
 Aditya Falodiya. et al.,International Journal of Advanced Trends in Computer Science and Engineering, 3(1), January - February 2014, 01 - 08

1

A Decision Engineering Framework for Scrum Autonomy

Aditya Falodiya1, Ajay Jain2
1Sr. Engineering Manager, Adobe Systems, USA,aditya@adobe.com

2Quality Engineering Manager, Adobe Systems, India, ajjain@adobe.com

ABSTRACT
In an agile based software product development process, teams
should act in autonomous way to be more effective. This can be
achieved by providing more empowerment to scrum teams in day
to day decision making. It is also observed that scrum teams
generally focus highly on feature delivery. Although bugs or
defects in system are addressed during the feature development
process but due to feature development getting priority, bugs are
often ignored and accumulated to be taken up only after feature
development. This paper proposes a process model and design of
a system to assist agile teams to be more autonomous with their
decision making on resources and efforts while ensuring a high
quality sprint.

Keywords
Agile, Scrum, Decision Engineering.

1. INTRODUCTION
One of the critical aspects for a high performance agile team is
empowerment of scrum [1] teams so that they can function as
autonomous teams. Such teams are known as self-organizing
teams [2]. It is also observed that teams are more effective if they
are self-managing and takes decision themselves rather than
relying on management team especially for day to day
operations.

It is observed that in an agile software product development,
scrum teams generally focus highly on feature delivery. This is
also true for most of the product development teams working on
their first release as they need to churn out features at a rapid
pace.

Although bugs or defects in system are addressed during the
feature development process but due to feature development
getting priority, bugs are often accumulated in a sprint. It is only
during last leg of sprint, they are handled with more focus and
subsequently due to various constraints either features are
delivered partially or deferred due to bugs in system.

Various project and scrum metrics like feature velocity, earned
value, burn down etc. are also related to the feature or tasks in
hand. There are some established metrics that helps in gauging
the extent of defects in the system but they do not help scrum
master effectively in taking decisions to guide team to focus on
feature development or bug fixing at any point during the
development process.

Generally, all day to day scrum operations and decisions are
taken by engineering management based on heuristics, domain
knowledge and criticality of issues. In some cases, teams take
decisions themselves depending upon the maturity of the team
but all these decisions are made in an unstructured manner.

In order to fill this void, this paper proposes a process model and
a design of system to assist scrum teams take control of day to
day operations. This model and system will be providing
recommendations on whether to put engineering effort on
features or bugs. This will be done based on parameters like bugs
snapshot and various data points related to scrum and team.

2. BACKGROUND ON SCRUM PROCESS
Consider a product scrum team, which is divided in two sub-
teams based on their functional areas. One is for taking care of
feature development and other is taking care of quality
engineering or testing. This scrum team is following an agile
process for development where they have scrum of one calendar
month where 3 weeks are dedicated entirely to feature
development and last one week towards demos, bug fixing and
sprint certifications.

Timely builds (nightly and weekly) are submitted to quality
engineering team in order to deliver developed features for
testing. Testing team files bugs on the features tested with these
regular builds. Sprint Submit Build is submitted to quality
engineering team at the end of the third week. This build serves
as the final feature complete build for that sprint.

As with most of the quality processes, defects in the system
under development are measured by a bug process where
everydefect in the system is recorded as bug with a severity and
priority in a Bug Tracking Tool.

There are two elements to every bug which are,
Priority,giving business perspective and indicates to prioritize
the need of a fix over other bugs of lower priority. It varies from
P4 to P0 where P4 is highest and P0 is lowest.

Severity, assigned as the extent of technical shortcoming/defect
in the feature or system under development. It generally varies
from S1 to S4, where S1 indicates a cosmetic defect, S2 indicates
minor issue like a malfunctioning feature, S3 is a Major issue and
like unexpected fatal error and S4 is a show stopper issue
indicating that software will not run.

Generally, Project Manager or Scrum Master actively tracks the
impediments and/or dependencies which might block release of
various features in sprint daily via scrum meetings. Project
Manager/Scrum Master also actively tracks the bug count to
measure the quality of the features delivered. The usual glide
path based on the bug count is also a measure used to predict the
bug count by a date and is a trend curve.

