
Kuo-pao Yang et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 186 - 190

186

ABSTRACT

This paper explores the usage of Lisp in a small modern

Reinforcement Learning (RL) project. The Lisp dialect, Hy

programming language, is used to incorporate the traditional

libraries and packages in up-to-date workflows. This project is

centered around the usage of NetHack for RL. The MiniHack

sandbox framework and NetHack Learning Environment (NLE)

are used to create custom training/testing environments and

tasks. The MiniHack sandbox framework creates a simple level

editor and creation interface for use in the training and evaluation

process of the agent. NLE is chosen as the working environment.

For the agent model, this project adopts Torchbeast’s PolyBeast,

a PyTorch implementation of the IMPALA architecture. The

usage of Hy within this project is forefront, and so it is

implemented as much as possible to accomplish the tasks.

Key words: Hy, Lisp, NetHack, Reinforcement Learning.

1. INTRODUCTION

This project explores the use of Lisp within a small

Reinforcement Learning (RL) development and examines its use

within a modern scenario. Lisp [1] is the second-oldest

programming and was favored for use in Artificial Intelligence

(AI) research. Over time, Lisp has fallen out of use in the field of

AI and is really used in modern day tasks. The topic focuses on

exploring the use of RL within a roguelike, a specific genre of

game. Traditional roguelikes are turn-based, grid-based games

based on high-complex randomly generated environments with

“permadeath” mechanics, meaning the users start completely

over if they die [2]. These traits combine together to make an

interesting and an effective learning environment for RL.

There are a few implementations of these environments, such as

one for the original Rogue [3], Dungeon Crawl Stone Soup [4],

and NetHack [5]. The NetHack implementation is a better fit of

the project’s needs. The NetHack Learning Environment (NLE)

is chosen as the working environment. NLE provides a RL

interface to the game NetHack [6] along with providing tasks for

the agents. Additionally, the sandbox framework MiniHack [7] is

used. It can communicate with NLE to create custom

training/testing environments and tasks.

This project adopts a Lisp dialect called Hy [8] in order to utilize

NLE and MiniHack. Hy programming language is a Lisp dialect

embedded in Python, allowing Lisp code to compile into Python.

By using Hy, it makes available to utilize Lisp code while

incorporating Python libraries into the development workflow.

This project allows not only to use MiniHack and NLE, but also

to take advantage of useful libraries such as PyTorch, Pandas,

Numpy, and Tensorflow. It creates a simple level editor with Hy

programming language by manipulating the functionality given

by MiniHack level generator. To handle the RL agent, this

project is able to take advantage of Torchbeast’s PolyBeast [9],

which when coupled with the des file reading of MiniHack,

completed the goal.

In summary, this paper explores the use of the Lisp dialect Hy

and evaluates its capabilities within a modern-day RL task. This

project accomplishes the task by using Hy to build a small

application that takes advantage of MiniHack level generator in

order to create environments for the agent. To train and evaluate

the agent, this project manipulates the functionality provided by

TorchBeast. Finally, conclusions are presented regarding the use

of Hy and issues for future research are discussed.

2. BACKGROUND

2.1 Lisp and Hy Programming Languages

Lisp, which is derived from “LISt Processor” [10], is a

programming language developed in 1958. It is known for its

fully parenthesized prefix notation and developing some of the

foundational ideas of computer science such as tree data

structures, automatic storage management, read-eval-print loop,

conditionals, dynamic typing, higher-order functions, and

recursion. Because Lisp’s source code is made from lists, this

gives rise to its notable metaprogramming capability. When Lisp

was first released, it had notable use in Artificial Intelligence

(AI) research almost immediately. However, slowly over time,

its presence has dwindled within the AI space.

Exploring the Integration of Lisp into a Modern

Reinforcement Learning Project Through the Use of Hy

Kuo-pao Yang1, Max Cole2, Hayden Israel3, Madison Leblanc4, Noah Vernon5
1,2,3,4,5Computer Science Department

Southeastern Louisiana University

Hammond, LA 70402 USA

Received Date: August 14, 2022 Accepted Date: September 20, 2022 Published Date: October 06, 2022

ISSN 2278-3091

Volume 11, No.5, September - October 2022

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse011152022.pdf

https://doi.org/10.30534/ijatcse/2022/011152022

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse011152022.pdf
https://doi.org/10.30534/ijatcse/2022/011152022

Kuo-pao Yang et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 186 - 190

187

Inspired from Baalzebub level of NetHack

MAZE: "mylevel", ' '

