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Abstract: Vaddiparthi Yogewsara, G.Srinivas and
Biswajit Rath introduced the concept of Fs-set ,Fs-subset,
complement an of Fs-subset and proved important results
like De Morgan laws for Fs-sets which are called Fs- De
Morgan laws. In another paper[5] Vaddiparthi Yogeswara,
Biswajit Rath and S.V.G.Reddy introduced the concept of
Fs-Function between two Fs-subsets of a given Fs-set and
defined an image of an Fs-subset under a given Fs-function.
Also they studied the properties of images under various
kinds of Fs-functions. In this paper we modify the definition
of image of an Fs-subset under any given Fs-function and
study the properties of images of Fs-subsets under various
Fs-functions.

KeyWOI’dS:Fs-set, Fs-subset, Fs-empty set, Fs-union, Fs-
intersection, Fs-complement, Fs-De Morgan laws and Fs-
Function and images of Fs-subsets

INTRODUCTION

Murthy[1] introduced F-set in order to prove Axiom of
choice for fuzzy sets which is not true for L-fuzzy sets
introduced by Goguen[2]. In the paper[3], Tridiv discussed
fuzzy complement of an extended fuzzy subset and proved
De Morgan laws etc. The extended Fuzzy set Tridiv
considered contains the membership value u, (x) — p, (x).
—u, (x), a term in this expression will not be in the interval
[0,1].To answer this incomprehensiveness, In the paper[4],
Vaddiparthi Yogeswara , G.Srinivas and Biswajit Rath
introduced the concept of Fs-set and developed the theory of
Fs-sets in order to prove collection of all Fs-subsets of given
Fs-set is a complete Boolean algebra under Fs-unions, Fs-
intersections and Fs-complements. The Fs-sets they
introduced contain Boolean valued membership functions
.All most they are successful in their efforts in proving that
result with some conditions. In another paper[5] Vaddiparthi
Yogeswara, Biswajit Rath and S.V.G.Reddy introduced the
concept of Fs-Function between two Fs-subsets of given Fs-
set and defined an image of an Fs-subset under a given Fs-
function. Also they studied the properties of images under
various kinds of Fs-functions. In this paper we modify the
definition of image of an Fs-subset under any given Fs-
function and study the properties of images of Fs-subsets
under various Fs-functions. For convenience of readers
before beginning the paper, we mention  various
definitions and results in paper[4]. We denote the largest
element of a complete Boolean algebra L,[1.1] byM,. We

denote Fs-union and crisp set union by same symbol U and
similary Fs-intersection and crisp set intersection by the
same symbol N.[X] denote the complete ideal generated by
X and (X) denote the complete subalgebra generated by X in
a complete Boolean algebra. For all lattice theoretic
properties and Boolean algebraic properties we refer Szasz
[7], Garret Birkhoff[8],Steven Givant « Paul Halmos[8] and
Thomas Jech[9]

THEORY OF FS-SETS
1.1 Fs-set: Let U be a universal set, A; € Uand let AcU
be non-empty. A four tuple
A= (Ay A A (14, H24),Ls) is said be an Fs-set if,
and only if
(1) Ac4,
(2) Lyis acomplete Boolean Algebra
(3) a4, A1 — Ly, ppa: A — L, ,are functions such
that py4,14 = Uza
(4) A:A— L, is defined by
Ax = pya, % A (upax )¢ for each x € A
1.2 Fs-subset
Let A=(Ay, A, A(pt1a, p24), Ly) and
B=(B,,B, B(iyp, t25), L) be a pair of Fs-sets. B is said to
be an Fs-subset of A, denoted by BSA, if, and only if
(1) By<A,, ASB
(2) Lg is a complete subalgebra of L,
or Lg<L,
() tup, <t |Biand pgpld = piyy

