing them 

appropriately, to optimize the performance of the system. In 

this paper, the recently proposed nature-inspired optimization 

algorithm namely: Dandelion Optimizer (DO) has been used 

for the optimal placement and sizing of DG in the radial 

distribution network. The objectives are to minimize active 

power loss and voltage deviation and to enhance the voltage 

stability of the distribution network. The efficiency of the 

proposed method has been verified over the IEEE 33-bus and 

Algerian 112-bus distribution systems. The result comparisons 

indicated that the proposed method can obtain higher quality 

solutions than many other methods for the considered 

scenarios from the test systems. Therefore, the DO algorithm 

can be a very effective method for solving the optimal 

allocation of the DG problem. 

 

Key words: Distribution network, Distributed generation, 

Dandelion optimizer, Power losses, Voltage deviation, 

Voltage stability.  

 

1. INTRODUCTION 

 

The electric power system can be divided into four major 

components; generation, transmission, distribution and 

utilities. Amongst these four components, the distribution 

network is the final and most critical link in the power system 

[1]. It is a more complex network and has a higher power loss 

as compared to a transmission network due to the high R/X 

ratio. Previous literature studies show that losses in the 

distribution network are high and can exceed 13% [2]. 

The integration of distributed generation (DG) in the 

distribution networks has several benefits such as reducing 

power losses, improving voltage profile along feeders and 

increasing the maximum transmitted power in cables and 

transformers [3]. However, the installation of DG in the 

distribution systems requires consideration of their 

appropriate locations and sizes. A non-optimal location with 

an optimal size or a non-optimal size with an optimal location 

can result in an increase in system losses and costs, and 

degradation in voltage profile, protection and stability. Thus, 

the simultaneous optimization of location and sizing of DGs in 

distribution systems can be very useful for the distribution 

power system [4].  

In recent years, several meta-heuristic optimization techniques 

have been employed for solving the optimal placement and 

size of DG sources connected to the distribution network. 

These methods apply an iterative procedure to find the optimal 

solution or sub-optimal solutions to an optimization problem. 

Some of the methods that adopt meta-heuristics notions 

include Genetic Algorithm (GA), Simulated Annealing (SA), 

Tabu Search (TS), Particle Swarm Optimization (PSO), Ant 

Colony Optimization (ACO), Non-dominated Sorting GA-II 

(NSGA-II), Plant Growth Simulation Algorithm (PGSA), 

Artificial Bee Colony Algorithm (ABC), Bacterial Foraging 

Algorithm (BFA), Cat Swarm Optimization (CSO), Grey Wolf 

Optimization (GWO), Krill Herd Algorithm (KHA) and 

Invasive Weed Optimization (IWO) [6, 7, 8]. 

In this paper, the recently proposed met-heuristic method 

named Dandelion Optimization (DO) algorithm [9] has been 

adopted for multiple DG allocation and sizing to minimize 

active power loss, voltage deviation, and voltage stability 

improvement in the distribution network. Case studies with 

standard IEEE 33-bus and Algerian 112-bus distribution 

networks are performed. The obtained results have indicated 

that the proposed algorithm provides higher-quality solutions 

than several other algorithms in the literature for the 

considered scenarios. 

The rest of this paper is organized as follows: Section 2 deals 

with the formulation of the optimal placement and sizing of the 

DG problem. The general framework of the employed 

Dandelion optimization (DO) algorithm is presented in 

Section 3, whereas Section 4 and 5 illustrates the numerical 

simulations to investigate the performance of the solutions 

obtained by the optimization algorithm. Finally, conclusions 

are drawn in Section 6.  
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2. PROBLEM FORMULATION 

2.1 Objective function 

Objective functions can be classified as single-objective or 

multi-objective. The single objective functions are such as 

minimizing system power losses, cost, or enhancing voltage 

profile or system stability, etc. and multi-objective functions 

would be the combination of two or more single objective 

functions by considering suitable parameters and constituting 

the objective function [10].  

A. Single objective function 

The main objective of DG siting and sizing in the distribution 

network is to minimize network active power losses while 

satisfying some operating constraints. The objective function 

for the minimization of active power loss is described as: 

 1 min lossF P                                                                      (1)  

where Ploss is the total active power loss of the system 

expressed as follows: 

2

1

brN

loss i

i

P R I


                                                                            (2)  

where Ii and Ri are the current magnitude and the resistance of 

the ith branch, respectively, Nbr is the number of branches. 

