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ABSTRACT 

 

This paper explores the usage of Lisp in a small modern 

Reinforcement Learning (RL) project. The Lisp dialect, Hy 

programming language, is used to incorporate the traditional 

libraries and packages in up-to-date workflows. This project is 

centered around the usage of NetHack for RL. The MiniHack 

sandbox framework and NetHack Learning Environment (NLE) 

are used to create custom training/testing environments and 

tasks. The MiniHack sandbox framework creates a simple level 

editor and creation interface for use in the training and evaluation 

process of the agent. NLE is chosen as the working environment. 

For the agent model, this project adopts Torchbeast’s PolyBeast, 

a PyTorch implementation of the IMPALA architecture. The 

usage of Hy within this project is forefront, and so it is 

implemented as much as possible to accomplish the tasks. 
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1. INTRODUCTION 

 

This project explores the use of Lisp within a small 

Reinforcement Learning (RL) development and examines its use 

within a modern scenario. Lisp [1] is the second-oldest 

programming and was favored for use in Artificial Intelligence 

(AI) research. Over time, Lisp has fallen out of use in the field of 

AI and is really used in modern day tasks. The topic focuses on 

exploring the use of RL within a roguelike, a specific genre of 

game. Traditional roguelikes are turn-based, grid-based games 

based on high-complex randomly generated environments with 

“permadeath” mechanics, meaning the users start completely 

over if they die [2]. These traits combine together to make an 

interesting and an effective learning environment for RL. 

 

There are a few implementations of these environments, such as 

one for the original Rogue [3], Dungeon Crawl Stone Soup [4], 

and NetHack [5]. The NetHack implementation is a better fit of 

the project’s needs. The NetHack Learning Environment (NLE) 

is chosen as the working environment. NLE provides a RL 

interface to the game NetHack [6] along with providing tasks for 

 
 

the agents. Additionally, the sandbox framework MiniHack [7] is 

used. It can communicate with NLE to create custom 

training/testing environments and tasks.  

 

This project adopts a Lisp dialect called Hy [8] in order to utilize 

NLE and MiniHack. Hy programming language is a Lisp dialect 

embedded in Python, allowing Lisp code to compile into Python. 

By using Hy, it makes available to utilize Lisp code while 

incorporating Python libraries into the development workflow.  

This project allows not only to use MiniHack and NLE, but also 

to take advantage of useful libraries such as PyTorch, Pandas, 

Numpy, and Tensorflow. It creates a simple level editor with Hy 

programming language by manipulating the functionality given 

by MiniHack level generator. To handle the RL agent, this 

project is able to take advantage of Torchbeast’s PolyBeast [9], 

which when coupled with the des file reading of MiniHack, 

completed the goal. 

 

In summary, this paper explores the use of the Lisp dialect Hy 

and evaluates its capabilities within a modern-day RL task. This 

project accomplishes the task by using Hy to build a small 

application that takes advantage of MiniHack level generator in 

order to create environments for the agent. To train and evaluate 

the agent, this project manipulates the functionality provided by 

TorchBeast. Finally, conclusions are presented regarding the use 

of Hy and issues for future research are discussed.  

 

2.  BACKGROUND 

 

2.1 Lisp and Hy Programming Languages 

 

Lisp, which is derived from “LISt Processor” [10], is a 

programming language developed in 1958. It is known for its 

fully parenthesized prefix notation and developing some of the 

foundational ideas of computer science such as tree data 

structures, automatic storage management, read-eval-print loop, 

conditionals, dynamic typing, higher-order functions, and 

recursion. Because Lisp’s source code is made from lists, this 

gives rise to its notable metaprogramming capability. When Lisp 

was first released, it had notable use in Artificial Intelligence 

(AI) research almost immediately. However, slowly over time, 

its presence has dwindled within the AI space. 
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# Inspired from Baalzebub level of NetHack 

MAZE: "mylevel", ' ' 

FLAGS: noteleport, corrmaze 

GEOMETRY: right,center 

 

MAP 

------------------------------------------------- 

|                   ----               ---- 

|          ----     |     -----------  | 

| ------      |  ---------|.........|--| 

| |....|  -------|.LLLLL..----------------- 

---....|--|........LLLLL..................|---- 

+.........+........LLLLL......................| 

---....|--|........LLLLL..................|---- 

| |....|  -------|.LLLLL..----------------- 

| ------      |  ---------|.........|--| 

|          ----     |     -----------  | 

|                   ----               ---- 

------------------------------------------------- 

ENDMAP 

 

Despite the dwindling popularity of Lisp, it experienced the 

creation of several new dialects over time, such as Clojure, 

Scheme, Common Lisp, and more. One notable dialect, the focus 

of this paper, is Hy. Hy programming language enables the 

translation of Lisp’s s-expressions into Python’s abstract syntax 

tree. This allows Python libraries to be imported and used 

alongside Hy code. The access to Python libraries is crucial, as 

many of the AI related libraries for Lisp are able to be integrated 

into modern RL projects through the use of Hy programming 

language. 

