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ABSTRACT 

 

Software defect detection is one of the biggest software 

development challenges and accounts for the largest budget 

in the software development process. One of the effective 

activities for software development and increasing its 

reliability is to predict software defects before reaching the 

test stage, which helps to save time in the production, 

maintenance and cost process. This research aims to present 

a software defect prediction method based on knowledge 

graphs and automated machine learning. We use knowledge 

acquisition, knowledge fusion, knowledge storage and 

knowledge calculation and other knowledge map 

construction technology research, to realize the knowledge 

map recommends high-quality software defect prediction 

models as the hot-start input conditions for automatic 

search. The empirical study uses NASA's open-source 

dataset experimental objects and six performance 

evaluation indicators include Precision, Recall, PRC 

(Precision Recall Characteristic), ROC (Receiver Operating 

Characteristic), F-Measure, MCC (Matthews Correlation 

Coefficient). The experimental results show that the 

proposed model performs better than the traditional classic 

software defect prediction model recommended by the 

knowledge map in terms of different datasets and 

evaluation indicators. 

 

Key words: Software Defect Prediction, Machine 

Learning, Knowledge Graphs 

1. INTRODUCTION 

Software testing is an important measure to ensure the 

quality of software products and improve the software's 

credibility [1]. At present, in third-party confirmation 

testing, defects in software function modules are mainly 

found through code review and dynamic testing [2]. 

However, this static and dynamic test method relies heavily 

on human abilities and experience and requires a lot of code 

review time and dynamic test coverage analysis[3]. 

Software defect prediction can provide a basis for judging 

the defect tendency of function modules in the test planning 

stage, which helps code review to allocate resources 

reasonably, improve testing efficiency, and improve 

software testing quality [4]. However, software defect 

prediction technology is in software engineering practice. 

The reason is that the software defect prediction effect is 

not only related to the distribution of defect datasets is also 

mainly limited by the software defect prediction model [5]. 

How to effectively improve the performance evaluation 

indicators of the software defect prediction model has 

become an urgent problem to be solved in the application 

of software defect prediction [6]. In recent years, software 

defect prediction has become a hot spot in intelligent 

software engineering [7]. Software defect prediction is 

mainly historical data to predict potential defects in 

software [8]. Academic research has achieved good results. 

Wahono elaborated the research results of software defect 

prediction from 2000 to 2013 from the three dimensions of 

research trends, datasets, methods and frameworks [5]. 

Hassan et al. Summarized the research results of software 

defect prediction from 2009 to 2018 include six categories 

(Bayesian algorithm, Decision Tree algorithm, Clustering 

algorithm, Artificial Neural Networks algorithm, Deep 

Learning algorithm, Ensemble Learning algorithm) for 30 

software defect prediction models [9]. Chris et al. proposed 

the combination selection and hyperparameter optimization 

of the AutoWEKA classification algorithm, through 3 kinds 

of ensemble methods, 14 types of meta-methods, 30 basic 

classifiers and various hyperparameter settings to realizes 

the construction of network structure, adjustment of 

network structure, adjustment of hyperparameters, model 

the evaluation and other processes are all automated [10]. 

In the context of artificial intelligence and big data, 

knowledge graphs [11], automated machine learning[12] 

and deep learning technologies [13] are increasingly by 

academia and industry. The core of artificial intelligence is 

the design of algorithms and automated machine learning 

and deep learning technology lowers the threshold of 

artificial intelligence applications. It helps to complete the 

development and deployment of artificial intelligence 

projects [8]. With the low-threshold and automated 

features, automated machine learning is completely subvert 

the traditional testing methods in the next few years make 

artificial intelligence truly popular. 

This paper proposes a software defect prediction model 

based on automated machine learning using knowledge 

diagrams. First, the knowledge diagram in the software 

defect prediction model described, and then a model based 

genetic algorithm is designed to predict software defects. 

Then, experimental research used to confirm the 

performance comparison test of the proposed software 
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defect prediction model and the traditional classical fault 

prediction model, followed by the performance comparison 

test of the proposed model and AutoWeka1. 