Sometimes scrum team takes bug count as a measure for defects
in the system. But bug count of 20 cosmetic bugs is qualitatively

 ISSN 2278-3091
Volume 3, No.1, January – February 2014

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://warse.org/pdfs/2014/ijatcse01312014.pdf

 Aditya Falodiya. et al.,International Journal of Advanced Trends in Computer Science and Engineering, 3(1), January - February 2014, 01 - 08

2

different than a bug count of 20 high priority and high severity
bugs. It is just a quantitative measure to track the deliverable’s
quality status. Other metrics also do not help in estimating and
recommending what the impact of bugs is, on sprint delivery and
the engineering effort required thereof.

It would be highly desirable for team to have a decision
support system which allows them to takeeffective decisions
in channelizing their effort on feature or bugs based on day’s bug
snapshot during scrum meeting. This will make them more self-
aligning and self- organizing. And this will also ensure more
predictability in final sprint outcome with more predictable
shippable features.

3. PROPOSED DECISION ENGINEERING MODEL
Let’s first analyze essential elements of bug, which can be
represented as a 2-tuple,

Bug B = {Pj, Sk}
Where,

 P is priority of the bug
 j can be an integer value in range of 1 to 5
 S is severity of the bug
 k can be an integer value in range of 1 to 4.

Further, Priority P can be one of the following
P = [P1 | P2 | P3 | P4 | P5]
Where,

P1 = Low priority
P2 = Medium Priority
P3 = High Priority
P4 = Very high priority
P5 = Product ship blocker

Similarly, Severity S can be one of the following
S = [S1 | S2 | S3 | S4]
Where,

S1 = Cosmetic defect in the feature
S2 = Minor failure in the system due to a malfunction in
a feature
S3 = Major failure in the system
S4 = Fatal error in the system or a showstopper defect

A bug matrix is a snapshot of all the bugs for the system under
development. This can be represented by creating a 2x2 matrix
where various priorities and severities are on the axes and values
represent the number of bug on a given priority and severity.

Table 1 shows Bug Matrix (as a snapshot on specific day of
sprint) =

Table 1: Priority and Severity spread matrix

Here N(Pj, Sk) is number of bugs of priority j and severity k.

3.1 Concept
The basic premise of this decision engineering model is based on
the fact that engineering effort for building a high quality of
software is directly proportional to the number of bugs.

Moreover, priority of a bug, which is driven by business reasons,
implies a response time to fix the bug, so a higher priority bug
needs faster response time.

Severity which is the extent of defect in the system under
development, also indirectly implies engineering effort required
to fix the bug, so a higher severity bug generally requires more
engineering effort.

 P is inversely proportional to Response Time
required.

 S is directly proportional to Engineering Effort
required.

So a scrum team can define their own set of goals for response
time and as well as for engineering effort withrespect to priority
and severity parameters. For example, scrum team can set a goal
of responding to all P5 bugs within 8 hours, all P4 bugs within 24
hours etc. Similarly they can estimate typical time required to fix
issues of various severities.

Priority vector = [Rp5, Rp4, Rp3, Rp2, Rp1]
Where R is indicating Response time

Severity vector = [Es4, Es3, Es2, Es1],
Where E is indicating engineering Effort

A scrum team’s engineering capacity (EC), which is available
engineering effort in a sprint, is dependent on number of factors
like,

 Number of available resources in a sprint
 Available hours per day
 Days left in the sprint

EC = (days left in sprint) x (number of resources) x (available
hours per day)

3.2Predictive Analyzer
Now in order to automate the decision making process, a
predictive analyzer is needed. This analyzer takes inputs,
processes it and provides various data points and
recommendations for Scrum team to make informed decisions.