 

2.2 Reinforcement Learning and NetHack 

 

Reinforcement Learning (RL) requires complex and challenging 

environments to test in. The genre of games called roguelikes 

have been found to work very well for RL. Roguelikes are 

typically very difficult games, involving procedurally generated 

complex mechanisms and environments. These mechanics 

coupled with the resource management, exploration, and 

dynamic nature of the environments within, make it an 

interesting method of testing for RL.  

 

One of these games that has garnered more attention than others 

is NetHack [11] [12]. NetHack is an open-source roguelike 

released in 1987 and features many things prominent to the 

roguelike genera. Its features procedurally generate 

environments, monsters, dungeons, and treasures. The gameplay 

consists of a player first choosing or randomly selecting the 

character’s race, role, sex, and alignment. The player must then 

seek out the “Amulet of Yendor” and complete the numerous 

“side-quests” to beat the game. The complex nature of the game 

and possibilities that arise from the dynamic elements earned its 

popularity in both gaming and RL. 

 

One specific NetHack environment is the NetHack Learning 

Environment (NLE). This environment provides a traditional 

style RL interface around the terminal interface from NetHack. 

The NLE environment also supports actions corresponding to all 

the ones available to the player along with various observation 

spaces for the agent. An OpenAI [13] Gym interface is also 

offered along with predefined tasks, reward functions, action 

spaces, and a dashboard for evaluations. In addition to the 

pre-defined tasks, NLE provides easy access to create additional 

tasks. 

 

3.  IMPLEMENTATION 

 

3.1 MiniHack 

 

Since NLE environment focuses on the full game of NetHack, it 

is difficult to test certain conditions and specific scenarios that 

the practitioner would want. To fix this issue, the MiniHack 

sandbox framework scales the world down into scenarios that are 

more suited for testing and evaluating the desired conditions. 

Like NLE, MiniHack provides a significant number of 

challenging tasks, but the primary focus is on streamlining the 

task creation process and increasingly scale the complexity. To 

accomplish the task, MiniHack leverages the use of the des-file 

format that describes the levels within NetHack. This format 

allows creations to be made as the underlying language is 

complex. MiniHack simplifies the level creation through the 

usage of its level generator. The level generator provides 

functions to easily add objects, monsters, environmental 

features, and general map elements. The get_des function then 

allows the direct export of the generated elements to a des file. 

Figure 1 shows an example of a generated des file for the level 

“Quest Hard.” Additionally, MiniHack provides the reward 

manager to streamline the goal creation process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Example of Generated des File 

 

3.2 Level Editor 

 

To add a level of complexity, this project creates an interface that 

allows users to customize the agent’s overall environment that 

the agent is placed in. It provides a great level of customizable 

variety in each scenario that the agent experiences, rather than 

having it interact with the same exact scenario from time and 

time again. This is primarily accomplished using the level 

generator functions within MiniHack, as demonstrated in Figure 

2. 

 

This project keeps the interface itself simple for ease-of-use 

shown in Figure 3. It provides several buttons that each affect the 

agent’s environment in different ways. The “Add Monster” will 

place a completely random creature into the level, which may 

very well be hostile towards the agent. The “Add Trap” will add 

a teleportation trap in a random spot within the environment, 

which will teleport the agent to a random location should it step 

onto the trap. The “Add Object” will add a completely random 

object that the AI can also pick up and use. The “Add Boulder” 

will place a boulder within the level that the agent can push 

around wherever it wants. Finally, the “Submit” button will save 

all changes to the level. 
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(setv lvl_gen (minihack.LevelGenerator :w 10 :h 10)) 

 

; Events when the user selects a button 

(while True 

(setv [event value] (.read Window)) 

(if (or (= event sg.WIN_CLOSED) (= event "Submit")) 

  (break) 

  (setv des (.get_des lvl_gen))) 

