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ABSTRACT 
Monocular depth estimation has been a challenging topic in the 
field on computer vision. There have been multiple approaches 
based on stereo and geometrical concepts to try and estimate 
depth of objects in a two-dimensional field such as that of a 
plain photograph. While stereo and lidar based approaches have 
their own merits, there is one issue that seems recurrent in 
them, the vanishing point problem. An improvised approach to 
solve this issue involves using deep neural networks to train a 
model to estimate depth. Even this solution has multiple 
approaches to it. The general supervised approach, an 
unsupervised approach (using autoencoders) and a semi-
supervised approach (using the concept of transfer learning). 
This paper presents a comparative account of the three different 
learning models and their performance evaluation. 
 
Key words: Depth estimation, Autoencoders, Transfer 
learning, Supervised learning, Unsupervised learning, Semi-
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1. INTRODUCTION 

 
We as humans, have the brain to construct and perceive 3D 

space around us. The parietal lobe of the brain specifically, is 
responsible for perceiving space around us, and we understand 
the distance and the coordinates of an object that we see, 
through the visual cortex. Monocular Depth Estimation is like 
providing a machine with a visual cortex and a parietal lobe. It 
is what combines computer vision with deep learning to 
reconstruct 3D space from one single 2D glance. In theory, this 
is much more difficult than what the human brain does. The 
brain combines images taken from the left eye and the right 
eye, combines them to locate the actual position of a point in 
space. Monocular Depth Estimation however involves teaching 
the computer to estimate the depth of objects in a single 2D 
image taken from a single lens. 

 
Introduction of cognitive and logical reasoning into a 

conventional machine can potentially solve many problems by 
example mapping, like essential attributes recognition, pattern 
recognition, clustering, classification and predictions. Deep 
neural networks provide such models. These are essentially 
mathematically derived equations and functions, but are 

associated with a memory and correction element to emulate 
the humane way of understanding the knowledge being fed to 
us. Neural networks depend on three important factors –(1) 
property and features of the interconnection between the neural 
layers, (2) on the application basis (classification models, 
prediction models, generative models, and optimization 
models), or (3) on the basis of the learning approach followed 
(supervised, unsupervised or semi-supervised).  

Every single neural network model is unique in nature, and 
each of them, have their own merits. The vast theoretical and 
practical essence of deep neural networks have diverse and 
unending applications to them. Among these, we will be 
focusing on the regression and estimation tasks. Neural 
networks can be used for estimation tasks obviously and 
conveniently. 

 
2. STUDIED ARCHITECTURES 

 
2.1 High Quality Monocular Depth Estimation via Transfer 
Learning by IbraheemAlhashim and Peter Wonka [1] 

Reconstructing a 3D Scene from an image can be done 
using multiple methods. We can use a stereo pair to estimate 
the coordinate system. We can also use Hardware Technologies 
for e.g. LiDAR to measure real-time depth information. One of 
the more recent approaches to the above problem is to use the 
power of Convolutional Neural Networks. We’ve been able to 
produce reasonable depth maps using nothing but an RGB 
image and a CNN Model. The Paper employs a quite 
straightforward architecture that uses encoder-decoder layers 
with skip connections.  

 
Encoder-Decoder networks are typically employed in image 

restoration, optical flow estimation and image segmentation 
tasks. The Idea of Transfer Learning helps the authors make 
use of these encoders in a different domain than they were 
originally used in. The Authors mention that the encoders do 
not end up aggressively reducing the resolution of the input 
which enables more precise depth maps. Recent methods use 
Encoder-Decoder networks as a small part of a much larger 
network. The Authors in this paper are proposing a technique 
that can generate depth maps that are comparable to those 
obtained by state-of-the-art architectures using just a simple 
encoder-decoder architecture. 
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i) Architecture 

 
Figure  1: Architecture showing the encoders and the decoders [1] 

This Paper makes use of Transfer Learning to apply the 
DenseNet-169 Model [2]  to create a feature vector which can 
be used later for generating the depth map.  DenseNet-169 
Model was originally trained on ImageNet [3]. The Authors 
removed the top layers from the model which were related to 
ImageNet Classification. This Resultant Vector is then supplied 
to a consecutive series of up-sampling layers [4] which form 
the decoder. Each Up-sampling block except the last one is 
followed by a Rectified Linear Unit Activation Function.  The 
Decoders are used to construct the depth map at half the input 
resolution. 
ii) Loss Function 

The Authors also propose a new loss function. The Loss 
Function calculates the difference between the ground-truth 
depth map and the prediction of the network [5]. The Loss 
Function can have a remarkable impact on the training speed 
and the overall performance of the network. The Authors 
propose a loss function which while minimizing the depth 
differences also penalizesmisrepresentations of high frequency 
details in the image section of the depth map. The Final Loss 
Function is a weighted sum of three loss functions. 