B. Multi-objective function 

To represent all the objectives in a combined mathematical 

expression, we divide every single objective function by its 

base value and link them together by coefficients. The use of 

weighting coefficients helps transform three single objective 

functions into one objective function, and the whole fitness 

function is given by: 

1
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VD is the total voltage deviation given by: 

 
2

1

busN

i rated

i

VD V V


                                                                           (4) 

where Vi is the voltage magnitude at bus i, Vrated is the rated 

voltage (1.0 p.u.) and Nbus is the number of buses in the 

distribution network. 

VSI is the voltage stability index given by the following 

equation [11]:  

   
24 2

4 4j i j ij j ij j ij j ij iVSI V P x Q r P r Q x V                   (5) 

where VSIj is the voltage stability index of bus j, xij is the 

reactance of the line connected between buses i and j. 

w1, w2 and w3 are penalty factors. These factors are attuned 

based on the significance of the objective function. In this 

paper, w1, w2 and w3 are taken as 0.6, 0.3 and 0.1, respectively. 

 

2.2 Constraints 

 

Two types of constraints, which include equality and 

inequality constraints, are considered in the optimization 

problem. 

The power flow equations are defined as equality constraints 

in the optimal allocation of DGs problem. The mathematical 

model is given by [12]: 

 , ,
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busN
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                              (7) 

where PG,i is the active power output of the generator at bus i; 

PL,i is the active power of load at bus i; QG,i is the reactive 

power output of the generator at bus i; QL,i is the reactive 

power of load at bus i; and Yij and θij are the modulus and angle 

of ith element in the admittance matrix of the system related to 

bus i and bus j, respectively. 

The inequality constraints subjected to DG setting and sizing 

problems include [12]: 

min max      1,2,...,i busV V V i N                                         (8) 

where Vmin and Vmax are taken as 0.95 and 1.05 (p.u), 

respectively. 

max      1,2,...,i i brI I i N                                         (9) 

min max

DG DGi DGP P P                                              (10) 

2 bus busDG N                                                           (11) 

where DGbus is the bus number of the DG installation, Vi is the 

bus voltage, Ii is the current of the DG at branch i, PDG is the 

total power of DG, Nbr is the total number of branches. 

 

3. DANDELION OPTIMIZATION ALGORITHM 

 

Dandelion optimization (DO) is a new swarm intelligence 

bioinspired optimization algorithm was proposed by Zhao et al 

in 2022 [9]. DO simulates the process of dandelion seed 

long-distance flight relying on wind. The mathematical 

modelling of the DO can be summarized as follows: 

  

3.1 Initialization 

 

Similar to other natured-inspired metaheuristic algorithms, 

DO fulfils population evolution and iterative optimization on 

the basis of population initialization. In the proposed DO 

algorithm, it is assumed that each dandelion seed represents a 

candidate solution, whose population is expressed as: 
1

1 1

1

...

...

Dim

Dim

pop pop

x x
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x x

 
 

  
 
 

                                                   (12) 

Where pop denotes the population size and Dim is the 

dimension of the variable. Each candidate solution is 

randomly generated between the upper bound (UB) and the 

lower bound (LB) of the given problem, and the expression of 

the 𝑖th individual 𝑋𝑖 is: 

( )iX rand UB LB LB                                                            (13) 
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where 𝑖 is an integer between 1 and 𝑝𝑜𝑝 and 𝑟𝑎𝑛𝑑 denotes a 

random number between 0 and 1. 𝐿𝐵 and U𝐵 are expressed as: 

 1,..., DimLB lb lb                                                                             (14) 

 1,..., DimUB ub ub                                                             (15) 

During initialization, DO regards the individual with the 

optimal fitness value as the initial elite, which is approximately 

considered the most suitable position for the dandelion seed to 

flourish. Taking the minimum value as an example, the 

mathematical expression of the initial elite Xelite is: 

min( ( ))best if f X                                                                               (16) 

( ( ( )))elite best iX X find f f X                                            (17) 

Where find () denotes two indexes with equal values. 

 

3.2 Rising stage 

In the rising stage, dandelion seeds need to reach a certain 

height before they can float away from their parent. Under the 

influence of wind speed, air humidity, etc., dandelion seeds 

rise to different heights. Here, the weather is divided into the 

following two situations. 