 

(if (= event "Add Monster") 

  (.add_monster lvl_gen) 

  ) 

 

(if (= event "Add Trap") 

  (.add_trap lvl_gen) 

  ) 

 

(if (= event "Add Object") 

  (.add_object lvl_gen) 

  ) 

 

(if (= event "Add Altar") 

  (.add_altar lvl_gen) 

  ) 

 

(if (= event "Add Boulder") 

  (.add_boulder lvl_gen) 

  ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Code for Level Generator Functions 

 

The users can press each of the “Add” buttons as many times as 

they would like to add even more of whatever they wish. For 

example, seven completely random monsters will be added into 

the environment if the users are to press the “Add Monster” 

button seven times. If the users are to press the “Add Boulder” 

four times, four boulders will appear in random locations within 

the level. The same concept applies for all of the other buttons. 

The “Submit” button saves the level and closes the interface.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Menu for Level Generator 

 

Once the users are satisfied with their selections and submit their 

changes to the level, the console will display a preview of the 

level and everything that is added to it. In Figure 4, the users 

select the “Add Monster” button two times, and the “Add 

Object” button once. The result creates a level that will feature 

two random creatures and one random object. When the users 

preview the level, they can see the changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Level Generator Results 

 

Figure 5 shows a visual of the created level using a tile set for 

better visual representation. There are two monsters and one 

object in the room selected by the user.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Visual of Level Generator Using Tile Set 

 

3.3 Adding an agent 

 

Once the interface is created, the project implements an agent to 

train with the new environments and tasks. Since it uses Hy 

programming language and has access to Python libraries, such 

as MiniHack and NLE, this project takes advantage of Hy 

programming language and uses TorchBeast. TorchBeast 

provides a RL platform within PyTorch and implements a 

version of the Importance Weighted Actor Learner Architecture 

(IMPALA) [14] algorithm. The IMPALA is a distributed agent 

that uses resources efficiently with single-machine training while 

also allowing the capabilities to scale to thousands of machines 

without sacrificing resources or efficiency. TorchBeast is 

designed with a pure Python approach in mind, along with 

providing OpenAI interface. This project implements with the 

C++ and Python Variant, PolyBeast, for its higher performance 

potential over the MonoBeast version. In addition to the 
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capabilities of TorchBeast, this project also choses it since 

MiniHack has a direct implementation of PolyBeast already 

integrated within, thus easing the burden of integration.  

 

4. DISSUSSION 

 

This project encountered issues between Hy and MiniHack. 

After each module was implemented, we began the task of 

integrating the level editor with the TorchBeast agent and 

MiniHack environments. We started facing numerous issues with 

Hy programming language and its interactions between the 

various packages and frameworks. The most notable issue with 

the level editor was the creation of the OpenAI environment. In 

order to use an environment created in OpenAI’s Gym interface, 

the users must first register the environment and set parameters. 

Since MiniHack creates environments by leveraging the use of 

des files, a des file must be given when registering an 

environment for OpenAI. When Hy generates the des file from 

MiniHack level generator, the conversion of Hy to Python did 

not function correctly, and thus could not be passed as an 

argument in the functions. To work around this situation, we 

resorted to using Python and creating a separate environment 

class registered with that. We then, placed this environment 

within the MiniHack package’s environments so that we could 

easily use the scripts supplied with the custom environment. 

Since we could directly pass the des file data as an argument to 

the custom environment, we exported it to a dat file directly and 

then created a separate statement within the class to load the dat 

file.  

 

In addition to the issues with Hy and MiniHack, this project also 

encountered severe problems with the simple level editor GUI. 

PySimpleGUI [15], a package to transform tkinter, Qt, 

WxPython, and Remi GUIs into simpler interfaces, has 

numerous issues with Hy. The most difficult one to deal with was 

simply providing output to the terminal once the interface was 

interacted with. If any output to the terminal was inside the 

interface, Hy would fail to run and present end-of-file statements. 

We also encountered other issues such as GUI interface not 

always having their states saved. This project successfully solves 

Hy and GUI problems by resorting to other means of outputting 

to the terminal, primarily by using the altered des file as the 

output. 