,ݕ)ܮ (ොݕ = (ොݕ,ݕ)ௗ௧ܮߣ	 + ,ݕ)ௗܮ (ොݕ + 	  .(ොݕ,ݕ)ௌௌூெܮ
The First loss term is the standard point-wise loss. The 

Second loss term calculates the difference between x and y 
gradients between the depth maps. The Last term uses the 
Structural Similarity term [6] which is usually used for image 
reconstruction tasks. These loss terms increase when the depth 
values increase. To solve this, the authors consider the 
reciprocal of the original depth map and multiply it by 
m(maximum depth in the scene) to generate the target depth 
map which will be later used as a ground-truth depth map.  
iii) Data Augmentation 

For data augmentation, the authors consider horizontal 
flipping to make the algorithm learn features like floors and 
ceilings. They also consider photo-metric transformations for 
e.g. interchanging the red and green image matrices in the input 
which increases performance while still being efficient. 
iv) Result 

The Algorithm proves to be quite reliable. Even after using 
a simple architecture, the authors manage to get a Root Mean 
Square Error of 0.390. The Color Scheme used to train the 
model is inverse of that of other algorithms mentioned in this 
paper. However, it is still easy to compare its output to other 
algorithm’s output by approximating the gradient of color 
changes in the various parts of the image. 
2.2 Visualization of Convolutional Neural Networks for 
Monocular Depth Estimation [7] 

As talked about earlier, the human brain uses many cues to 
create a sub-conscious depth map around us – bilinear 
perspective, relative and absolute size estimation (based on 

previous memories), interposition, gradient, roughness, texture, 
light and shades etc, to name a few. A question arises at this 
point; how exactly does a neural network utilize them? 
Understanding this is of paramount importance to us as the 
model we design needs to work in every case irrespective of 
where an image has been clicked or under what conditions. 

 
This paper we referred to, attempts to understand how a 

convolutional neural network can successfully identify 
minimum number of relevant pixels from an input frame to 
estimate depth. The authors have approached it as an 
optimization problem whereby the challenge was to use 
minimize computation energy while simultaneously and 
accurately creating depth maps for the input images. We will be 
exploring some important concepts used in this paper, the 
validation of their approach and testing the efficiency of their 
model. 
i) Sparse Matrix 

Consider a matrix which represents an image of an object in 
a dark background ( 0 indicates a black pixel while any other 
value >=0 will represent a feature ) 

 
Figure 2: Sample Image Matrix of an Object [7] 

Clearly, there are multiple black/dead pixels in this [4 X 6] 
image matrix. These remote black pixels will not contribute in 
the feature extraction process.  

Sending this image into the convolutional neural network 
would mean wastage of resources, as the image is denoted as 
NumPy array of the size of the dimension of the image. Passing 
a 640 x 480 image would take the neural network a humongous 
amount of time trying to detect the pixels which actually 
matter.  

The authors have therefore decided to take the approach of 
sparse and dense matrix in this model. The authors thought of 
creating an array of triplets. Each triplet containing a 
pointer[row, column] to the non-zero value and the value itself. 

 

Table 1: Sample Sparse Matrix [7] 

 
 

ROW COL VALUE 

4 6 5 
0 2 2 

1 0 6 
2 1 8 
3 3 7 

3 5 4 



Saksham Khatod et al.,  International Journal of Advanced Trends in Computer Science and  Engineering, 10(1),  January – February  2021, 7  – 13 
 

9  

As you can see the table 1 above,  
1. The first row denotes – the number of rows, the number of 

columns in the input array and the number of non-zero values 
2. The remaining rows contain the position and the value of the 

non-zero values 
This newly-generated matrix, will be passed to the model as the 
input image and is called the sparse matrix. The matrix which 
was input earlier is called the dense matrix. 
Let us consider another example – let us take two dense 
matrices  : 

V1 = [ 4 , 3, 1, 6 ] 
V2 = [ 2 , 0, 4, 0 ] 
 
SPARSE-VECTOR form  - ( 4, [0,2] , [2,4] ) 
The optimization may look pretty miniscule but when 

taking a 640 X 480 image, these tiny improvements coalesce. 
Sparse matrix tackles the issue of storage, computing time and 
disconnections in pixels. The sparse matrix relates every non-
zero pixel and thus, makes it easier for the CNN to extract a 
pattern.  The authors have used different sparseness parameters 
to test the model.  

 
ii) Mask Prediction Network 

The model has two parts – A mask prediction network, and 
a trained depth estimation net which bottlenecks the feature 
detection pre-trained network with the mask prediction i.e. the 
array of pixels generated by the mask prediction network and 
multiplicated element-by-element with the feature detection 
matrix generated by the pre-trained model. 

