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Abstract: Modern diesel fuel injection system (com-

mon rail and pump-nozzle-units) requires the reference

of crank angles, engine speed and load to estimate the

two parameters: crank angle at the start of fuel injection

and amount of fuel to inject for a diesel engine. Measure-

ment of engine speed of a combustion engine is carried

out by sensor wheels mounted on the crankshaft. Crank

angles can be estimated from the measured engine speed.

But geometrical tolerances of a sensor wheel result in sys-

tematic errors in the measurement. To get the corrected

speed, we have to determine these errors due to geomet-

ric tolerances. These geometrical tolerances can be esti-

mated by solving a nonlinear system of equations which

is formulated using a suitable physical model of kinetic

energy balance of the crankshaft and the measurement of

engine speed.
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1 INTRODUCTION

Generally, measurement of the speed of combustion
engines is carried out by sensor wheels held on the
crankshaft. The geometric tolerances of a sensor
wheel can cause a systematic deviations that can re-
duce the quality of engine speed sensing. Therefore,
to obtain the appro- priate speed, we have to de-
termine the deviations due to geometric tolerances.
Here two parameters are very important in combus-
tion engine control systems: the crank angle which
is at the start of fuel injection and the amount of fuel
to be in- jected. To assess these parameters, a mod-
ern diesel fuel injection system (common rail and
pump-nozzle-units) re- quires engine speeds, crank
angles, load etc. Engine speeds and crank angles
can be measured by a sensor wheel. In the paper we
are going to look at how in real time systems can
be identification the geometric tolerances of sensor

wheel. To get the appropriates speed, we have to
de- termine the errors due to geometric tolerances.
These geo- metrical tolerances can be estimated by
solving a nonlinear system of equations which is for-
mulated using a suitable physical model of kinetic
energy balance of the crankshaft and the measure-
ment of engine speed.

2 USING A SENSOR IN REAL TIME

OPERATION

Speed of combustion engines is estimated by sen-
sor wheels mounted on the crankshaft. Geometric
tolerances of a sensor wheel produce systematic de-
viations from the actual speed of the engine. There-
fore, the measured speed differs from the actual
speed due to imperfect sensing of engine speed by
the sensor wheel with some geometric tolerances. To
get the actual speed, we have to determine the devi-
ations due to geometric tolerances.

FIGURE 1: A 60-2-2 sensor wheel for diesel engines
with 56 teeth and 2 gaps. This figure is reproduced
by the courtesy of IAV GmbH, Germany

c© 2012, IJATCSE All rights reserved 43



Muhammad Nomani Kabir et al., International Journal of Advanced Trends in Computer Science and
Engineering, 3(3), May - June, 2012, 43-49

Two parameters are very important in combustion
engine control systems: the crank angle at the start
of fuel injection and the amount of fuel to inject. To
estimate these parameters, a modern diesel fuel in-
jection system (common rail and pump-nozzle-units)
requires engine speeds, crank angles, load etc. En-
gine speeds and crank angles can be measured by a
sensor wheel.

FIGURE 1 shows a 60-2-2 sensor wheel for diesel
engines with 56 teeth with two gaps. The wheel
mounted on the crankshaft rotates with it. The
wheel is fitted with teeth sensible by a stationary
magnet which field changes with the movement of
teeth. The change is sensed by the voltage gener-
ated in a coil of wire in the magnetic field.

A controller receives each voltage pulse from the
sensor and records its time of arrival T0, T1, · · · .
With this information, the period ∆Ti = Ti+1 − Ti

can be determined where the index i = 0, 1, · · · indi-
cates the tooth number. The speed φ̇e can be mea-
sured by

φ̇e =
∆φe

∆Ti

.

The teeth are evenly spaced except for missing teeth
in the gap. The voltage signal is interpolated over
two missing teeth in each gap. The sensor wheel in
FIGURE 1 has 60 teeth (including 4 missing teeth),
and therefore ∆φe = 3600/60 = 60. The distance be-
tween two successive teeth should be constant. How-
ever, geometric tolerances in distances between two
successive teeth of sensor wheels lead to systematic
deviations of the actual engine speed. Since geomet-
ric tolerances are related to these deviations by some
simple formula, we will investigate the method in [2]
to compute the deviations by different variations of
Newton’s method.

3 PHYSICAL MODEL

Identification of geometric tolerances in sensor
wheels is based on the balance of the kinetic energy
of the crankshaft [1], [5], [9], [10], [11]. The kinetic
energy can be modeled by the energy E0 due to the
engine speed and the energy E1 due to the load:

Ekin = E0 + E1.

The kinetic energy is related to the actual engine
speed by the equation

Ekin =
1

2
Θφ̇2,

where Θ is the moment of inertia and φ̇ is the actual
engine speed. Combining above equations together
we have

1

2
Θφ̇2 = E0 + E1.