Case 1: On a clear day, wind speeds can be regarded to have a 

lognormal distribution ln 𝑌∼𝑁(𝜇, 𝜎2). Under this distribution, 

random numbers are more distributed along the 𝑌 -axis, which 

increases the chance for dandelion seeds to travel to far 

regions. Therefore, DO emphasizes exploration in this case. In 

the search space, dandelion 

seeds are blown randomly to various locations by the wind. 

The rising height of a dandelion seed is determined by wind 

speed. The stronger the wind is, the higher the dandelion flies 

and the farther the seeds scatter. Affected by wind speed, the 

vortexes above the dandelion seeds are constantly adjusted to 

make them rise in a spiral form. The corresponding 

mathematical expression in this case is: 

1 ln ( )t t x y s tX X v v Y X X                                          (18) 

Where Xt represents the position of the dandelion seed during 

iteration t. Xs represents the randomly selected position in the 

search space during iteration t. Eq. (19) provides the 

expression for the randomly generated position. 

(1, ) ( )sX rand Dim UB LB LB                                          (19) 

ln 𝑌 denotes a lognormal distribution subject to 𝜇 = 0 and 𝜎2 = 

1, and its mathematical formula is: 

2
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                                (20) 

In Eq. (20), 𝑦 denotes the standard normal distribution N (0, 

1). 𝛼 is an adaptive parameter used to adjust the search step 

length, and the mathematical expression is: 

2

2

1 2
() ( 1)rand t

TT
                                                               (21) 

𝛼 is a random perturbation between [0, 1] in the process of a 

nonlinear decrease that approaches 0. Such fluctuations make 

the algorithm pay much attention to the global search in the 

early stage and turn to a local search in the later stage, which is 

beneficial to ensure accurate convergence after a full global 

search. 𝑣𝑥 and 𝑣𝑦 represent the lift component coefficients of a 

dandelion due to the separated eddy action. Eq. (22) is utilized 

to calculate the force on the variable dimension. 
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                                                                       (22)                    

where 𝜃 is a random number between [−𝜋, 𝜋]. 

Case 2: On a rainy day, dandelion seeds cannot rise 

appropriately with the wind because of air resistance, humidity 

and other factors. In this case, dandelion seeds are exploited in 

their local neighbourhoods, and the corresponding 

mathematical expression is: 

1t tX X k                                                                                             (23) 

where 𝑘 is used to regulate the local search domain of a 

dandelion, and Eq. (24) is used to calculate the domain. 

2

2 2 2

1 2 1
1

2 1 2 1 2 1
q t t

T T T T T T
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                   (24) 

Where k=1-rand()×q. 

In conclusion, the mathematical expression of dandelion seeds 

in the rising stage is 

1

ln ( )   randn<1.5
   

                                             else

t x y s t

t

t

X v v Y X X
X

X k



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 


   (25) 

Where randn() is the random number that follows the standard 

normal distribution. 

Figure 1 shows the behaviour of dandelion seeds flying under 

different weather conditions. The approximate regeneration 

locations of dandelion seeds are given in the figure. First, 

when the weather is clear, dandelion seeds are updated based 

on randomly selected location information to emphasize the 

exploration process. The eddy above the seed acts on the 

moving vector by multiplying the 𝑥 and 𝑦 components to 

correct the direction of the dandelion’s movement in a spiral. 

In the second case, dandelion seeds are exploited in all 

directions in the local community. The normal distribution of 

random numbers is used to dynamically control exploitation 

and exploration. To make the algorithm more global 

search-oriented, the cut-off point is set to 1.5. This setting 

makes dandelion seeds traverse the entire search space as 

much as possible in the first stage to provide the correct 

direction for the next stage of iterative optimization. 
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Figure 1: Schematic diagram of the rising stage of dandelion 

seeds. 

3.3 Descending stage 

In this stage, the proposed DO algorithm also emphasizes 

exploration. Dandelion seeds descend steadily after rising to a 

certain distance. In DO, Brown motion is used to simulate the 

moving trajectory of dandelions. It is easy for individuals to 

traverse more search communities in the process of iterative 

updating because Brownian motion obeys a normal 

distribution at each change. To reflect the stability of 

dandelion descent, the average position information after the 

rising stage is employed. This facilitates the development of 

the population as a whole towards promising communities. 

The corresponding mathematical expression is 

1 _( )t t t mean t t tX X X X                                         (26) 

where 𝛽𝑡 denotes Brownian motion and is a random number 

from the standard normal distribution.  