2. KNOWLEDGE GRAPH CONSTRUCTION 

ORIENTED TO THE FIELD OF SOFTWARE 

DEFECT PREDICTION 

The construction of domain knowledge graph includes, 

knowledge acquisition, knowledge extraction, knowledge 

fusion, knowledge storage, knowledge calculation and 

reasoning. Software defect prediction model domain 

knowledge graph construction process shown in Figure 1. 

 
Figure 1: Knowledge graph construction process 

 

Construct the data model of the knowledge map in the 

software defect prediction domain, define the structure of 

the entire knowledge map, and use a combination of top-

down and bottom-up methods to construct the domain 

knowledge map of software defect prediction models. The 

classification of software defect prediction models includes 

Bayesian classifiers, neural network classifiers, functional 

classifiers, meta classifiers, lazy classifiers, rule classifiers, 

time series classifiers, tree structure classifiers, other 

classifiers, etc. Each software defect prediction model 

provides standardization input parameters, train and test 

data sets with various distribution laws, and build a 

knowledge map of software defect prediction models with 

multi-dimensional evaluation indicators. 

The data acquired by knowledge include, structured data of 

software defect prediction model performance testing, 

semi-structured data of the extended list of software defect 

prediction models, and plain text unstructured data of 

various software defect prediction models in software 

engineering journals and papers. Among them, by writing 

automated scripts, the process of obtaining structured data 

for software defect prediction model performance testing is 

shown in Figure 2. 

The knowledge fusion in the knowledge graph includes the 

fusion of the pattern layer and the the data layer, and 

knowledge extraction is in the form of RDF (resource 

description framework) [14]. The data structure of RDF 

mainly includes two forms, nodes and edges. Nodes 

represent entities and attributes, and edges represent 

relationships between entities or between entities and 

attributes. Import the RDF data constructed above into a 

graph database for storage. Graph database supports graph 

structure, entity and relationship representation, and query 

mechanism. Knowledge graph calculation includes graph 

                                                           
1 https://github.com/automl/autoweka 

mining calculation and rule-based reasoning. From 

Precision, Recall, PRC (Precision Recall Characteristic), 

ROC (Receiver Operating Characteristic), F-Measure, 

MCC (Matthews Correlation Coefficient) [15]. 

 
Figure 2:The process of structured data knowledge 

acquisition 

3. DESIGN SOFTWARE DEFECT METHOD 

3.1. Stacking integrated learning method 

For the integrated learning of stacking structure, the 

integrated selected configuration includes the selection 

configuration of the base-level classifier and the meta-level 

classifier. The difficulties faced by the stacking structure 

are as follows: (1) Stacking configurations with high 

generalization accuracy are often field-related for different 

types of unbalanced or overlapping data sets, the best 

stacking configuration is different, so the same 

configuration is used on different data sets, the accuracy of 

the stacking classifier obtained may be different. (2) The 

generalization ability of the stacking configuration is 

determined by combining the base classifier and the meta 

classifier. These fixed-configuration methods all focus on 

the choice of the meta classifier, while ignoring the problem 

of how to choose the base classifier. 

3.2. Genetic Algorithm  

DEAP (distributed evolutionary algorithms in python) [16] 

is a novel genetic algorithm evolutionary computing 

framework for rapid prototyping and testing. It aims to 

make the algorithm clear and the data structure transparent. 
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It can be perfectly coordinated between parallel 

mechanisms. 

3.3. Proposed model and working principle 

The basic idea of proposed model for software defect 

prediction shown in Figure 3 and Figure 4. 

(1) Obtain software defect prediction models (software 

defect prediction models derived from Weka 3.9.52) 

performance test. 

(2) With the ranking of each evaluation index 

recommended by the knowledge graph, it used as the hot-

start input condition for the automatic search of the software 

defect prediction model. 

(3) Use the DEAP genetic algorithm framework to build 

automated search optimization. 