1.3 Proposition: Let B and A be a pair of Fs-sets such that
BC A . Then Bx < Ax is true for each x €A
1.4 Definition: For some Ly, such that L, < L, a four tuple
X = (X1, X, X (s, Hax), Ly ) is not an Fs-set if, and only if
(@)X € X, or
(0) p1x, x & rxx , forsomex € X N X;
Here onwards, any object of this type is called an Fs-empty
set of first kind and we accept that it is an Fs-subset of B for
any B € A.
Definition: An Fs-subset Y=(Yy,Y, Y (ty, oy ), Ly) Of A,
is said to be an Fs-empty set of second kind if, and only if
@) vy=Y=A4
) Ly <L,

(c) Y=0
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1.4.1 Remark: we denote Fs-empty set of first kind or Fs-
empty set of second kind by ®_;and we prove later (1.15),
@, is the least Fs-subset among all Fs-subsets of A.
1.5 Definition: Let B; = (By;, By, B, (15, 25, ), L, ) and
B, = (By3, By, By (a5, Has, ). Li,) be & pair of Fs-sets.
We say that B;and B, are equal, denoted by B; = B, if,
only if

[1] Byy =Byz, By =B,

[2] Lg, = Lg,
[3]1 (& (“1311 = Mg, aNd Upp, = lizp, ) or (b) B, =
B,

1.5.1Remark: We can easily observed that 3(a) and 3(b) not

equivalent statements.
1.6 Proposition: B; = (Byy, By, By (s, M5, ). Lp, ) and
B, = (By,. By B, (15, 5, ): Ls,) are equal if, only if
B, €B, and B, € B,
1.7 Definition of Fs-union for a given pair of Fs-subsets
of A:
Let B=(B,, B, By, #25), L )and
¢=(Cy,C,Cuac, Hac). Lc), be a pair of Fs-subsets ofA.
Then,
the Fs-union of B and C ,denoted by BUC is defined as
BUC=D=(D;,D,D(p, H2p ). Lp).Where
(1) Dy=BUC,,D=BncC
(2) Lp = Lg Vv Lc=complete subalgebra generated by
LpUL,
(3) wup,: Dy — Lp is defined by
Hap, X = (g, V g, )X
U,p * D — L is defined by
HopX = HapX A lpcX
D: D — L, is defined by
Dx = pyp, xA\(pzpx)°
1.8 Proposition: BUCis an Fs-subset of 4.
1.9 Definition of Fs-intersection for a given pair of Fs-
subsets of A:
Let B=(By, B, B3, #25). L) and
¢=(C,,C,Cuac, Hac). Lc) be a pair of Fs-subsets ofA
satisfying the following conditions:
0] BinC, 2BUC
(i) X Apgc,x = (25 V ppc)x for
eachx € A
Then, the Fs-intersection of B and C, denoted by BNC is
defined as
BNC =E=(E,,E, E(pyp,  tar ). L) Where
(@ E, =B NnC,,E=BuUC
(b) Lg=LgALc,=LgNL;
(© g, E; — Lgisdefined by pyp x = pyp x Ay, x
Uyg + E — Lg is defined by
pX = (42 V Hac)x
E: E — Lg is defined by
Ex= .ulEle(.MZEx)C .
1.9.1 Remark: If (i) or (ii) fails we define BNC as
BNC=d 4, , which is the Fs-empty set of first kind.

1.10 Proposition: For any pair of Fs-subsets
B:(BlrBré(ﬂwlrﬂzs)rl‘le)and C:(Clr C, E(H1clrﬂzc)rLc)
of A4, the following results are true
(1) B€BUC and CSBUC
(2) BnC<B and BNC<C provided BNC exists
(3) B<ce implies BUC=C
(4) BNC=B when B+ ®_, and BSC and & 4, NC=D 4,
(5) BuUC= C U B (commutative law of Fs-union)
(6) BNC= ¢ n B provided BNC exists. (commutative
law of Fs-intersection)
(7) BUB=B
(8) BnB=B ( (7 )and (8) are Idempotent laws of Fs-
union and Fs-intersection respectively)

1.11 Proposition: For any Fs-subsets B, Cand D of A =
(Al ,Ar‘i (.ulAl ‘.HZA)r LA)!
the following associative laws are true:
) Bu(CuDdD)=(BUC)UD
() Bn(€nD)=(BNC) NnD,whenever Fs-
intersections exist.