FLAGS: noteleport, corrmaze

GEOMETRY: right,center

MAP

| ---- ----

| ---- | ----------- |

| ------ | ---------|.........|--|

| |....| -------|.LLLLL..-----------------

---....|--|........LLLLL..................|----

+.........+........LLLLL......................|

---....|--|........LLLLL..................|----

| |....| -------|.LLLLL..-----------------

| ------ | ---------|.........|--|

| ---- | ----------- |

| ---- ----

ENDMAP

Despite the dwindling popularity of Lisp, it experienced the

creation of several new dialects over time, such as Clojure,

Scheme, Common Lisp, and more. One notable dialect, the focus

of this paper, is Hy. Hy programming language enables the

translation of Lisp’s s-expressions into Python’s abstract syntax

tree. This allows Python libraries to be imported and used

alongside Hy code. The access to Python libraries is crucial, as

many of the AI related libraries for Lisp are able to be integrated

into modern RL projects through the use of Hy programming

language.

2.2 Reinforcement Learning and NetHack

Reinforcement Learning (RL) requires complex and challenging

environments to test in. The genre of games called roguelikes

have been found to work very well for RL. Roguelikes are

typically very difficult games, involving procedurally generated

complex mechanisms and environments. These mechanics

coupled with the resource management, exploration, and

dynamic nature of the environments within, make it an

interesting method of testing for RL.

One of these games that has garnered more attention than others

is NetHack [11] [12]. NetHack is an open-source roguelike

released in 1987 and features many things prominent to the

roguelike genera. Its features procedurally generate

environments, monsters, dungeons, and treasures. The gameplay

consists of a player first choosing or randomly selecting the

character’s race, role, sex, and alignment. The player must then

seek out the “Amulet of Yendor” and complete the numerous

“side-quests” to beat the game. The complex nature of the game

and possibilities that arise from the dynamic elements earned its

popularity in both gaming and RL.

One specific NetHack environment is the NetHack Learning

Environment (NLE). This environment provides a traditional

style RL interface around the terminal interface from NetHack.

The NLE environment also supports actions corresponding to all

the ones available to the player along with various observation

spaces for the agent. An OpenAI [13] Gym interface is also

offered along with predefined tasks, reward functions, action

spaces, and a dashboard for evaluations. In addition to the

pre-defined tasks, NLE provides easy access to create additional

tasks.

3. IMPLEMENTATION

3.1 MiniHack

Since NLE environment focuses on the full game of NetHack, it

is difficult to test certain conditions and specific scenarios that

the practitioner would want. To fix this issue, the MiniHack

sandbox framework scales the world down into scenarios that are

more suited for testing and evaluating the desired conditions.

Like NLE, MiniHack provides a significant number of

challenging tasks, but the primary focus is on streamlining the

task creation process and increasingly scale the complexity. To

accomplish the task, MiniHack leverages the use of the des-file

format that describes the levels within NetHack. This format

allows creations to be made as the underlying language is

complex. MiniHack simplifies the level creation through the

usage of its level generator. The level generator provides

functions to easily add objects, monsters, environmental

features, and general map elements. The get_des function then

allows the direct export of the generated elements to a des file.

Figure 1 shows an example of a generated des file for the level

“Quest Hard.” Additionally, MiniHack provides the reward

manager to streamline the goal creation process.

Figure 1: Example of Generated des File

3.2 Level Editor

To add a level of complexity, this project creates an interface that

allows users to customize the agent’s overall environment that

the agent is placed in. It provides a great level of customizable

variety in each scenario that the agent experiences, rather than

having it interact with the same exact scenario from time and

time again. This is primarily accomplished using the level

generator functions within MiniHack, as demonstrated in Figure

2.

This project keeps the interface itself simple for ease-of-use

shown in Figure 3. It provides several buttons that each affect the

agent’s environment in different ways. The “Add Monster” will

place a completely random creature into the level, which may

very well be hostile towards the agent. The “Add Trap” will add

a teleportation trap in a random spot within the environment,

which will teleport the agent to a random location should it step

onto the trap. The “Add Object” will add a completely random

object that the AI can also pick up and use. The “Add Boulder”

will place a boulder within the level that the agent can push

around wherever it wants. Finally, the “Submit” button will save

all changes to the level.