(4) Recursive layer by layer based on meta-stacking to find 

model nodes that can replaced by meta-stacking. 

(5) According to different evaluation indicators, optimize 

other best stacking model structures. 

The flow of proposed model software defect prediction 

shown in Figure 4. 

 
Figure 3: Proposed model base classifier selection 

configuration 

 
Figure 4: Proposed model software defect prediction 

method flow 

                                                           
2 https://www.cs.waikato.ac.nz/~ml/weka/ 

4. EXPERIMENT AND EVALUATION 

Under the conditions of various data sets with different 

sample sizes and defect rates, the software defect prediction 

model based on the knowledge graph-assisted automated 

machine learning proposed in this article and the traditional 

classic software defect prediction model used for 

comparative experimental testing. The experimental 

environment: Windows 10, Intel(R) Core(TM) i7-7500U 

CPU @ 2.70GHz -2.90 GHz RAM 16 GB, Open JDK 1.8.0, 

Weka 3. 9. 5. 

 

4.1- Software defect prediction prototype 

Software defect prediction prototype configuration includes 

the selection of prediction types, the selection of data sets, 

the number of defect prediction models recommended by 

the knowledge map, the configuration of genetic algorithms 

(random seed, genetic algebra, population size, and 

mutation rate), model depth, evaluation indicators, etc. 

4. 2 Experimental objects and evaluation indicators 

NASA’s 13 data sets [17] are all practical engineering 

projects of NASA, including satellite flight control 

software, simulator software, and ground station test 

software. The data sets cover C, C + +, Perl, Java. In the 

NASA dataset, the percentage distribution of the defect rate 

of function modules is 0.41% ~ 48. 80%. The classification 

label in the data set is whether the function module is 

defective. The attributes of the function module include the 

number of lines of code and McCabe. Measurement values, 

Halstead measurement values, etc. The NASA dataset is 

described in Table 1. Evaluation of 6 performance 

indicators of experimental objects including Precision, 

Recall, F-Measure, MCC, ROC, PRC [18]. 

Table 1: Software defects related to NASA data set 

project name 

Numbe

r of 

skin 

feature

s 

Total 

number 

of 

samples 

Number 

of 

defectiv

e 

module

s 

Defect 

rate 

CM1 41 505 48 9.50 

JM1 22 10,878 2,102 19.32 

KC1 22 2,107 325 15.42 

KC3 41 458 43 9.39 

KC4 41 125 61 48.80 

MC1 40 9,466 68 0.72 

MC2 41 161 52 32.30 

MW1 41 403 31 7.69 

PC1 41 1,107 76 6.87 

PC2 41 5,589 23 0.41 

PC3 41 1,563 160 10.24 

PC4 41 1,458 178 12.21 

PC5 40 17,186 516 3.00 
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4.3. Experimental Design 

In the command line mode, through automated script 

testing, each test dataset is split into 66% as the training set 

and 34% as the test set. Each software defect prediction 

model is run ten times, and the average value taken as the 

model evaluation index. 

4.3.1. Defect prediction model of knowledge graph 

The category of software defect prediction models, 114 

software defect prediction models (with default parameters) 

experimentally provide a knowledge map data visualization 

distribution map, divided according to the dataset, in the 13 

datasets provided by NASA, include Precision, Recall, F-

Measure , MCC, ROC, PRC. 

4.3.2. Experiment design 

Select four representative data sets CM1, KC4, PC1, PC4 

from 13 data sets, and use the top 20 software defect 

prediction models as the base classifiers according to the 

evaluation indicators recommended by the knowledge 

graph: F-Measure, MCC, ROC, and PRC. The metaclass 

classifier, the experimental design is as follows: 

(1) Comparative test between proposed model and classic 

software defect prediction models 

Experiment 1: In the case of the PC1 data set ROC 

evaluation index, compare the proposed model with the top 

20 traditional software defect prediction model tests 

recommended by the knowledge graph. 

Experiment 2: In the case of the KC4 data set F-Measure 

evaluation index, compare the proposed model with the top 

20 classic software defect prediction model tests 

recommended by the knowledge graph. 