1.12 Arbitrary Fs-unions and arbitrary Fs-intersections:
Given a family (B,),¢; of Fs-subsets of
A=(A1, A, A(pya,, 124), La), Where

B, = (BurBi:Bi(.“wlirsti)rLBi)afor anyi€l

1.13 Definition of Fs-union is as follows

Case (1): For I=®,define Fs-union of (B;);¢;,denoted by
Uier B; asU;¢; B; = @ 4, which is the Fs-empty set

Case (2): Define for 1+®, Fs-union of (B;);¢; denoted by
Uie; B; as follow

UBi =B= (Ber’E(nulBl,.HZB)’LB)’
i€l
where
(@ By = Uier ByisB = Ny By
(b) Lp = Ve Lp, = complete subalgebra generated by
ULi(L; = Lg,)
(©) u1p,: By = Ly is defined by

Mg X = (ViEI .“wli)x = Vier, M1, X » Where

I,={iel|xeB;}

Hzp: B — Ly is defined by p,5x = (Aes ta5,)x

=_/\iEI.u23ix _

B:B — Ly is defined by Bx = p; 5, xA(up x)°
1.13.1Remark: We can easily show that (d) B, 2 B and
.U131|B 2 lzp-

1.14 Definition of Fs-intersection:

Case (1): For I=®, we define Fs-intersection of (B;);¢; .
denoted by N;¢; B; as Nie; B; = A

Case (2): Suppose

Nier By 2 Uy Biand A .leil(Uiel B) = Vier Uz,
Then, we define Fs-intersection of (B;);¢; , denoted by
N;e; B; as follows

ﬂBi =¢=(6,.C,C(pac, tac). Le)
el

(@) € =Nig By, €=U B;

(0) Lc = Aier L,
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(€) my¢,: € — L is defined by
Hic,x = (AiEI .uwli)x = Niertap,; X
Uyc: C — L is defined by
HocX = (ViEI sti)x = Vier, b2p X,
where,I, = {i € I| x € B;}
C:C — L isdefined by Cx = py ¢, xA(uyc %)°
Case (3): Nie; By; 2 Ui, By or /\iEI.ulBlil(UiEI B) 2

ViEI.“ZBi
We define

ﬂ B, =9,
i€l

1.14.1Lemma: For any Fs-subset
B:(BerrB(.ulBlr.MZB)rLA) and
BS B, = (BlirBirEi(.ulBlirHZBi)’LBi)
1.15 Proposition: (£(A), N) is A-complete lattics.
1.15.1 Corollary: For any Fs-subset B ofcA, the following
results are true

@iy o,UB=B

(ild,NB=d,.

1.16 Proposition: (£(A), U) is V-complete lattics.

1.16.1 Corollary: (£(A), U, N) is a complete lattice
withVandA

1.17 Proposition: Let B=(By, B, B(u5, . 25). L),
C:(Clr C, E(Hmlrﬂzc)r Lc)and

D=(D,,D,D(tp, #2p).Lp)-Then BU (€ N D)=(B U C) n
(B U D) provided C N D exists.

1.18 Proposition: Let B=(By, B, B(uy5, . t25). L),
c:(Clr Cr E(.ul(:lrMZC)r LC)and

D=(D,,D,D(tp, #2p),Lp)-Then Bn (C UD)=(B N EC) U
(B n D) provided in R.H.S

(Bnce)and (BND) exist.