Due to the sensor wheel deviation, we obtain the
deviated engine speed φe (which is the measured
speed). The actual engine speed φ̇ can be given by

φ̇e = φ̇(1 − δ), (1)

where δ is the speed correction due to sensor wheel
deviation. Using this relation to the previous equa-
tion we get

1

2
Θ

φ̇2
e

(1 − δ)2
= E0 + E1.

This equation can be set up for each tooth i of the
sensor wheel:

1

2
Θi

φ̇2
e,i

(1 − δi)2
= E0,i + E1,i, (2)

where the index i = 0, · · · , n− 1 indicates the tooth
number. Notice that the tooth position n corre-
sponds again to the tooth position 0. We suppose
that the load is constant during measurement of the
engine speed.
Computing Θ

The moment of inertia Θi depends on the crank an-
gle. It can be calculated by the rotating and oscillat-
ing masses of the engine. In practice, the stiff part
of the moment of inertia cannot be accurately deter-
mined. Therefore, an offset Θoffset is applied to the
estimated moment of inertia Θ1st,i. Hence,

Θi = Θoffset + Θ1st,i. (3)

Computing E0

The energy E0 due to the engine speed changes with
the friction, load, etc. The speed correction δ0 effects
on E0 which must be taken into account. At i = 0,
the energy E0 due to the engine speed is given by

E0,0 =
1

2
Θ0

φ̇2
e,0

(1 − δ0)2
. (4)

Similarly, at i = n we have

E0,n =
1

2
Θ0

φ̇2
e,n

(1 − δ0)2
. (5)

During a crankshaft revolution, the energy due to
the engine speed has approximately a linear varia-
tion. Therefore the energy E0,i between E0,0 and
E0,n can be computed by the equation

E0,i = E0,0 +
E0,n − E0,0

n
i, with i = 0, · · · , n − 1. (6)
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FIGURE 2: Measured and corrected engine speeds.

1.6188 1.619 1.6192 1.6194 1.6196 1.6198 1.62

x 10
5

290

300

310

320

330

340

350

Tooth counter i

E
ng

in
e 

sp
ee

d 
(r

ad
/s

ec
)

 

 

Measured speed
Corrected speed

FIGURE 3: Measured and corrected engine speeds.
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FIGURE 4: Measured and corrected engine speeds.

Computing E1

The energy E1,i due to the load is stored during the
compression stroke of the engine. It varies linearly
with the load:

E1,i = ploadG1,i. (7)

The values of G1,i are computed by complicated for-
mulas which include the rules of the crankshaft kine-
matics and polytrope compression [1], [5], [9]. The
goal of the identification is to estimate the unknown
parameters using the known/measured set of data,
and determine the actual engine speed φ̇. The known
and unknown quantities/parameters are listed in the
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FIGURE 5: Measured and corrected engine speeds.
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FIGURE 6: Measured and corrected engine speeds.
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FIGURE 7: Measured and corrected engine speeds.

following table. Known/measured quantities Unknown parameters

Θ1st,i, i = 0, · · · , n − 1 Θoffset

pload, G1,i, E1,i, i = 0, · · · , n − 1 δi, i = 0, · · · , n − 1

φ̇e,i, i = 0, · · · , n
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Table 1: Solutions by different variants of Newton’s method

4 MATHEMATICAL FORMULATION

From (2), the nonlinear residual is given by

Fi = E0,i + E1,i −
1

2
(Θoffset + Θ1st,i)

φ̇2
e,i

(1 − δi)2
, (8)

with i = 0, · · · , n − 1 which has the unknown pa-
rameters δ0, · · · , δn−1 and Θoffset. This system con-
sisting of n residual components and n + 1 unknown

parameters requires an additional equation for its so-
lution. Now we give the (n+1)th necessary equation
which implies that the mean sensor wheel deviation
vanishes:

Fn =
n−1∑

i=0

δi. (9)

Hence we have the following nonlinear system of
equations

F (x) = 0, (10)
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with

x = [δ0, δ1, · · · δn−1,Θoffset]
T , (11)

and

F = [F0, F1, · · · , Fn]T .

This system of nonlinear equations is solved for x
and hence the corrected engine speed can be ob-
tained using (1).

5 TEST RESULTS

The system (10) was solved by Matlab in [2]. We
solved the problem by different variants of Newton’s
method [4], [6], [7], [8] and analyzed the convergence
and computational time. Based on this result, we
want to choose an appropriate variant to solve the
system in the real time operation. Several variants
of Newton’s method were used to solve the nonlinear
system (10) for δ and Θoffset. All the data of φ̇e,
pload, G1 and Θ1st from the sensor wheel with n =
60 teeth were given. The Jacobian matrices were
computed using center differences [3], [8]. The test
was performed by a GCC compiler of version 3.3.1
under a Linux operating system, and executed on a
Pentium 4 processor with 2.40 GHz. We obtained
the corrected engine speed from δ and φ̇e using (1).
The test results are presented in FIGUREs 2–4.