 
Figure 3: Diagram of the proposed approach in the paper [7] 

 
The model is self-explanatory and straightforward. The 

entire elaborate architecture has been studied using 
PyTorchsummary library to summarize the entire model. The 
highlight of this approach is the mask prediction network. 

 
The mask prediction network (G)  - this network represents 

the unsupervised approach in the architecture. The authors have 
used an encoder-decoder structure for the same. The encoder is 
a simple dilated residual network(DRN)  which preserves the 
attributes and local structure of the image due to less down-
sampling. This DRN consist of 22 layers pre-trained on 
ImageNet for feature extraction. It will output a feature map 
with 512 channels and about 0.125 times the resolution of the 
input image. The decoder consists of three up-projection blocks 
which outputs a map with 64 channels and the same 
dimensions as that of input image, which is followed by a [3 X 
3] convolutional layer finally giving us the mask. The encoder-
decoder makes the network G, which consists of a total of 23.5 
million parameters.  

The mask generated in sent into a bottleneck network which 
applies this mask on the original image. The disparity is 
calculated and the loss is sent back to the network G to allow 
the network to backpropagate the information and adjust its 
weight. The process continues till the perfect(or at least, the 
models considers it to be) mask is generated. This mask is now 
sent into a trained depth estimation net, a simple network 
trained on a supervised set. The idea was simple. Estimating 
depth from scratch is difficult, but if a pre-calculated mask 
which has already detected important features of the image and 
their depth, if passed into the network; the work of the network 
is much more simplified. 

 
2.3 Unsupervised Monocular Depth Estimation with Left-
Right Consistency [8] 

The proposed approach works on monocular images, 
without ground truth depth data. Given an arbitrary point X, the 
left projection is XL the projection of it on right view is XR. 
The magnitude of the vector between XL and XR gives us 
disparity. This is done for every point and a Disparity Image is 
created. The approach attempts to project corresponding points, 
given a single part of stereo image i.e. the left image or the 
right image. The network is trained to account for the losses 
during image reconstruction, as only reconstruction alone can 
cause a low-quality depth map. There should be consistency in 
the disparity produced by right and left image. The authors 
ensure that their algorithm does the same, providing a better 
performance when compared to supervised approach which has 
been trained with ground truth data. 

 
i) Image Reconstruction 

The proposed method is image reconstruction. They want 
to learn a function which can recreate the other part of image 
when one part of the image is given. In the training phase, the 
network has access to both of the color images, i.e. left and 
right. They try to find a function called Dense Correspondence 
Field, which, when applied to left image, gives them right 
image and vice versa. The depth estimation is done by using 
the left and right image, along with their disparities and 
epipolar geometry constraints. They simultaneously infer both 
disparities using only left input image. They use backward 
mapping using a bilinear sampler to predict the image. The 
following equation helps in obtaining that. 

Ĩr =I l (d r ).  
Here, Ĩ r= right  reconstructed color image 
         I l= left color image 
        d r = Dense Correspondence Field 
When the distance between cameras is b, the depth can be 

predicted using the disparity that is obtained above with the 
equation:- 

݀	=bf/d 
 

ii) Loss 
The overall loss is a sum of all the losses combined. All the 

losses have a left and right image variant, since during training 
both left and right color images are used. 
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Cs=αap(C l

ap+C r
ap)+αds(C l ds+Cr

ds)+αlr(C llr+Cr
lr) 

Cap is the loss for appearance matching. 
Cds is the loss for disparity smoothness 
Clr is the left-right disparity consistency loss. 
 
Appearance Matching Loss: The projection of right image 

that is obtained from applying the Dense Correspondence Field 
to the left image might not be 100% accurate, for this they need 
to take into account the loss. The application of this 
Appearance Matching Loss gives a more accurate result. It 
compares the Input left image with the obtained output image, 
which is the right image. Due to the usage of the bilinear 
sampler, they do not require any simplification or 
approximation of this cost function. 

C l ap= ଵ
ே
∑ ,ߙ

ଵିௌௌூெቀூೕ
 ,Ĩೕ

 ቁ

ଶ
 +(1−α)ቚหܫ 	− Ĩ หቚ 

Here an L1 penalty and Simplified Single Scale SSIM are 
used and α=0.85. 