THEORY OF FS-FUNCTIONS
2.1 Fs-Function

A Triplet (f, f, ®) is said to be is an Fs-Function between
two given Fs-subsets

B = (B,,B,B(kyp, H28) Lg) and € =
(C1.C.C(1c, Hac) L) of A, denoted by (f,,f, ®): B =

(Blr Br E(HIBI,HZB)r LB) —C= (Clr Cr C(lhclx |J'2C)r LC) If!
and only if (using the diagrams) .

fi f
Rk, B b
Flw,l llhc, My l l“zc
B >Lc LH » L¢
(0] 0]

(Fig-1:Fs-function : B - ¢ )
(1a) filg = fisonto
(1b) @:Lg — L. is complete homomorphism

In general (f;,f, @) is denoted by f
2.2 Proposition: (i) wyc,lc o filg = e © f
(i) @ o pyp, lg = Popyp
Proof (i): fix = f , foreach x € B

( H1c1|c °f1|B)x = ll1c1(f1x) = ll1c1(fx) =
Hac(fx) = (upc o fx

Hence pic,lc° fils = Mac o f -

Proof (ii):  pyp, X = UapX
= ®(pyp,X) = P(1zpX)
(~+ @ is a complete homomorphism)
= (@ o pyp, )X = (@ 0 pyp)x
Hence @ o pyp, [g = P o ppp
2.2.1 Remark: @ is a complete homomorphism between
complete Boolean algebras implies ®(0) = 0 and ®(1) = 1
and[®(a)]¢ = ®(a®)
Therefore ®(a) A ®(a¢) = d(ana‘) = P(0)=0
d(a) v ®(af) = d(aVva‘) = o(1)=1
2.3 Def: Increasing Fs-function
f is said to be an increasing Fs- function, and denoted by f;
if ,and only if(using fig-1)
(28) g lceo fils = Popyp,
(2b) Hocof S Doy

2.4 Proposition: @ o (u,px)¢ = [(P o p,p)x]¢
Proof: LHS: @ o (,5x)¢ = ®[(u5x)¢] = [@(n50)]¢ =
(®omp)xls ]
2.5 Proposition: @ o B < Co f ,provided f is an increasing
Fs-function
Proof: ®(Bx) = CD(plglx A (pZBx)c)
= CD(plglx) A ®[(hzpx)°]
= cD(ulle) A [@(uypx)]°
=(do P—lBl)x A(® o pyp)x]© < (l11c1 o fy)x A
[(kac © NI = pac, (fix) A lppc (F0)1°
= Hyc, (f3) A lppc(f0)]¢ = C(fx)
Hence ®oB<Co f

2.6 Def: Decreasing Fs-function
f is said to be decreasing Fs-function denoted as f 4 and if
and only if

(3a) l11c1|c°f1|13SCD°H1B1
(Bb) pycof = Doy

2.7 Proposition: ® o B > C o f ,provided  is a decreasing
Fs-function

Proof: ®(Bx) = ®(yp, x A (zpx)°)

= cD(”lle) A @[(uyp0)°]

= CD(plglx) A[@(pp0)]¢
= (CD ° H1Bl)x A(® o pyp)x]° = (lhcl ° fl)x A

[Goe © )x]° = Hic, (fi) A lppc(f)]C
= pac, (Fx) Alpc (F0]° = C (fx)

Hence ®oB>Co f
2.8 Def:Preserving Fs- function
fis said to be preserving Fs-function and denoted as f p If
,and only if