Experiment 3: In the case of the PC4 data set MCC 

evaluation index, compare the proposed model with the top 

20 classic software defect prediction model tests 

recommended by the knowledge graph. 

(2) Proposed model and AutoWeka automation model 

comparison test 

Experiment 4: Under the conditions of NASA data set JM1, 

KC1, KC3, KC4, MC1, MC2, MW1, PC1, PC3, PC4, PC5, 

from the six dimensions of evaluation indicators Precision, 

Recall, F-Measure, MCC, ROC, and PRC, Compare 

proposed model and AutoWeka defect prediction model test 

verification. 

4.4. Experimental results and analysis 

(1) Test results analysis of proposed model and classic 

defect prediction model 

Experiment 1: In the case of the PC1 data set, the ROC 

evaluation index of the proposed model is 0.887, which is 

the best performance, and the ROC comparison index 

shown in Figure 5. 

Experiment 2: In the case of the KC4 data set, the F-

Measure evaluation index of the proposed model is 0.832, 

which is the best performance, and the comparison index 

shown in Figure 6. 

Experiment 3: In the case of the PC4 data set, the proposed 

model MCC evaluation index is 0.570, which is the best 

performance, and the MCC comparison index shown in 

Figure 7. 

(2) Proposed model and AutoWeka automation model 

experiment results 

Experiment 4: Using the default relevant parameters of the 

AutoWeka, under the conditions of the NASA data set JM1, 

KC1, KC3, KC4, MC1, MC2, MW1, PC1, PC3, PC4, and 

PC5, from the evaluation indicators Precision, Recall, 

Comparison of F-Measure, MCC, ROC, PRC in six 

dimensions, proposed model performance indicators 

surpass the AutoWeka defect prediction model. Among 

them, the performance evaluation indicators of the 

proposed model and AutoWeka shown in Figure 8. 

 

 

 

Figure 5: PC1 data set ROC evaluation 

 

 

Figure 6: KC4 data set F-Measure evaluation 
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Figure 7: PC4 data set MCC evaluation 

 

 

Figure 8: Proposed model and AutoWeka performance 

Precision 

4.5. Experimental conclusion 

According to the above experiments, the following 

conclusions can be obtained: 

(1) Explore the construction of knowledge graphs in the 

field of software defect prediction models, obtain 1,339 

software defect prediction model data samples, and the 

knowledge graph recommends the ranking of evaluation 

indicators. The traditional classic software defect prediction 

models used as the base classifier and metaclass classifier 

of the proposed model. The hot start input conditions of the 

automated search have achieved good results. 

(2) The proposed model has better performance than the 

traditional classic software defect prediction model 

recommended by the knowledge map in terms of different 

datasets (PC1, KC4, PC4) and different evaluation 

indicators (F-Measure, MCC, ROC). 

(3) Proposed model is used in NASA data set (JM1, KC1, 

KC3, KC4, MC1, MC2, MW1, PC1, PC3, PC4, PC5) and 

six dimensional evaluation indicators (Precision, Recall, F-

Measure , MCC, ROC, PRC), the performance is better than 

AutoWeka's. 

4. CONCLUSION 

This paper uses the software defect prediction model as the 

research background, explores the construction and 

application of knowledge graphs, Stacking integrated 

learning, and proposes a software defect prediction model 

based on knowledge graph-assisted automated machine 

learning. The method empirical research uses NASA open 

source datasets experimental objects and six performance 

evaluation indicators. The experimental results show that 

the proposed model has better performance than the 

traditional classic software defect prediction model 

recommended by the knowledge map in terms of different 

data sets and different evaluation indicators. In comparison 

proposed model with the AutoWeka in the comparative test, 

the overall surpass has achieved good results.  

Looking to the future, in the comparison and verification of 

data sets in other aerospace fields, software defect 

prediction based on automated deep learning and software 

defect prediction based on interpretable deep learning are 

future development trends. 
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