Predictive analyzer will take following inputs,
Static data points

 Priority Vector
 Severity Vector
 Engineering Capacity

Dynamic data point
 Bug Matrix

It will process this data, invoke the recommendation engine and
come up with following data points and suggestions,

Data points
 Predictive analysis for next few days
 Resource utilization spread for sprint

 Aditya Falodiya. et al.,International Journal of Advanced Trends in Computer Science and Engineering, 3(1), January - February 2014, 01 - 08

3

Suggestions
 Recommendations on putting focus on feature vs.

bugs
 Recommendation on bugs to be deferred

As it can be observed, bug matrix is dynamic data point that will
change daily. Engineering capacity will continue to go down as
the sprint progresses. Although this can be increased by
providing support to scrum team by infusing additional
resources, but for simplicity, let’s keep it as constant for entire
sprint. Similarly priority and severity vectors too are constant for
a sprint and should be finalized before starting the sprint.

Based on all these data points, predictive analyzer assesses
resource requirement based on severity vector which helps in
estimating the engineering effort required. Then it utilizes
priority vector to estimate how many number of resources will be
required in providing a response within the stipulated amount of
time.

This data will be hashed out with respect to number of days
available in the sprint to come up with detailed resource
utilization spread. This resource utilization spread will give a
view of number of resources required per day to address bugs.
Here is the process flow,

Figure 1: Process flowchart

Now let’s take an example to understand this,

Let’s assume that Scrum team S is following monthly sprint,
which means they have 20 days for product development. S is
composed of 5 developers working 8 hours a day. They defined
their vectors as follows,

 Priority Vector = {8, 24, 40, 80, 120} in hours
 Severity Vector = {16, 8, 4, 2} in hours

Assume there are two bugs in the system on Day-1. One is B1
(P5, S4) and other is B2 (P4, S3).

So for B1, effort required is 16 hours but it needs be done in 8
hours, so 2 developers will be required. Similarly for B2, effort
required is 8 hours and it needs be delivered in three working
days, hence one developer can deliver it in next three days.

So resource utilization spread for sprint will look like this,

 Day-1, 2.3 developers are required to work on bug
fixing and rest of them should work on feature
development

 Day-2, 0.3 developers for bug fixing and rest on
features

 Day-3, 0.3 developers for bug fixing and rest on
features

It also needs to be ensured that there are sufficient development
days left in the sprint while creating the spread. In case, there is
insufficient number of days to comply with response time goals,
the more resources will be required.

Let’s consider a use case where only two days are left in the
sprint but Scrum identified a priority 4 bug. Although according
to priority vector, team can take up to3 days to provide fixes for
bug, but in order to deliver feature in sprint, Scrum team will be
required to deliver it in 2 days and hence the resources need to be
put accordingly.

3.3 Threshold Limits
Based on this resource utilization spread, decision engineering
model can suggest recommendations which can assist scrum
team to take informed and quick decision to divert engineering
effort accordingly on features and bugs. These recommendations
are based on certain threshold limits which are defined by Scrum
team.

Lower Threshold Limit (LTL) - This is based on the fact that
typical development process requires some amount of active low-
effort bug fixing in the system under development which
developers tend to address while developing features. This is
generally a percentage of available engineering effort in a sprint
which is reserved during sprint planning for doing general bug
fixing. Typically, teams reserves 5-10% of their effort on bug
fixing.

So lower threshold limit is extent of scrum team’s percentage
utilization reserved for bug fixing, if it crosses this threshold
limit, then team is given a recommendation to put more focus on
bugs and lesser effort on feature development and below this
threshold team is advised to keep delivering features.

Upper Threshold Limit (UTL) - Similarly, it is also a good
practice to fix bugs early in the sprint days so as to deliver with
good quality. This requires that Scrum team address the quality
issues in delivered feature first and then work on next set of
features if the resource utilization percentage is exceeding
certain limit, called Upper Threshold Limit.

So if the team defines their UTL as 75%, then rather than putting
exactly 75% of resources on bug fixing, it will be more prudent
to put entire team on bug fixing to attain high quality in already
delivered features. So the scrum team will take decision to put

 Aditya Falodiya. et al.,International Journal of Advanced Trends in Computer Science and Engineering, 3(1), January - February 2014, 01 - 08

4

100% of resources on fixing bugs for that day, and then take on
next set of features.