(49) ll1c1|c°f1|B =®doyp,

(4b) Hacof =@ oy

2.9 Proposition: ® o B =C o f ,provided T is Fs- preserving
function
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Proof: ®(Bx) = @, x A (1zpx)°) Implies (a) py, lc o fils < @ o pyp,
= cD(lhle) A ®[(pzpx)°] (D) pacof =P oy
= O (g, x) A [D(uypx)]° And (€ mip,lp o9l < Wopye,
= (CD ° P—lBl)x AL(® o ppp)x]© (@ hzp o9 =W opac
= (e, © fi)x A Luye © ] Need to prove that
= ¢, (fix) Alpc(f2)]°
= ulci(fx) Al (Ff)1¢ = C (fx) (e)U1D1|D o (g1lcofilp) S (Wod)o HiB,
Hence ® oB=Co f (D uepo(gef) = (Wed)op,
2.10 Def: Composition of two Fs-function
Given two Fs-functions f: B — C and §: ¢ — D.We denote f f
composition of g and fas g o f and define as (g o f) = B——C, et B
(Ql,g,q’) ° (f1:f: D) = [91 of,,gof,Wo D] F‘mll rlc. Wop l lflzc
—— Lg— L¢
2.11 Proposition: Composition of two increasing Fs- LB A o
function are increasing. —
(Fs — functionf:B - ¢ )
Proof: suppose f;: (By, B, B(kyp, H28). Ls) — g,
(C1xCxC(H1c1,H2c)x|—c) and gj: (Cl,C, C(lhcl,llzc)xl—c) - Ci *D, C *D
(D1.D, D(psp, M2p), Lp) are two increasing Fs-functions Hic, »¥H1D; Ulcll l H1D,
Lc Y Lp Lc Lp
Implies (1) H1c1|c ofilg=do WiB, SR G
(2) tye o F < Do g (Fs — function @: ¢ - D)
And  (3) pup,Ip °G1le = W oy, B]—g‘in)] pfost
A upeg=Wopyc
Need to prove that Hip, Hip, Mzp o
(5) tup,lp ° Gilcfilg = (Wo @) o pyp, L e S e 5

(6) yp o gf < (W o @) o pye %
(Fig 2: Compsition of fand gi.e.(g°f): B » D)

Proof (5): (llml Ip e gllcfllB)x Proof (e): (p-lDllD ° g1|cf1|3)x
= (P—lDllD °(Gilce fllB))x = (P—lDllD °(91lc o fllB))x
= ((H1Dl|D °gylc)e fllB)x = ((H1Dl|D °0slc) e fllB)x
= (P—lDllD ° gl|c)(f1x) = (p-lDllD ° gl|c)(f1x) < (qJ ° H1c1)(f1x)
> (W o e, ) (%) =¥ (e, (1) )2 (ic, o fuls)]x  (+ Wisa
=y (plcl (flx)):‘}’[(p1C1 ofylg)]x (+¥is homomorphism)
a homomorphism) < W[(®opp,)]x = [Wo (Po s, )|x
>W[(Dopyp)|x=[We (Powp,)|x =[(Wod)opp |x
=[(Wod)o g, |x Hence pyp, Ip © 9alcfilg < (¥ o @) o g,
Hence pyip, |p © g1lcfilg = (Wo @) o pyp, Proof (f): [u,p © (g lx
Proof (6): [1,p © (g ° )]x = [(uzp Q) oflx
Wy o0 1 = (g = (1) = (1 > (1) 2 (¥ o 1) (1)
< (¥ o ip0) (fx) = W(pyc(fr)) = Wluzc © Hx]
= ‘P(pzc(fx)) = W[ (uyc o fx] > WP o pyp)x] = [Wo (Do pyp)lx
< WP o pyp)x] = [Wo (@ o pp)lx = = [(Wo @) o pyplx
[(Wo @) o pyplx Hence pp o (gof) = (Yo @) o puye
Hence p,p o gf < (Wo @) o p,c Hence (91,9,%)q o (f,f, ®)g =[g, oy, gof,Wo @y
Hence (g,,9,W); e (fy.f. @) =[g, o f g fWo ] 2.13 Proposition: Composition of two preserving Fs-

2.12 Proposition: Composition of two decreasing Fs- function are preserving.
function are decreasing. B _
Proof: suppose f,: (B, B, B(jp, 1op ). Ls) —

Proof: suppose fy: (B1.B,B(psp, M2).Ls) — (CuC:C(chl,llzc): L¢) and
(Cpcxc(lllcl,llzc)x Lc) and 3 Op: (C1x_CxC(l11c1,llzc)x Lc) -
94: (C1,C.C(pyc, ac ). Le) — (D10, D(kup, Hap )i Lp) (D;.D, D(p, Hap ) Lp )are two preserving functions

are two decreasing functions
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Implies (@) pyc,lc©filg = P o g,
(D) pocof=Popyp