Xmean_t denotes the average position of the population in the 

𝑖th iteration, and its mathematical expression is 

_

1

1 pop

mean t i

i

X X
pop 

                                                                         (27)                    

Figure 2 shows the regeneration process of dandelion seeds 

during descent. According to this figure, the average position 

information of the population is essential for the iterative 

updating of individuals, which directly determines the 

evolution direction of individuals. The trajectory of Brownian 

motion, which is based on a global search, is also presented in 

the figure. The irregular movement causes the search agents to 

escape the local extremum with a high probability during the 

iterative update and then pushes the population to seek the 

region near the global optimum. 

 
Figure 2: Schematic diagram of the descending stage of dandelion 

seeds 

 

Figure 3 shows the process of the search agent gradually 

updating to the global optimal solution in the final phase. To 

accurately converge to the global optimum, the linear 

increasing function is applied to individuals to avoid excessive 

exploitation. In this stage, the Levy flight coefficient is used to 

simulate the individual movement step size. The reason is that 

the Levy flight coefficient can be used by agents to stride to 

other positions with a large probability under a Gaussian 

distribution, which develops more local search domains with a 

limited number of iterations. 

 
Figure 3: Schematic diagram of the dandelion seed landing stage 

3.4 Landing stage 

In this part, the DO algorithm focuses on exploitation. Based 

on the first two stages, the dandelion seed randomly chooses 

where to land. As the iterations gradually progress, the 

algorithm will hopefully converge to the global optimal 

solution. Therefore, the obtained optimal solution is the 

approximate position where dandelion seeds will most easily 

survive. To accurately converge to the global optimum, search 

agents borrow the eminent information of the current elite to 

exploit in their local neighbourhoods. With the evolution of 

the population, the global optimal solution can eventually be 

found. This behaviour is expressed in Eq. (28). 

1 ( ) ( )t elite elite tX X levy X X                                       (28)                           

where Xelite represents the optimal position of the dandelion 

seed in the 𝑖th iteration. Levy (𝜆) represents the function of 

Levy flight and is calculated using Eq. (29) [13]. 

1
( )levy s

t 
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


                                                                        (29) 

In Eq. (29), 𝛽 is a random number between [0, 2] (𝛽 = 1.5 in 

this paper). 𝑠 is a fixed constant of 0.01. 𝑤 and 𝑡 are random 

numbers between [0, 1]. The mathematical expression of 𝜎 is: 
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where 𝛽 is fixed at 1.5. 𝛿 is a linearly increasing function 

between [0, 2] and is calculated by Eq. (31). 

2t

T
                                                                                         (31) 

 

4. IMPLEMENTATION OF DO FOR OPTIMAL 

ALLOCATION OF DG 

 

The flowchart of the optimal allocation and sizing of DG for 

power loss reduction, voltage deviation minimization and 

voltage stability improvement, using the DO algorithm, can be 

summarized in the following steps.  

 

Step 1: Read the bus and branch data of the considered 

network. 

Step 2: Read DG data (DG power limits). 

Step 3: Set the parameters of the DO algorithm and the limits 

of decision variables (locations and sizing of DG). 

Step 4: Generate the initial population for the decision 

variables (DG locations and sizes). 

Step 5: Run backwards and forward to sweep power flow, 

incorporating DG. 

Step 6: Compute the active power loss (Ploss), voltage 

deviation (VD), and voltage stability index (VSI). 

Step 7: Compute the objective functions represented by Eq. 

(1) and Eq. (3).  

Step 8: Update the fitness of the objective function. 

Step 9: Repeat steps 5–8 until the maximum number of 

iterations is reached. 

Step 10: Print the optimal solution (optimal location and 

sizing of DG). 

 

5. RESULTS AND DISCUSSIONS 

 

The proposed algorithm is tested on IEEE 33-bus and Algerian 

112-bus radial distribution networks taking into account the 

following cases.  

 Case 1: in this case, a single objective function of 

minimizing active power loss (Ploss) is considered.  

 Case 2: in this case, a multi-objectives function is 

considered. This function includes the minimization 

of active power loss (Ploss), the minimization of 

voltage deviation (VD) and the enhancement of 

voltage stability (VSI). 

The setting parameters of DO have been taken as follows: 

Population size=50, the maximum number of iterations=200. 

While the generated power from the DG units is in the range [0 

3] MW. 
 

5.1 Test system 1: IEEE 33-bus system 

 

The IEEE 33-bus test system consists of 33 buses, and 32 

branches along with a total load of 3.72 MW and 2.30 MVAr. 

