
Iman Shafiei Alavijeh, International Journal of Advanced Trends in Computer Science and Engineering, 11(4), July - August 2022, 147 – 152

147

Prediction of software defects by knowledge graph

and genetic algorithm

Iman Shafiei Alavijeh

 Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran,

iman.shafiei@srbiau.ac.ir

Received Date : June 12, 2022 Accepted Date : July 15, 2022 Published Date : August 06, 2022

ABSTRACT

Software defect detection is one of the biggest software

development challenges and accounts for the largest budget

in the software development process. One of the effective

activities for software development and increasing its

reliability is to predict software defects before reaching the

test stage, which helps to save time in the production,

maintenance and cost process. This research aims to present

a software defect prediction method based on knowledge

graphs and automated machine learning. We use knowledge

acquisition, knowledge fusion, knowledge storage and

knowledge calculation and other knowledge map

construction technology research, to realize the knowledge

map recommends high-quality software defect prediction

models as the hot-start input conditions for automatic

search. The empirical study uses NASA's open-source

dataset experimental objects and six performance

evaluation indicators include Precision, Recall, PRC

(Precision Recall Characteristic), ROC (Receiver Operating

Characteristic), F-Measure, MCC (Matthews Correlation

Coefficient). The experimental results show that the

proposed model performs better than the traditional classic

software defect prediction model recommended by the

knowledge map in terms of different datasets and

evaluation indicators.

Key words: Software Defect Prediction, Machine

Learning, Knowledge Graphs

1. INTRODUCTION

Software testing is an important measure to ensure the

quality of software products and improve the software's

credibility [1]. At present, in third-party confirmation

testing, defects in software function modules are mainly

found through code review and dynamic testing [2].

However, this static and dynamic test method relies heavily

on human abilities and experience and requires a lot of code

review time and dynamic test coverage analysis[3].

Software defect prediction can provide a basis for judging

the defect tendency of function modules in the test planning

stage, which helps code review to allocate resources

reasonably, improve testing efficiency, and improve

software testing quality [4]. However, software defect

prediction technology is in software engineering practice.

The reason is that the software defect prediction effect is

not only related to the distribution of defect datasets is also

mainly limited by the software defect prediction model [5].

How to effectively improve the performance evaluation

indicators of the software defect prediction model has

become an urgent problem to be solved in the application

of software defect prediction [6]. In recent years, software

defect prediction has become a hot spot in intelligent

software engineering [7]. Software defect prediction is

mainly historical data to predict potential defects in

software [8]. Academic research has achieved good results.

Wahono elaborated the research results of software defect

prediction from 2000 to 2013 from the three dimensions of

research trends, datasets, methods and frameworks [5].

Hassan et al. Summarized the research results of software

defect prediction from 2009 to 2018 include six categories

(Bayesian algorithm, Decision Tree algorithm, Clustering

algorithm, Artificial Neural Networks algorithm, Deep

Learning algorithm, Ensemble Learning algorithm) for 30

software defect prediction models [9]. Chris et al. proposed

the combination selection and hyperparameter optimization

of the AutoWEKA classification algorithm, through 3 kinds

of ensemble methods, 14 types of meta-methods, 30 basic

classifiers and various hyperparameter settings to realizes

the construction of network structure, adjustment of

network structure, adjustment of hyperparameters, model

the evaluation and other processes are all automated [10].

In the context of artificial intelligence and big data,

knowledge graphs [11], automated machine learning[12]

and deep learning technologies [13] are increasingly by

academia and industry. The core of artificial intelligence is

the design of algorithms and automated machine learning

and deep learning technology lowers the threshold of

artificial intelligence applications. It helps to complete the

development and deployment of artificial intelligence

projects [8]. With the low-threshold and automated

features, automated machine learning is completely subvert

the traditional testing methods in the next few years make

artificial intelligence truly popular.

This paper proposes a software defect prediction model

based on automated machine learning using knowledge

diagrams. First, the knowledge diagram in the software

defect prediction model described, and then a model based

genetic algorithm is designed to predict software defects.

Then, experimental research used to confirm the

performance comparison test of the proposed software

ISSN 2278-3091

Volume 11, No.4, July – August 2022

International Journal of Advanced Trends in Computer Science and Engineering
Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse011142022.pdf

https://doi.org/10.30534/ijatcse/2022/011142022

http://www.warse.org/IJATCSE/static/pdf/file/ijatcse011142022.pdf
https://doi.org/10.30534/ijatcse/2022/011142022

Iman Shafiei Alavijeh, International Journal of Advanced Trends in Computer Science and Engineering, 11(4), July - August 2022, 147 – 152

148

defect prediction model and the traditional classical fault

prediction model, followed by the performance comparison

test of the proposed model and AutoWeka1.