 
Disparity Smoothness Loss: Since a gradient is produced 

by a depth map with several shades of a color, there can be 
inaccuracy at the edges where 2 colors meet. This 
producesdepth an inaccurate result. To compensate for this, the 
authors introduce a Disparity Smoothness Loss, which takes 
into account the said smoothness disparities. This 
weightedfunction, when applied to image, gives a more 
accurate depth map. 

C l ds=
ଵ
ே
∑ ห߲݀ݔ	 ห, ݁ିฬቚడ௫ூೕ

	 ቚฬ + 	 ห߲݀ݕ	 ห݁
ିฬቚడ௬ூೕ

	 ቚฬ 

Even here, an L1 penalty is applied on disparity gradients 
∂d. 

Left-Right Disparity Consistency Loss: As the authors only 
have a single image i.e. the left image as input, and theycreate 
both the left and right disparities with only one image, they 
need to be sure that the maps are accurate. They add a penalty 
for this which tries to make the left disparity equal to the 
projection formed by the right disparity. When the left 
disparity, and the projection are same, an accurate result is 
obtained. They call this the "Left-Right Disparity Consistency 
Loss". 

ܥ = 	
1
ܰ
ฬ݀	 − ݀ାௗೕ	

	 ฬ
,

 

iii) Result 
The resulting image has an RMS error of 0.209 which is 

less than many supervised models currently in use. But since 
this is an unsupervised approach, the complexity and 
implementation of the code is high. The current model works 
on individual frames, but they propose a future work which can 
expand this to video usage as well. 

 
3. COMPARING PERFORMANCE OF DIFFERENT 

ARCHITECTURES ON SAMPLE IMAGES 
Firstly, we need a dark image to challenge the feature 

extraction capabilities of the architecture. We found this image 
online. It comprises of bright spots  in an otherwise dark sky 

 
Figure 4: Image downloaded from 

https://images.unsplash.com/34/WyVMN1W6Tves4NUkaXwh_14.JPG?ixlib=r
b-1.2.1&ixid=eyJhcHBfaWQiOjEyMDd9 

Secondly, we need an image where the background is dusty 
making the subject difficult to see. This image is perfect for 
this scenario. 

 
Figure 5: Image downloaded from 

https://i1.pickpik.com/photos/261/590/374/596cb9d56c5cc-preview.jpg 

Thirdly, we need an image where everything is clearly 
visible and there’s no direct light source making feature 
extraction difficult. This is the easiest image we’ll feed into the 
architectures. 

 
Figure 6:. Image downloaded from 

https://live.staticflickr.com/7841/46265194244_5eb4f6ed27_b.jpg 

Fourthly, we need an image where we do have a direct light 
source which illuminates the surrounding and also makes the 
subject clearly visible. The Light source should be coupled 
with a dark background to make the rest of the image 
challenging for the architectures. 
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Figure 7: Image downloaded from 

https://cdn.governmentnews.com.au/wp-
content/uploads/2019/03/31100208/iStock-895143304.jpg 

 

Fifthly, we need an image where the majority of the image is 
bright white. White Images are some of the more difficult ones to 
predict because they make feature extraction more arduous. 

 
 

 
Figure 8: Image downloaded from  

https://the-hollywood-gossip-res.cloudinary.com/iu/s--Kkkq86rV--
/t_full/cs_srgb,f_auto,fl_strip_profile.lossy,q_auto:420/v1391691259/sleepwalker

-statue.jpg 

 
Sixthly, we need an image where a bright light source comes 

straight into the sensor of the camera and makes the nearby area 
difficult to discern. 

 

 
Figure\.9:. Image downloaded from 

https://i.pinimg.com/originals/3c/d6/af/3cd6afd3841e6128ea8bc03e3daa956d.jpg 

 

 



Saksham Khatod et al.,  International Journal of Advanced Trends in Computer Science and  Engineering, 10(1),  January – February  2021, 7  – 13 
 

12  

 
Table 2: Comparing Depth Maps of Several Architectures 

Images Semi-Supervised 1 Semi-Supervised 2 Unsupervised 

  



Saksham Khatod et al.,  International Journal of Advanced Trends in Computer Science and  Engineering, 10(1),  January – February  2021, 7  – 13 
 

13  

4. CONCLUSION 
After our extensive study of the three algorithms, we’ve ended 

up concluding that we do not require complex methods to generate 
an relatively accurate depth map. Even models with the simplest of 
the architectures can output depth maps that can match those 
produced by state-of-the-art algorithms. All 3 Methods take >30 
hours to train on a high-end GPU. For our tests, we’ve used pre-
trained models provided by the authors. Surprisingly, the 
Unsupervised Approach performed best in our tests. The Semi-
supervised approaches also performed relatively well on the test 
dataset. We think a semi-supervised approach provides a great 
balance of complexity and ease-of-use.  
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