The substation voltage is 12.66 kV. The single-line diagram of 

the IEEE 33-bus system is shown in Figure 4 and the overall 

data of this system is available in [14]. 

 
Figure 4: Single-line diagram of the IEEE 33-bus system 

A. Case 1: Active power loss minimization 

The performance of the DO algorithm is tested, firstly, for 

active power loss minimization.  

Figure 5 shows the convergence track of the DO algorithm. 

The convergence of the DO algorithm occurs on the first 

iterations, showing the algorithm's ability to explore the 

search space quickly. 

Figure 6 shows how the voltage profile was improved in the 

IEEE 33-bus system after DG units integration at buses 14, 24 

and 30. Table 1 shows the best solutions obtained by DO, 

algorithm and the comparison with other optimization 

techniques in the literature. From these tables, it can be seen 

that the proposed algorithm has greatly reduced the real power 

loss and improved the voltage deviation and voltage stability 

of the distribution network. Moreover, this algorithm has 

shown high performance compared to competitive 

optimization algorithms in the literature. 

 
Figure 5: DO convergence characteristic for 33-bus system (Case 1) 

 
Figure 6: Voltage profile of 33-bus system (Case 1) 
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Table 1: Results for installing DGs in the 33-bus system (Case 1) 

Algorithm PL 

without 

DG (kW) 

With DGs  

Bus 

no. 

DG size 

(kW) 

PL (kW) PL 

reduction 

(%)  

DO 

 

 

QOGWO 

[15] 

201.8925 

 

 

210.98 
 

14 

24 

30 

14 

24 

30 

759.08 

1071.1 

1099.9 

801.81 

1091.29 

1053.01 

69.3833 

 

 

72.784 

65.6335 

 

 

65.5019 

QOCSOS 

[16] 

 

 

OTCDE [17] 

 

 

CMSFS [18] 

210.99 

 

 

210.98 

 

 

210.98 

13 

24 

30 

13 

24 

30 

13 

24 

30 

801.7 

1091.3 

1053.7 

801.8 

1091.31 

1053.6 

802  

1091  

1054 

72.7869 

 

 

72.785 

 

 

72.785 

65.5000 

 

 

65.5000 

 

 

65.50 

MRFO [19] 

 

 

CBGA-VSA 

[20] 

210.98 

 

 

210.98 

13 

24 

30 

13 

24 

30 

788.27 

1017.1 

1035.3 

801.8 

1091.3  

1053.6 

72.876 

 

 

72.785 

65.4583 

 

 

65.50 

HHO [21] 210.98 14 

24 

30 

745.69 

1022.69 

1135.78 

72.98 65.40 

IHHO [21] 210.98 14 

24 

30 

757.54 

1080.83 

1066.69 

72.79 65.50 

DA [22] 201.89 14 

24 

30 

760 

1070 

1100 

69.3833 65.6335 

CSCA [23] 202.68 13 

24 

30 

871.00 

1091.47 

954.08 

71.94 64.5056 

CTLBO [24] 210.99 13 

24 

30 

801.7 

1091.3 

1053.6 

72.79 65.5007 

SFSA [12] 210.988 13 

24 

30 

802.0 

1092.0 

1053.7 

72.785 65.50 

 

B. Case 2: Multi-objective function 

In this sub-section, the proposed DO algorithm was employed 

to site three DG units in the IEEE 33-bus system, aiming to 

minimize the active power loss and voltage deviation and to 

improve voltage stability.  

The convergence characteristic of the DO algorithm for the 

best solution found is given in Figure 7. 

The voltage profiles of the IEEE 33-bus test system with and 

without DG are given in Figure 8. In comparison to the base 

case, the voltage profile with DG units has significantly 

improved. 

As can be seen from Table 2, the active power losses and the 

voltage deviation were severely reduced by proper DG 

allocation. It can be seen also that the voltage stability was 

improved. The results shown in this case reveal that the DO 

algorithm is effective in site DG units in distribution networks, 

finding better solutions and presenting lower losses, lower 

voltage deviation as well as higher voltage stability index 

when compared to the other metaheuristics. 

 
Figure 7: DO convergence characteristic for 33-bus system (Case 2) 

 
Figure 8: Voltage profile of 33-bus system (Case 2) 

 

5.2 Test system 1: Algerian 112-bus system 

 

The Algerian 112-bus radial distribution system, shown in 

Figure 9, has a total active load of 3.36 MW and, a total 

reactive load of 3.72 MVAr. The rest of the system data is 

available in [25]. 