And  (©) ip,Ip°9ile =W oy,

(d) mop e g =" o pye

Need to prove that

(8) tup, Ip © (@1]c © filg) = (W o @) o pyp,
(D uzpo(gef)=(Wod)op,

Proof (€): (tup, Ip © (91lc © f118))x

= ((Hmllo °0ilc) °f1|B)x

= (llmllD ° g1|c)(f1x) = (‘P ° ulcl)(flx)

= lp(l11c1 (f1x)):lp[(ll1c1 ° fllB)]x
a homomorphism)
=Y[(Po g, )]x=[¥o(dowp,)|x
= [(qJ ° CD) ° p‘1'31]x
Hence
Wip, |p © (@1lcofilg) = (Wo @) o Wi,
Proof (f): [u,p o (g o N]x
= [(uyp 2 9) o flx
= (uyp © 9)(fx) = (W o pyc)(fx)
= (1 () = Wl o ]
=P[(D o pyp)x] = [Wo (P opyp)lx = [(Wo d)op,plx
Hence p,p o (gof) = (W o @) oy
Hence (gl,g,‘P)p[ o (f,1, CI>)p =[g,of,,gof ¥od]
2.13.1 Remark: (f,,f, ®) is preserving if, and only if
(f,,f, @) simultaneously both increasing and decreasing

(~Wis

p

2.14 Proposition: The class of all Fs-sets as objects
together with morphism sets Fs-functions under the
partial operation denoted by o is called composition
between Fs-functions whenever it exists is a category
denoted by Fs-SET

Where (g,,9, W) o (f,,f,®) = (g, o f;,go f, ¥ o @)

Proof: Given objects (B;,B,B(jyg, 1y5).Lg) and
(€1,C.C e, Hac). Le) with an Fs-function
(f,f,®):B = (81’ BB(MBI,HZB) LB) —C=
(C1x C, C(lhclx llzc)x Lc)

We can easily show that

(5a) (f,.f, @) (15,15 1,,) = (f.f, D)
6b) (1c, 1c1y.)e (f.fd) = (f,.f @)

Where (1p,, 15,11, ): (B1,B,B(pyp, Hz8) Lg) —

(B1.B,B (g, Mop). Lp) is identity Fs-function, where
1g,:B; — By, 15:B — Band 1, ,: Ly — Lg are identity
functions

(2) For any given Fs-sets
(Bl’B’E(ulBl,HZB)' LB)’(CI' o C(lhcl,llzc)r Lc)’

10

(D1x D, B(Hml,llzo)x LD) and (E1x ErE(ulEl,qu)r LE)
and Fs-functions

(f. f, @4): (Blr B,E(uml,uzs), LB) -
(CerrC(lhcl,llzc)r Lc)

(91,9, 9,): (Cy,C, C(lhcl,llzc)rl-c) -

(D1er B(Hml,uzo)r LD)

(hy, h, @3): (D;,D,D(pyp, Hzp). Lp) —

(E1x ErE(ulEl,qu)r LE)

We can easily show that

[(hlr h,CD3) ° (glrgr cI:)2)] ° (flrfr ch):(hlr hr CDS) °
[(glrgrq)z) ° (flrfrq)l)]

2.15 Proposition: The class of all Fs-sets as objects
together with morphism sets increasing Fs-functions
under the partial operation denoted by o is called
composition between increasing Fs-functions whenever it
exists is a category denoted by Fs-SET;

2.16 Proposition: The class of all Fs-sets as objects
together with morphism sets decreasing Fs-functions
under the partial operation denoted by o is called
composition between decreasing Fs-functions whenever it
exists is a category denoted by Fs-SE Ty

2.17 Proposition: The class of all Fs-sets as objects
together with morphism sets preserving Fs-functions
under the partial operation denoted by o is called
composition between preserving Fs-functions whenever it
exists is a category denoted by [Fs-SET,