3.4 Recommendations Engine
In order to assist scrum team in taking decisions, a
recommendation engine will be required. Resource flexibility is
another term which implies that whether Scrum team can receive
more resources mid sprint or whether scrum team can extend
their hours per day to handle spikes in effort required due to
bugs.

Recommendation engine provides following effort diversion
suggestions:

 Scrum team should continue to focus on features. This
implies that the bugs are well contained.

 Scrum team should focus more on bugs.
 Scrum team should focus entirely on bugs. This implies

that bugs are not contained and should be handled
immediately.

Bug Shifting Process (BSP)
In order to address the case where on a particular day there is a
resource requirement exceeding the available resources, then
lower priority bugs should be shifted by few days within the
sprint. In this way, the ideal response time of lower priority bugs
will not be honored but the ideal response time of higher priority
bug will be honored.

Bug Deferral Process (BDP)
Bug deferrals are also same as that of Bug Shifting process but it
proposes lesser priority bugs to be deferred out of sprint so as to
address greater priority bugs in case of effort constraints.
Scrum master should maintain a running list of proposed Bug
Deferrals. These bug deferrals can be relooked within the sprint
if there is spare bandwidth after all features and bugs are
delivered in sprint.

Recommendation process
This process starts with creating a resource utilization spread as
mentioned above.

On a particular day,

CASE
Where resource utilization is greater than 100%,

It is checked whether there is more sprint days available
in sprint.

 If it is available, then
o Bugs are moved using the bug

shifting process (BSP). After this,
the resource utilization spread is
recalculated.

 If the sprint days are not available, then
o It is checked whether there are

additional resources available.
 If it is available, then

o Resource utilization spread is
recalculated using one more
resources.

 If additional resources
are not available, then

 Bug Deferral Process (BDP) is invoked.
After this, the resource utilization
spreadisrecalculated.

END CASE

CASE
Where resource utilization is less than 100%,
A recommendation ismade usingavailable parameters.

 If resource utilization is greater than upper
threshold limit, then

o Recommend “focus entirely on bugs”
 If resource utilization is less than lower threshold

limit, then
o Recommend “focus on features”

 If resource utilization is greater than lower
threshold limit but lesser than upper threshold limit,
then

o Recommend “focus more of bugs”
END CASE

This process also outputs predictive analysis report for next few
days in following manner.

Predictive Analysis
Next 1 day, <Recommendation>, <Average effort>
Next 3 days, <Recommendation>, <Average effort>
Next 5 days, <Recommendation>, <Average effort>
Next 10 days, <Recommendation>, <Average effort>
…
Next 20 days, <Recommendation>, <Average effort>

This whole process is represented here in the flow chart,

 Aditya Falodiya. et al.,International Journal of Advanced Trends in Computer Science and Engineering, 3(1), January - February 2014, 01 - 08

5

Figure 2: Decision chart

4. GUIDELINES FOR SCRUMS
In order to use this model effectively, scrum team should adhere
to following guidelines,

Planning phase
 Define priority and severity vectors
 Define upper and lower threshold limits

Execution phase
 Retrieve Bug Matrix
 Calculate resource utilization spread using Predictive

Analyzer
 Take decisions with the help of recommendations

Retrospection phase

 Assess and adjust priority vector in consultation with
product owners

 Assess and adjust severity vectors according to team’s
performance

5. SYSTEM
An interactive system based on this decision engineering model
system can be built which can use an adapter to existing Bug
Tracking System to fetch the dynamic data regarding bug matrix
and provide various reports and recommendations. A detailed
design of the system is out of the scope but here is an overview
of various layers.

5.1 System Design

Figure 3: System Design and Components

This system will comprise of following elements:
 Bug tracking system adapter layer (BAL)
 Core System

 Aditya Falodiya. et al.,International Journal of Advanced Trends in Computer Science and Engineering, 3(1), January - February 2014, 01 - 08

6

 Predictive Analyzer
 Recommender layer
 User interaction layer (UIL)

This system plugs in to existing bug tracking system to collect
the daily bug data based on priority and severity for the scrum
team.