2. KNOWLEDGE GRAPH CONSTRUCTION

ORIENTED TO THE FIELD OF SOFTWARE

DEFECT PREDICTION

The construction of domain knowledge graph includes,

knowledge acquisition, knowledge extraction, knowledge

fusion, knowledge storage, knowledge calculation and

reasoning. Software defect prediction model domain

knowledge graph construction process shown in Figure 1.

Figure 1: Knowledge graph construction process

Construct the data model of the knowledge map in the

software defect prediction domain, define the structure of

the entire knowledge map, and use a combination of top-

down and bottom-up methods to construct the domain

knowledge map of software defect prediction models. The

classification of software defect prediction models includes

Bayesian classifiers, neural network classifiers, functional

classifiers, meta classifiers, lazy classifiers, rule classifiers,

time series classifiers, tree structure classifiers, other

classifiers, etc. Each software defect prediction model

provides standardization input parameters, train and test

data sets with various distribution laws, and build a

knowledge map of software defect prediction models with

multi-dimensional evaluation indicators.

The data acquired by knowledge include, structured data of

software defect prediction model performance testing,

semi-structured data of the extended list of software defect

prediction models, and plain text unstructured data of

various software defect prediction models in software

engineering journals and papers. Among them, by writing

automated scripts, the process of obtaining structured data

for software defect prediction model performance testing is

shown in Figure 2.

The knowledge fusion in the knowledge graph includes the

fusion of the pattern layer and the the data layer, and

knowledge extraction is in the form of RDF (resource

description framework) [14]. The data structure of RDF

mainly includes two forms, nodes and edges. Nodes

represent entities and attributes, and edges represent

relationships between entities or between entities and

attributes. Import the RDF data constructed above into a

graph database for storage. Graph database supports graph

structure, entity and relationship representation, and query

mechanism. Knowledge graph calculation includes graph

1 https://github.com/automl/autoweka

mining calculation and rule-based reasoning. From

Precision, Recall, PRC (Precision Recall Characteristic),

ROC (Receiver Operating Characteristic), F-Measure,

MCC (Matthews Correlation Coefficient) [15].

Figure 2:The process of structured data knowledge

acquisition

3. DESIGN SOFTWARE DEFECT METHOD

3.1. Stacking integrated learning method

For the integrated learning of stacking structure, the

integrated selected configuration includes the selection

configuration of the base-level classifier and the meta-level

classifier. The difficulties faced by the stacking structure

are as follows: (1) Stacking configurations with high

generalization accuracy are often field-related for different

types of unbalanced or overlapping data sets, the best

stacking configuration is different, so the same

configuration is used on different data sets, the accuracy of

the stacking classifier obtained may be different. (2) The

generalization ability of the stacking configuration is

determined by combining the base classifier and the meta

classifier. These fixed-configuration methods all focus on

the choice of the meta classifier, while ignoring the problem

of how to choose the base classifier.

3.2. Genetic Algorithm

DEAP (distributed evolutionary algorithms in python) [16]

is a novel genetic algorithm evolutionary computing

framework for rapid prototyping and testing. It aims to

make the algorithm clear and the data structure transparent.

Iman Shafiei Alavijeh, International Journal of Advanced Trends in Computer Science and Engineering, 11(4), July - August 2022, 147 – 152

149

It can be perfectly coordinated between parallel

mechanisms.

3.3. Proposed model and working principle

The basic idea of proposed model for software defect

prediction shown in Figure 3 and Figure 4.

(1) Obtain software defect prediction models (software

defect prediction models derived from Weka 3.9.52)

performance test.

(2) With the ranking of each evaluation index

recommended by the knowledge graph, it used as the hot-

start input condition for the automatic search of the software

defect prediction model.

(3) Use the DEAP genetic algorithm framework to build

automated search optimization.

(4) Recursive layer by layer based on meta-stacking to find

model nodes that can replaced by meta-stacking.

(5) According to different evaluation indicators, optimize

other best stacking model structures.

The flow of proposed model software defect prediction

shown in Figure 4.