 

5. CONCLUSION 

 

By using Hy, this project makes it possible to utilize Lisp code 

while incorporating Python libraries into the development 

workflow. Despite the multitude of issues, it is not only able to 

successfully implement the small Hy based level editor for 

MiniHack and integrate it with the TorchBeast’s PolyBeast 

agent, but also tests the usage of Hy with some modern-day 

toolkits and scenarios. This project successfully accomplishes 

and evaluates the goal naturally, rather than forcing the usage 

when it would have been proven cumbersome. Overall, the usage 

of Hy is proved useful along with the overall syntax and style 

being enjoyable to write. However, the compatibility of certain 

packages and general lack of documentation on any issues that 

arise causes massive challenges with the workflow. Using Hy is 

an interesting combination of Lisp and Python, it can be used in a 

modern-day practitioner’s toolkit. In the future, this project 

would like to explore the usage of the RLlib library in an effort to 

see if it works better with Hy as well as to expand the Level 

Editor application into something bigger of use.   

REFERENCES 

1. J. McCarthy, Recursive Functions of Symbolic 

Expressions and Their Computation by Machine, Part I, 

Communications of the ACM, vol. 3, no. 4, pp. 184-195, 

April 1960, doi: 10.1145/367177.367199  

2. IRDC, Berlin Interpretation, International Roguelike 

Development Conference, September 2008, Available: 

http://www.roguebasin.com/index.php?title=Berlin_Interpr

etation, Accessed: September 2022. 

3. A. Asperti, D. Cortesi, C. De Pieri, G. Pedrini, and F. 

Sovrano, Crawling in Rogue's Dungeons With Deep 

Reinforcement Techniques, IEEE Transactions on 

Games, vol. 12, no. 2, pp. 177-186, June 2020, DOI: 

10.1109/TG.2019.2899159. 

4. D. Dannenhauer, M. Floyd, J. Decker, and D. Aha, 

Dungeon Crawl Stone Soup as an Evaluation Domain 

for Artificial Intelligence, AAAI-19 Workshop on Games 

and Simulations for Artificial Intelligence, Hawaii, 2019, 

arXiv:1902.01769. 

5. H. Küttler, N. Nardelli, A. Miller, R. Raileanu, M. Selvatici, 

E. Grefenstette, and T. Rocktäschel, The NetHack 

Learning Environment, 34th Conference on Neural 

Information Processing Systems (NeurIPS 2020), 

Vancouver, Canada, pp. 1-28, December 2020, 

arXiv:2006.13760. 

6. NetHack, NetHack Version 3.6.6, Available: 

https://www.nethack.org, Accessed: September 2022. 

7. M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder, M. 

Jiang, E. Hambro, F. Petroni, H. Küttler, E. Grefenstette, 

and T. Rocktäschel, MiniHack the Planet: A Sandbox for 

Open-Ended Reinforcement Learning Research, 35th 

Conference on Neural Information Processing Systems 

(NeurIPS 2021), pp. 1-33, December 2021, 

arXiv:2109.13202. 

8. Hy, Hy Society, Available: https://github.com/hylang/hy, 

Accessed: September 2022. 

9. H. Küttler, N. Nardelli, T. Lavril, M. Selvatici, V. 

Sivakumar, T. Rocktäschel, and E. Grefenstette, 

TorchBeast: A PyTorch Platform for Distributed RL, 

pp. 1-10, October 2019, arXiv:1910.03552. 

10. R. Jones, C. Stewart, I. Stewart, The Art of Lisp 

Programming, Springer Science & Business Media, 

December 1989, ISBN-13: 978-3540195689.  

11. SYNCED, NetHack: Fast & Complex Learning 

Environment For Testing RL Agent Robustness & 

Generalization, July 2020, Available: 

https://syncedreview.com/2020/07/01/nethack-fast-comple



Kuo-pao Yang et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October  2022, 186 - 190 

190 

 

 

x-learning-environment-for-testing-rl-agent-robustness-gen

eralization, Accessed: September 2022.  

12. Shen, NetHack-inventory, April 2006, Available: 

https://en.wikipedia.org/wiki/File:Nethack-inventory.png, 

Accessed: September 2022. 

13. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. 

Schulman, J. Tang, and W. Zarembam, OpenAI Gym, pp. 

1-4, June 2016,  arXiv:1606.01540. 

14. L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. 

Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg, 

K. Kavukcuoglu, IMPALA: Scalable Distributed 

Deep-RL with Importance Weighted Actor-Learner 

Architectures, June 2018, arXiv:1802.01561. 

15. PySimpleGUI, Python GUIs for Humans, Available: 

https://pysimplegui.readthedocs.io/en/latest, Accessed: 

September 2022. 