A. Case 1: Active power loss minimization 

In this sub-section, the effectiveness of the proposed DO for 

solving optimal allocation of DG problem considering active 

power loss minimization is demonstrated. 

The convergence characteristic for the best fitness obtained 

after applying DO is shown in Figure 10. 

Table 2: Results for installing DGs in the 33-bus system (Case 2) 

Algorithm Without DG With DG  

PL (kW) VD (p.u.) VSI  Bus no. Size(kW) PL (kW) PL reduction (%) VD (p.u.) VSI  

DO 201.89 0.1164 0.69 14 

24 

30 

879.4796 

1096.7 

1281.0 

71.7686 64.4521 0.0047 0.93 

QOCSOS [16] 210.99 0.1338 0.67 13 

24 

30 

956.4 

1030.9 

1293.5 

77.0414 63.4857 0.0065 0.91 

SCA [23] 202.68 0.1337 0.67 13 1247.61 89.92 55.6344 0.0023 0.95 
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25 

32 

1061.68 

1023.50 

CSCA [23] 202.68 0.1373 0.67 13 

24 

30 

1098.02 

986.57 

1584.90 

88.43 56.3796 0.0016 0.96 

SFSA [12] 210.98 0.1338 0.67 13 

24 

30 

964.7 

1133.7 

1301.8 

77.41 63.31 0.0062 0.92 

CTLBO [24] 210.99 - 0.67 13 

25 

30 

1192.6 

870.6 

1629.6 

96.17 54.41 0.0009 0.96 

 

An enhanced voltage profile is obtained with DG integration 

in the Algerian network, as shown in Figure 11. 

The final results of real power losses and the optimal 

allocation of DGs obtained by the DO algorithm are shown in 

Table 3. The best objective function value of 43.6717 kW is 

obtained via the integration of DGs at buses 15, 24, and 94 

with sizes in kW, 1533.9, 1129.4 and 488.7845. 
 

 
Figure 9: Single-line diagram of the Algerian 112-bus system 

 
Figure 10: DO convergence characteristic for 112-bus system (Case 

1) 

 
Figure 11: Voltage profile of 112-bus system (Case 1) 

 

Table 3: The best solution obtained by the DO algorithm 

for the 112-bus system (Case 1) 
PL without 

DG (kW) 

With DGs  

Bus no. DG size (kW) PL (kW) PL reduction (%)  

77.9423 15 

24 

94 

1533.9 

1129.4 

488.7845 

43.6717 43.9708 

 

B. Case 2: Multi-objective function 

In this case, the DO algorithm is applied to optimize the 

multi-objective function of active power loss, voltage 

deviation plus voltage stability index via optimally 

simultaneous allocation of three DGs in the system. 

Figure 12 shows the convergence curve for the objective 

function over the iterations of the DO algorithm.  

The voltage profiles of the test system in the base case and 

with DGs are given in Figure 13. It is clear that the voltage 

profile of the Algerian network is improved when DGs are 

installed. 

The power loss reduction, the percentage power loss 

reduction, the voltage deviation and the minimum voltage 

stability index are presented in Table 4.  

As shown in this table, the best locations for DGs units 

installation are buses 15, 75 and 94, and the best sizes in kW 

are 1829.9, 1420.0 and 624.5237, respectively.  
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Figure 12: DO convergence characteristic for 112-bus system (Case 

2) 

 
Figure 13: Voltage profile of 112-bus system (Case 2) 

Table 3: The best solution obtained by the DO algorithm for the 112-bus system (Case 2) 

Without DG With DG  

PL (kW) VD (p.u.) VSI  Bus no. Size 

(kW) 

PL  (kW) PL reduction (%) VD (p.u.) VSI  

77.9423 0.1164 0.69 15 

75 

94 

1829.9 

1420.0 

624.5237 

45.4798 41.6511 0.0065 0.96 

6. CONCLUSION 

In this paper, optimal allocation and sizing of DGs are 

determined in a radial distribution network through Dandelion 

Optimizer (DO) to achieve the benefits of power loss 

reduction along with improvement of bus voltage profile and 

voltage stability. The DO algorithm is tested with the optimal 

location and sizing of three DGs in IEEE 33-bus and Algerian 

112-bus systems. A comparative study has been carried out to 

evaluate the performance of the DO algorithm among other 

algorithms in the literature. The obtained results reveal that 

the DO algorithm outperforms other existing methods such as 

SCA, HHO, DA, QOGWO, CTLBO and SFSA.  
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