Figure 3: Proposed model base classifier selection

configuration

Figure 4: Proposed model software defect prediction

method flow

2 https://www.cs.waikato.ac.nz/~ml/weka/

4. EXPERIMENT AND EVALUATION

Under the conditions of various data sets with different

sample sizes and defect rates, the software defect prediction

model based on the knowledge graph-assisted automated

machine learning proposed in this article and the traditional

classic software defect prediction model used for

comparative experimental testing. The experimental

environment: Windows 10, Intel(R) Core(TM) i7-7500U

CPU @ 2.70GHz -2.90 GHz RAM 16 GB, Open JDK 1.8.0,

Weka 3. 9. 5.

4.1- Software defect prediction prototype

Software defect prediction prototype configuration includes

the selection of prediction types, the selection of data sets,

the number of defect prediction models recommended by

the knowledge map, the configuration of genetic algorithms

(random seed, genetic algebra, population size, and

mutation rate), model depth, evaluation indicators, etc.

4. 2 Experimental objects and evaluation indicators

NASA’s 13 data sets [17] are all practical engineering

projects of NASA, including satellite flight control

software, simulator software, and ground station test

software. The data sets cover C, C + +, Perl, Java. In the

NASA dataset, the percentage distribution of the defect rate

of function modules is 0.41% ~ 48. 80%. The classification

label in the data set is whether the function module is

defective. The attributes of the function module include the

number of lines of code and McCabe. Measurement values,

Halstead measurement values, etc. The NASA dataset is

described in Table 1. Evaluation of 6 performance

indicators of experimental objects including Precision,

Recall, F-Measure, MCC, ROC, PRC [18].

Table 1: Software defects related to NASA data set

project name

Numbe

r of

skin

feature

s

Total

number

of

samples

Number

of

defectiv

e

module

s

Defect

rate

CM1 41 505 48 9.50

JM1 22 10,878 2,102 19.32

KC1 22 2,107 325 15.42

KC3 41 458 43 9.39

KC4 41 125 61 48.80

MC1 40 9,466 68 0.72

MC2 41 161 52 32.30

MW1 41 403 31 7.69

PC1 41 1,107 76 6.87

PC2 41 5,589 23 0.41

PC3 41 1,563 160 10.24

PC4 41 1,458 178 12.21

PC5 40 17,186 516 3.00

Iman Shafiei Alavijeh, International Journal of Advanced Trends in Computer Science and Engineering, 11(4), July - August 2022, 147 – 152

150

4.3. Experimental Design

In the command line mode, through automated script

testing, each test dataset is split into 66% as the training set

and 34% as the test set. Each software defect prediction

model is run ten times, and the average value taken as the

model evaluation index.

4.3.1. Defect prediction model of knowledge graph

The category of software defect prediction models, 114

software defect prediction models (with default parameters)

experimentally provide a knowledge map data visualization

distribution map, divided according to the dataset, in the 13

datasets provided by NASA, include Precision, Recall, F-

Measure , MCC, ROC, PRC.

4.3.2. Experiment design

Select four representative data sets CM1, KC4, PC1, PC4

from 13 data sets, and use the top 20 software defect

prediction models as the base classifiers according to the

evaluation indicators recommended by the knowledge

graph: F-Measure, MCC, ROC, and PRC. The metaclass

classifier, the experimental design is as follows:

(1) Comparative test between proposed model and classic

software defect prediction models

Experiment 1: In the case of the PC1 data set ROC

evaluation index, compare the proposed model with the top

20 traditional software defect prediction model tests

recommended by the knowledge graph.

Experiment 2: In the case of the KC4 data set F-Measure

evaluation index, compare the proposed model with the top

20 classic software defect prediction model tests

recommended by the knowledge graph.

Experiment 3: In the case of the PC4 data set MCC

evaluation index, compare the proposed model with the top

20 classic software defect prediction model tests

recommended by the knowledge graph.

(2) Proposed model and AutoWeka automation model

comparison test

Experiment 4: Under the conditions of NASA data set JM1,

KC1, KC3, KC4, MC1, MC2, MW1, PC1, PC3, PC4, PC5,

from the six dimensions of evaluation indicators Precision,

Recall, F-Measure, MCC, ROC, and PRC, Compare

proposed model and AutoWeka defect prediction model test

verification.

4.4. Experimental results and analysis

(1) Test results analysis of proposed model and classic

defect prediction model

Experiment 1: In the case of the PC1 data set, the ROC

evaluation index of the proposed model is 0.887, which is

the best performance, and the ROC comparison index

shown in Figure 5.