Kuo-pao Yang et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 186 - 190

188

(setv lvl_gen (minihack.LevelGenerator :w 10 :h 10))

; Events when the user selects a button

(while True

(setv [event value] (.read Window))

(if (or (= event sg.WIN_CLOSED) (= event "Submit"))

 (break)

 (setv des (.get_des lvl_gen)))

(if (= event "Add Monster")

 (.add_monster lvl_gen)

)

(if (= event "Add Trap")

 (.add_trap lvl_gen)

)

(if (= event "Add Object")

 (.add_object lvl_gen)

)

(if (= event "Add Altar")

 (.add_altar lvl_gen)

)

(if (= event "Add Boulder")

 (.add_boulder lvl_gen)

)

Figure 2: Code for Level Generator Functions

The users can press each of the “Add” buttons as many times as

they would like to add even more of whatever they wish. For

example, seven completely random monsters will be added into

the environment if the users are to press the “Add Monster”

button seven times. If the users are to press the “Add Boulder”

four times, four boulders will appear in random locations within

the level. The same concept applies for all of the other buttons.

The “Submit” button saves the level and closes the interface.

Figure 3: Menu for Level Generator

Once the users are satisfied with their selections and submit their

changes to the level, the console will display a preview of the

level and everything that is added to it. In Figure 4, the users

select the “Add Monster” button two times, and the “Add

Object” button once. The result creates a level that will feature

two random creatures and one random object. When the users

preview the level, they can see the changes.

Figure 4: Level Generator Results

Figure 5 shows a visual of the created level using a tile set for

better visual representation. There are two monsters and one

object in the room selected by the user.

Figure 5: Visual of Level Generator Using Tile Set

3.3 Adding an agent

Once the interface is created, the project implements an agent to

train with the new environments and tasks. Since it uses Hy

programming language and has access to Python libraries, such

as MiniHack and NLE, this project takes advantage of Hy

programming language and uses TorchBeast. TorchBeast

provides a RL platform within PyTorch and implements a

version of the Importance Weighted Actor Learner Architecture

(IMPALA) [14] algorithm. The IMPALA is a distributed agent

that uses resources efficiently with single-machine training while

also allowing the capabilities to scale to thousands of machines

without sacrificing resources or efficiency. TorchBeast is

designed with a pure Python approach in mind, along with

providing OpenAI interface. This project implements with the

C++ and Python Variant, PolyBeast, for its higher performance

potential over the MonoBeast version. In addition to the

Kuo-pao Yang et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 186 - 190

189

capabilities of TorchBeast, this project also choses it since

MiniHack has a direct implementation of PolyBeast already

integrated within, thus easing the burden of integration.

4. DISSUSSION

This project encountered issues between Hy and MiniHack.

After each module was implemented, we began the task of

integrating the level editor with the TorchBeast agent and

MiniHack environments. We started facing numerous issues with

Hy programming language and its interactions between the

various packages and frameworks. The most notable issue with

the level editor was the creation of the OpenAI environment. In

order to use an environment created in OpenAI’s Gym interface,

the users must first register the environment and set parameters.

Since MiniHack creates environments by leveraging the use of

des files, a des file must be given when registering an

environment for OpenAI. When Hy generates the des file from

MiniHack level generator, the conversion of Hy to Python did

not function correctly, and thus could not be passed as an

argument in the functions. To work around this situation, we

resorted to using Python and creating a separate environment

class registered with that. We then, placed this environment

within the MiniHack package’s environments so that we could

easily use the scripts supplied with the custom environment.

Since we could directly pass the des file data as an argument to

the custom environment, we exported it to a dat file directly and

then created a separate statement within the class to load the dat

file.

In addition to the issues with Hy and MiniHack, this project also

encountered severe problems with the simple level editor GUI.

PySimpleGUI [15], a package to transform tkinter, Qt,

WxPython, and Remi GUIs into simpler interfaces, has

numerous issues with Hy. The most difficult one to deal with was

simply providing output to the terminal once the interface was

interacted with. If any output to the terminal was inside the

interface, Hy would fail to run and present end-of-file statements.

We also encountered other issues such as GUI interface not

always having their states saved. This project successfully solves

Hy and GUI problems by resorting to other means of outputting

to the terminal, primarily by using the altered des file as the

output.