IMAGES OF FS-SUBSETS UNDER FS-FUNCTION
2.18 Def: Fs-image of an Fs-subset Fs-function:

Let f: (Berrg(MBl,HZB)rLB) - (CerrC(lhcl,llzc)rLc)
Let 3

D= (D_errD(lth,llzD)rLD) €SB=

(B1.B,B(jyp, Mz5),Lp) then

(@ D; € By,

(B Lp<ly

(©) (up, < g, D1, and pyp|B = p,p) or Dx < Bx
for each xeB

BeD

Define f(D) = € = (E;,E, E(pyg,  to ) L), Where

(d) E, =1,(Dy)

(e) E=1,(D)

(A Lg = ([X]u dLp), [X] is complete ideal generated
by X = {uic,yly € Ey,y = fyx,x € Dy},

(9) Mg,:E; — Lg is define by
Hig,Y = HacV [lhcl/\ <Vy=f1x q)ulDlx)]

x€Dq
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(h) p,g:E — L is define by

H2EY = HacV [lhcl/\ <Vy=f1x CDpZDx)]

x€D

2.19 Propositions:f(D) is an Fs-subset of
C= (Cl,C, C(lhcl,llzc)x Lc)
Proof: f(D) = € = (E;, E,E(Wg,, hop )Lg), Where
[1] E, = f1(D1) cC
[2] E=f,(D) 2f,(B) =f(B) =C (- fis onto)
[3] Lg = ([X] U ®Lp), [X] is complete ideal generated
by X = {H1c1y|y €ELy=fixx€ D1}
= Lg < L¢

[4] W, E; — Lg isdefine by

<

Hig, Y = HacYV [lhcly/\ <Vy=f1XcD”1D1x>]

x€Dq

Hic,Y

[5] wyg:E — Lg is define by

H2EY = HacYV [lhcly/\ <Vy=f1x q’llzox)] = Hacy

xX€D
Hence all the above implies f(D) is an Fs-subset of C
2.20 Proposition: f: (B,, B, B(iyp, M28). Ls) —
(€1,C.Cpyc, Mac): Le)and for any pair of Fs-subsets
Hy = (H11:H1rH1(U1H11xH2H1)’LH1) and 3, =

(H12r H,, Hz(llu{lzr UZHz)r LHZ) of
B = (B,,B,B(jyp, u5). Lg) such that 7, < 7, then

(7)) < 7(31,)

E’roof: Suppose
f(H) =6, = (G111G11G1(U1GnrUzcl)l-cl) Wwhere

(@ Gy, = f1(H11)
(b) G, = f1(H1)
(©) Lg, = (IX;Ju @Ly,), [X,] is complete ideal

generated by X; = {p,c,yly € Gy y =fix,x €

Hll}
WG, G11 — Lg, isdefined by w6,y =

HacYV [lhcly/\ <Vy=f1x CDp_lan>]

x€Hq1

(d)
(&) Mzg, Gy — Lg, isdefined by p,q y =

P-ZCyV [lhcly/\ <Vy=f1X q:)uZHlx)]

x€Hq

_Again suppose
f(H,) =g, = (GlzrGZrGZ(ulGlerZGZ)LGZ) ,where

(f) Gy, =11 (Hy,)
(@) G, =fi(H,)

11

(h) Lg, = ([Xz]u @Ly, ), [X,]is complete ideal
generated by X, = {p,c,Yly € G,y =fix,x €