Experiment 2: In the case of the KC4 data set, the F-

Measure evaluation index of the proposed model is 0.832,

which is the best performance, and the comparison index

shown in Figure 6.

Experiment 3: In the case of the PC4 data set, the proposed

model MCC evaluation index is 0.570, which is the best

performance, and the MCC comparison index shown in

Figure 7.

(2) Proposed model and AutoWeka automation model

experiment results

Experiment 4: Using the default relevant parameters of the

AutoWeka, under the conditions of the NASA data set JM1,

KC1, KC3, KC4, MC1, MC2, MW1, PC1, PC3, PC4, and

PC5, from the evaluation indicators Precision, Recall,

Comparison of F-Measure, MCC, ROC, PRC in six

dimensions, proposed model performance indicators

surpass the AutoWeka defect prediction model. Among

them, the performance evaluation indicators of the

proposed model and AutoWeka shown in Figure 8.

Figure 5: PC1 data set ROC evaluation

Figure 6: KC4 data set F-Measure evaluation

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

P
ro

p
o
se

d
 m

et
h

o
d

B
ag

g
in

g

R
an

d
o

m
 F

o
re

st

R
o

ta
ti

o
n
 F

o
re

st

E
n
se

m
b

le
 S

et
ec

ti
o
n

R
an

d
o

m
 S

u
b

S
p

ac
e

L
A

D
T

re
e

A
D

R
re

e

D
ec

o
ra

te

C
la

ss
if

ic
at

io
n
 V

ia
R

eg
re

ss
io

n

lt
er

at
iv

eC
 l

as
si

fi
er

 O
p
ti

m
iz

er

L
o
g

is
ti

c

A
d

aB
o

o
st

 M
l

M
u
lt

i
C

la
ss

 C
la

ss
if

ie
r

R
E

P
T

re
e

D
1

4
j

M
lp

C
la

ss
if

ie
r

N
B

T
re

e

R
O

C
 e

v
al

u
at

io
n
 i

n
d

ex

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

0.83

0.84

F
-m

ea
su

re
 e

v
al

u
at

io
n
 i

n
d

ex

Iman Shafiei Alavijeh, International Journal of Advanced Trends in Computer Science and Engineering, 11(4), July - August 2022, 147 – 152

151

Figure 7: PC4 data set MCC evaluation

Figure 8: Proposed model and AutoWeka performance

Precision

4.5. Experimental conclusion

According to the above experiments, the following

conclusions can be obtained:

(1) Explore the construction of knowledge graphs in the

field of software defect prediction models, obtain 1,339

software defect prediction model data samples, and the

knowledge graph recommends the ranking of evaluation

indicators. The traditional classic software defect prediction

models used as the base classifier and metaclass classifier

of the proposed model. The hot start input conditions of the

automated search have achieved good results.

(2) The proposed model has better performance than the

traditional classic software defect prediction model

recommended by the knowledge map in terms of different

datasets (PC1, KC4, PC4) and different evaluation

indicators (F-Measure, MCC, ROC).

(3) Proposed model is used in NASA data set (JM1, KC1,

KC3, KC4, MC1, MC2, MW1, PC1, PC3, PC4, PC5) and

six dimensional evaluation indicators (Precision, Recall, F-

Measure , MCC, ROC, PRC), the performance is better than

AutoWeka's.

4. CONCLUSION

This paper uses the software defect prediction model as the

research background, explores the construction and

application of knowledge graphs, Stacking integrated

learning, and proposes a software defect prediction model

based on knowledge graph-assisted automated machine

learning. The method empirical research uses NASA open

source datasets experimental objects and six performance

evaluation indicators. The experimental results show that

the proposed model has better performance than the

traditional classic software defect prediction model

recommended by the knowledge map in terms of different

data sets and different evaluation indicators. In comparison

proposed model with the AutoWeka in the comparative test,

the overall surpass has achieved good results.

Looking to the future, in the comparison and verification of

data sets in other aerospace fields, software defect

prediction based on automated deep learning and software

defect prediction based on interpretable deep learning are

future development trends.

REFERENCES

[1] V. Berg, J. Birkeland, A. Nguyen-Duc, I. O.

Pappas, and L. Jaccheri, "Software startup

engineering: A systematic mapping study,"

Journal of Systems and Software, vol. 144, pp.