5. CONCLUSION

By using Hy, this project makes it possible to utilize Lisp code

while incorporating Python libraries into the development

workflow. Despite the multitude of issues, it is not only able to

successfully implement the small Hy based level editor for

MiniHack and integrate it with the TorchBeast’s PolyBeast

agent, but also tests the usage of Hy with some modern-day

toolkits and scenarios. This project successfully accomplishes

and evaluates the goal naturally, rather than forcing the usage

when it would have been proven cumbersome. Overall, the usage

of Hy is proved useful along with the overall syntax and style

being enjoyable to write. However, the compatibility of certain

packages and general lack of documentation on any issues that

arise causes massive challenges with the workflow. Using Hy is

an interesting combination of Lisp and Python, it can be used in a

modern-day practitioner’s toolkit. In the future, this project

would like to explore the usage of the RLlib library in an effort to

see if it works better with Hy as well as to expand the Level

Editor application into something bigger of use.

REFERENCES

1. J. McCarthy, Recursive Functions of Symbolic

Expressions and Their Computation by Machine, Part I,

Communications of the ACM, vol. 3, no. 4, pp. 184-195,

April 1960, doi: 10.1145/367177.367199

2. IRDC, Berlin Interpretation, International Roguelike

Development Conference, September 2008, Available:

http://www.roguebasin.com/index.php?title=Berlin_Interpr

etation, Accessed: September 2022.

3. A. Asperti, D. Cortesi, C. De Pieri, G. Pedrini, and F.

Sovrano, Crawling in Rogue's Dungeons With Deep

Reinforcement Techniques, IEEE Transactions on

Games, vol. 12, no. 2, pp. 177-186, June 2020, DOI:

10.1109/TG.2019.2899159.

4. D. Dannenhauer, M. Floyd, J. Decker, and D. Aha,

Dungeon Crawl Stone Soup as an Evaluation Domain

for Artificial Intelligence, AAAI-19 Workshop on Games

and Simulations for Artificial Intelligence, Hawaii, 2019,

arXiv:1902.01769.

5. H. Küttler, N. Nardelli, A. Miller, R. Raileanu, M. Selvatici,

E. Grefenstette, and T. Rocktäschel, The NetHack

Learning Environment, 34th Conference on Neural

Information Processing Systems (NeurIPS 2020),

Vancouver, Canada, pp. 1-28, December 2020,

arXiv:2006.13760.

6. NetHack, NetHack Version 3.6.6, Available:

https://www.nethack.org, Accessed: September 2022.

7. M. Samvelyan, R. Kirk, V. Kurin, J. Parker-Holder, M.

Jiang, E. Hambro, F. Petroni, H. Küttler, E. Grefenstette,

and T. Rocktäschel, MiniHack the Planet: A Sandbox for

Open-Ended Reinforcement Learning Research, 35th

Conference on Neural Information Processing Systems

(NeurIPS 2021), pp. 1-33, December 2021,

arXiv:2109.13202.

8. Hy, Hy Society, Available: https://github.com/hylang/hy,

Accessed: September 2022.

9. H. Küttler, N. Nardelli, T. Lavril, M. Selvatici, V.

Sivakumar, T. Rocktäschel, and E. Grefenstette,

TorchBeast: A PyTorch Platform for Distributed RL,

pp. 1-10, October 2019, arXiv:1910.03552.

10. R. Jones, C. Stewart, I. Stewart, The Art of Lisp

Programming, Springer Science & Business Media,

December 1989, ISBN-13: 978-3540195689.

11. SYNCED, NetHack: Fast & Complex Learning

Environment For Testing RL Agent Robustness &

Generalization, July 2020, Available:

https://syncedreview.com/2020/07/01/nethack-fast-comple

Kuo-pao Yang et al., International Journal of Advanced Trends in Computer Science and Engineering, 11(5), September – October 2022, 186 - 190

190

x-learning-environment-for-testing-rl-agent-robustness-gen

eralization, Accessed: September 2022.

12. Shen, NetHack-inventory, April 2006, Available:

https://en.wikipedia.org/wiki/File:Nethack-inventory.png,

Accessed: September 2022.

13. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J.

Schulman, J. Tang, and W. Zarembam, OpenAI Gym, pp.

1-4, June 2016, arXiv:1606.01540.

14. L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T.

Ward, Y. Doron, V. Firoiu, T. Harley, I. Dunning, S. Legg,

K. Kavukcuoglu, IMPALA: Scalable Distributed

Deep-RL with Importance Weighted Actor-Learner

Architectures, June 2018, arXiv:1802.01561.

15. PySimpleGUI, Python GUIs for Humans, Available:

https://pysimplegui.readthedocs.io/en/latest, Accessed:

September 2022.