In these figures, measured and corrected engine
speeds (computed from a converged solution) are
plotted against the tooth counter (i = 0, · · · , 119).
In FIGUREs 2 and 4, the solution δ computed from
the current revolution (with tooth counters i = 0 to
59) were used to correct the measured speeds φ̇e of
the next revolution (with tooth counters i = 60 to
119). FIGURE 4 shows good results in estimating
the corrected speed during the revolutions. How-
ever, In FIGURE 4 we observe a very good result
in estimating the corrected speed during the current
revolution, while the result deteriorates a little dur-
ing the next revolution. The cause of the deterio-
ration is the imperfection of computing E1 and the
effect of the crankshaft torsional vibration. The tor-
sional vibration increases with higher engine speed.
Therefore, FIGURE 3 shows very bad results for the
revolutions in that the solution δ computed for FIG-
URE 2 (with tooth counters i = 0 to 59) were used
to correct the measured speeds with tooth counters
i = 161880 to 162000.

In the real time operation, computation for the
current revolution ck may take more time than the
period δTk+1 of next revolution ck+1. In such a case,
computation continues during the next few revolu-
tions ck+1, ck+1, · · · ck+p, and the previous solution

xk−1 is set for these revolutions. When computation
for the current revolution ck ends, computation for
the revolution ck+p+1 starts. This process is set to
continue in the real time operation. As a demonstra-
tion, we conducted a numerical test which are shown
by FIGUREs 5–7.

From FIGUREs 5–7, we assume that the engine
speed is 350 radian/sec. Therefore, for 1 revolution
it takes (2π/350) ∗ 1000 ≈ 17 ms (millisecond). As-
sume that computation takes 60 ms in a real time
operation, and hence p = 1 + 60/17 ≈ 4, that is,
results of computation can be obtained after 5 rev-
olutions. For FIGURE 5, we used the data of the
1st revolution was used to obtain δ to correct the
measured speeds of the 6th revolution. FIGURE
6 shows the measured and corrected speeds where
the data for the 6th revolution was used to recal-
culate δ to correct the measured speeds of the 11th
revolution. Note that previous δ was used to cor-
rect the measured speeds of 6th to 10th revolutions.
For FIGURE 7, the data for the 11th revolution was
used to estimate δ again to correct the speeds of the
16th revolution. Previous δ was used to correct the
speeds of 10th to 15th revolutions. This procedure
continues in the real time operation.

Results from the different variants of Newton’s
method using the measured speeds shown in FIG-
URE 4 are listed in TABLE 1. In this table, the
first four columns provide the initial point, the vari-
ant of Newton’s method, the number of iterations
and the 2-norms of residuals. Columns 5, 6 and 7
give us whether convergence [3], [4] to a true solu-
tion was achieved and the cause of failure and the re-
quired time in millisecond. Since a nonlinear system
of equations may have more than one solution, the
”true solution” is meant a reasonable and practically
useful solution which was verified by the criteria
• A true solution must satisfy its bound con-

straints. The deviations δ should be between
the bounds of -0.2 and +0.2, and Θoffset > 0 to
be physically meaningful.

• The corrected engine speed from a true solution
must fit the measured speed.

In column 6, ”singular” indicates that the Jaco-
bian is singular and computation stops. The other
case ”∆ ≤ ∆min” implies that the current trust-
region radius ∆ is less or equal to ∆min = 1.0e-6.
In this case, further computation will hardly ben-
efit and computation terminates. Each component
of initial x holds the number given in column 1. In
column 2, we use the number

• 1 for Newton’s method,
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• 2 for Newton’s method with line search, and

• 3 for Newton’s method with trust-region.

Newton’s method and Newton’s method with line
search work better than Newton’s method with
trust-region for this nonlinear system of equations.
With negative initial points the methods do not work
properly. The methods mostly succeed if the initial
points are larger than or equal to zero. We notice
that the methods work well when the initial points
lie between 0 and 0.2.

6 CONCLUSION

It is unlikely that a single variant will always give
the best performance for different varieties of identi-
fication prob- lems. Newtons method for the identi-
fication problem of sensor wheels demonstrates bet-
ter performance than its variants. Key issues are
the selection of initial points for the methods. The-
ory has little to say about such matters, but poor
choices lead to poor performance. The model of sen-
sor wheels can be improved by considering the effect
of crankshaft torsional vibrations.
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