255-274, 2018.

[2] M. Varga and M. Kvassay, "Unit testing in data

structures graphical learning environment," in

2019 17th International Conference on Emerging

eLearning Technologies and Applications

(ICETA), 2019: IEEE, pp. 797-804.

[3] Z. Ullah, A. Lajis, M. Jamjoom, A. Altalhi, A. Al‐

Ghamdi, and F. Saleem, "The effect of automatic

assessment on novice programming: Strengths and

limitations of existing systems," Computer

Applications in Engineering Education, vol. 26,

no. 6, pp. 2328-2341, 2018.

[4] P. He, B. Li, X. Liu, J. Chen, and Y. Ma, "An

empirical study on software defect prediction with

a simplified metric set," Information and Software

Technology, vol. 59, pp. 170-190, 2015.

[5] R. S. Wahono, "A systematic literature review of

software defect prediction," Journal of Software

Engineering, vol. 1, no. 1, pp. 1-16, 2015.

[6] X. Cai et al., "An under‐sampled software defect

prediction method based on hybrid multi‐objective

cuckoo search," Concurrency and Computation:

Practice and Experience, vol. 32, no. 5, p. e5478,

2020.

[7] H. Tong, B. Liu, and S. Wang, "Software defect

prediction using stacked denoising autoencoders

and two-stage ensemble learning," Information

and Software Technology, vol. 96, pp. 94-111,

2018.

[8] J. Li, P. He, J. Zhu, and M. R. Lyu, "Software

defect prediction via convolutional neural

network," in 2017 IEEE International Conference

on Software Quality, Reliability and Security

(QRS), 2017: IEEE, pp. 318-328.

[9] F. Hassan, S. Farhan, M. A. Fahiem, and H.

Tauseef, "A Review on Machine Learning

Techniques for Software Defect Prediction,"

Technical Journal, vol. 23, no. 02, pp. 63-71,

2018.

0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58

M
C

C
 e

v
al

u
at

io
n
 i

n
d

ex

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

P
re

ci
si

o
n
 I

n
d

ex

Prop…
Auto…

Iman Shafiei Alavijeh, International Journal of Advanced Trends in Computer Science and Engineering, 11(4), July - August 2022, 147 – 152

152

[10] C. Thornton, F. Hutter, H. H. Hoos, and K.

Leyton-Brown, "Auto-WEKA: Combined

selection and hyperparameter optimization of

classification algorithms," in Proceedings of the

19th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2013, pp.

847-855.

[11] J. Yan, C. Wang, W. Cheng, M. Gao, and A. Zhou,

"A retrospective of knowledge graphs," Frontiers

of Computer Science, vol. 12, no. 1, pp. 55-74,

2018.

[12] E. Barreiro, C. R. Munteanu, M. Cruz-

Monteagudo, A. Pazos, and H. González-Díaz,

"Net-net auto machine learning (automl)

prediction of complex ecosystems," Scientific

reports, vol. 8, no. 1, pp. 1-9, 2018.

[13] A. Hasanpour, P. Farzi, A. Tehrani, and R. Akbari,

"Software defect prediction based on deep

learning models: Performance study," arXiv

preprint arXiv:2004.02589, 2020.

[14] V. Presutti, F. Draicchio, and A. Gangemi,

"Knowledge extraction based on discourse

representation theory and linguistic frames," in

International conference on knowledge

engineering and knowledge management, 2012:

Springer, pp. 114-129.

[15] S. K. Pandey, R. B. Mishra, and A. K. Tripathi,

"BPDET: An effective software bug prediction

model using deep representation and ensemble

learning techniques," Expert Systems with

Applications, vol. 144, p. 113085, 2020.

[16] F.-M. De Rainville, F.-A. Fortin, M.-A. Gardner,

M. Parizeau, and C. Gagné, "Deap: A python

framework for evolutionary algorithms," in

Proceedings of the 14th annual conference

companion on Genetic and evolutionary

computation, 2012, pp. 85-92.

[17] H. Wei, C. Hu, S. Chen, Y. Xue, and Q. Zhang,

"Establishing a software defect prediction model

via effective dimension reduction," Information

Sciences, vol. 477, pp. 399-409, 2019.

[18] S. K. Pandey, R. B. Mishra, and A. K. Tripathi,

"Machine learning based methods for software

fault prediction: A survey," Expert Systems with

Applications, vol. 172, p. 114595, 2021.