User Interaction Layer or UIL will be responsible for taking data
inputs from Scrum team members.This will collect data
elementsrelated to scrum or resource data like Number of
available resources in a sprint, Available hours per day, Days left
in the sprint, resource flexibility and priority & severity vectors
etc. It will also collect data elements like threshold limits.

UIL will provide these data elements to core system which will
store this data per scrum team. UIL will also handle the job of
renderingvarious reports like effort diversion suggestions,
recommendations, resource utilization spreads etc.

Core System as explained in section above will be responsible
for processing the data elements based on the algorithms
discussed in this paper and feed the results to UIL.

6. SIMULATIONS AND ANALYSIS
In order to provide a way to capture and validate the results in
absence of real-time system for the proposed concept as defined
in previous section, a simulator is developed.

This simulator is representing the real system except the
following differences,

It is developed in Microsoft Excel and without any dedicated
user interface as suggested in system design
It is not interfaced with real bug defect system so someone in
scrum team like scrum master will be required to enter the data
manually.

Case Study
A simulation run with a hypothetical scrum team was executed.
This team comprised of five developers with four managers;
engineering manager, quality manager, program manager and
product manager. Program manager was playing the role of
scrum master, product manager was product owner and
engineering/quality managers were people managers managing
engineers on resourcing, effort estimations and feature
development.

Assuming this team utilized this model for a sprint of20 day
duration and Decision Engineering Model was utilized using
the simulator.

Here were the team’s parameters,

 Developers = 5
 Working hours per day = 8 hours
 Development Days in Sprint = 20
 Priority Vector = {8, 24, 40, 80, 120}
 Severity Vector = {32, 16, 8, 4}
 LTL = 20%
 UTL = 50%

Day 0
There were no bugs and hence the system recommended team to
carry on delivering features.

Day 1
Table 2 shows Bug matrix on Day 1 and is as follows,

Table 2: Day 1 bug spread

32 16 8 4

S4 S3 S2 S1 Total P

8 P5

0

24 P4

0
40 P3

1

1

80 P2

1 1 1 3
160 P1

1

1

Total S 0 1 3 1 5

As it can be seen, this bug matrix is depicting that team needs to
take actions on 6 bugs (1x P3, 3x P2 and 1x P1) OR (1x S3, 3x
S2, 1x S1). With help of priority vector, we can see that team’s
turnaround on the P3 bug is 40 hours, P2 bug is 80 hours and P1
bug is 160 hours. And with the help of severity vector, it is clear
that team will take 16 hours to resolve S3 bugs, 8 hours for S2
and 4 hours for S1 bugs.

With the two dimensional data, we can see it will take 44 hours
of effort (16h + 24h + 4h) hours based on severity. In terms of
resourcing, it will require 0.2 resources per day to finish 1x P3
bug in 40 hours or 5 days, 0.4 resources per day to finish 3x P2
bugs in 80 hours or 10 days and 0.1 resources per day to finish
1x P1 bug in next 19 days. So with this calculation, day to day
resource utilization spread will be as follows,

{0.6 for Day-1 to Day-5 }
{0.4 for Day-6 to Day-10}
{0.1 for Day-11 to Day-19}

Here is resource utilization graph,

Figure 4: Day 1 Resource utilization graph

Since 0.6 Resource is just 12% of total resource availability and
LTL was defined as 20% and UTL 50%. Predictive
analysisrecommendation were as follows,

 Aditya Falodiya. et al.,International Journal of Advanced Trends in Computer Science and Engineering, 3(1), January - February 2014, 01 - 08

7

Day 5
Table 3 shows Bug matrix changed due to new bugs in the
system and due to few bugs getting addressed by team,

Table 3: Day 5 bug spread

 32 16 8 4

 S4 S3 S2 S1 Total P
8 P5 0

24 P4 0
40 P3 3 3

80 P2 1 1 1 3
160 P1 1 1

 Total S 0 4 1 2 7

There were 3x P3/S3 bugs introduced which will require
turnaround in 5 days and will require significant development
effort. With rest of bugs,total effort required is 80 hours.
So with this calculation, day to day resource utilization spread
will be as follows,
 {1.58 for Day-6 to Day-10 }
 {0.38 for Day-11 to Day-15}
 {0.03 for Day-16 to Day-20}

Resource utilization graph will be as follows,

Figure 5: Day 5 Resource utilization graph

Now since resource utilization crossed the LTL, recommendation
will be to focus more on bugs as mentioned below,

Day 10,
Table 4 shows Bug matrix changed with new bugs and team
encountered few P4 bugs,

Table 4: Day 10 bug spread

 32 16 8 4
 S4 S3 S2 S1 Total P

8 P5 0

24 P4 4 4
40 P3 1 1 2

80 P2 1 1 2
160 P1 2 2

 Total S 0 5 2 3 10

So total effort will be 108 hours and with this calculation, day to
day resource utilization spread will be as follows,
 {3.52 for Day-11 to Day-13 }
 {0.85 for Day-14 to Day-15}
 {0.25 for Day-16 to Day-20}

Resource utilization graph will be as follows,

Figure 6: Day 10 Resource utilization graph

Now since resource utilization crossed the UTL also,
recommendation will be to focus entirely on bugs as mentioned
below,

 Aditya Falodiya. et al.,International Journal of Advanced Trends in Computer Science and Engineering, 3(1), January - February 2014, 01 - 08

8

Day 18
Table 5 shows bug matrix on 18th day and is as follows:

Table 5: Day 18 bug spread

 32 16 8 4
 S4 S3 S2 S1 Total P

8 P5 1 1
24 P4 0

40 P3 1 1

80 P2 1 1
160 P1 4 4

 Total S 1 0 1 5 7

Total effort will be 60 hours and with this calculation, day to day
resource utilization spread will be as follows,

{5.75 for Day-19th}
{1.75 for Day-20th}

Resource utilization graph will be as follows, Resource
utilization graph will be as follows,

Figure 7: Day 18 Resource utilization graph

As it is evident that in order to deliver the P5 bug which is of S4
severity (32 hours of work), team will require choosing between
few options,

 Either put more resources for one day
 Defer work for some of the bugs using the Bug Deferral

Process (BDP)

7. CONCLUSION
Agile processes require that scrum teams should be self-
organizing and self-managing. Proposed decision engineering
model and system helps scrum teams in taking informed and
calculated decisions in self-sufficient manner during software
development process. It is providing them daily
recommendations based on existing data points.

The proposed model and system has number of characteristic
making it suitable to be used by any organization to utilize it in
their software development process.
 Generic – It is a generic model, as it can be used by any

organizations utilizing agile methodologies. It can be
plugged into their existing software development process
where bug tracking system is in place.

 Flexible - This model provides flexibility as there are
various parameters which can be customized according to
scrum team’s preferences.

 Adaptive - It is also an adapting model and provides
mechanism to change according to context.

8. FUTURE WORK
This paper proposes a concept for decision engineering model
and there are opportunities for further work on detailed
implementation of a generic system which can plug into any bug
tracking tool to mine the data and present these recommendations
and resource utilization spread.

There are further opportunities for detailed study and work on
following aspects,

A detailed research to carry out empirical analysis with various
scrum teams with this concept to establish effectiveness of this
model

A detailed analysis based on data collected from scrum teams to
optimize various parameters

 Estimating a team’s evolving maturity with a metric
based on priority and severity vectors

 Algorithms for optimizing the bug shifting and deferral
processes

 Augmenting and extending the scrum systems with
proposed model with help of proposed algorithms and
set of optimized parameters

REFERENCES
[1] Ken Schwaber and Jeff Sutherland, The Official Scrum
Rulebook, Scrum.org
[2] Nils Brede Moe, TorgeirDingsøyr, Tore Dybå Understanding
Self-organizing Teams in Agile Software Development, IEEE
19th Australian Conference on Software Engineering, 76-8
[3] Falodiya A., Jain A., Predictive Analysis Driven Decision
Engineering Framework for Self-Directing Agile Teams,
Research Ideas In Software Engineering and Security (RISES)
2013, India.