H12}
(i) Mgy, Gz — Lg, is defined by pg,,y =

HocYV [lhcly/\ <Vy=f1X Cmelzx)]

x€Hq1q

(i) Mg, Gy — Lg, is defined by p,6,y =

P-ZCyV [lhcly/\ <Vy=f1X q:)uZHzx)]

x€H;
From definition of Fs-subsets #; < #, imply

(K) Hip € Hpp = fi(Hyy) € f1(Hip) = Giy S Gy,
H,2H,>fH)2f(H,)=>G, 26,
() Ly, <Ly, = Oly, < Ly, Xy S X,
= Oly, < DLy, [X] < [X,]
(X JudLy,) € ([X]u oLy, )=Lg, <Lg,
(M) M1p,, X < Win,,% VX € Hyy
SVy=f;x Py, X < Vy=fx Plyn,, %

x€H11 x€H1p

2, YA <V y=f1x cpllu{nx)

x€H1q

<

Hic, YA <V y=f1x CD|J.1H12.X>

x€Hq2

<

SipcyV [lhcly/\ <Vy=f1X cpllu{nx)]

x€H1q

P-ZCyV [lhcly/\ <Vy=f1x cpp‘ll‘hzx)]
x€Hqp

SHUi6,, X = Higy, X

ANd o, x = Pop, X, VX € H,

>Vy=fix Plan, X = Vy=f,x Plpy,x
x€H, x€H,

=>P—1C1y/\ <Vy=f1x q)HZHlx) >=

x€H,

° Yy, YA <Vy=f1X cI91121{2x>

x€Hy

>

SipcYV [lhcly/\ <Vy=f1X CI>p2H1x>]

x€H,

HacYV [lhcly/\ <Vy=f1x CDpZHzx)]

x€H;
SHa6, X = Hag, X
(K),(1) and (m) imply G; < G, = f(3;) < f(35,).

2.21 Image of Fs-empty set of first kind under an Fs-
function:

Let ®4 = X = (X;, X, X(pux, . H2x ). Lx), where

(1) AcX;nXandX; 2 Xor
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(2) wp,x # pypx for x€X; NX

We define f(d ;) = @ .

2.22 Result; f(d ;) = &, where d , =D =
(D,D,D(pyp, Mop ). Lp ) Where D; = D and @ is Fs-
empty set of second

Proof: Suppose f(® 1) = & = (E;, E.E(uyg, . Hog)LE),

where
(@
(b)

E, = f1(D) =E

Lg = ([X] u ®Lp), [X] is complete ideal generated
be = {lhclyw € El,y = flx,x € D1 = D}

Hig, - By — Lg is defined by

Mg, Y = HacV [lhcl/\ <V y=f1x Cpllmlx)]

x€D1=D
= Hzcv[lhcl/\ﬁ] » Where
B=V y=t;x Pup,x
x€D1=D

Wyg: E — Lg is defined by

HopY = HpcV [ulcl/\ <Vy=f1x <I>uzox>]

x€D

= llch[lhcl/\Y] ,Where
Y=V y=f;x Pupx =B ( Uip, X = UZDX)

x€D1=D

(©

(d)

(d) and(e) imply iy, x = pypx = arsay
(&) EY = g, x A (1p)° = A () = 0
Hence f(d ) = & .
2.23 Proposition:_For any Fs-functionf: B - ¢, f(®_,) =
@, where ®_; is Fs-empty set of first or Fs-empty set of

second kind.

2.24 Proposition: For any Fs-function f: B — € and any
two Fs-subsets #; and H, of B, the following are true.

(1) (36, v 36,) 2 F(3;) U T(3L,)
(2) f(H, n3,) S 1(3) NT(3,)

Proof:(1): 7, € H, UH, (- Proposition 1.10 in [4])
=f(#,) < f(H, U H,) (~ Proposition 2.22) .....(I)
Similarly 7€, € 7, U 7€, (- Proposition 1.10 in [4])
=f(#,) < f(#, U H,) (~ Proposition 2.22) .....(II)
(1) and (1) imply (3, U #,) 2 T(#,) UT(3,) (~For a

given family of Fs-subset B;and an Fs-set C such that
B; c C for i€l thenU;¢; B; € €)

12

Proof:(2):Case(a): H;, N 3, = @, = T(H, N I,) =
f(d,) = &, c (3,) NT(3t,)

Case (b): H; N H, € H;, (~ Proposition 1.10)

=f(#, n H,) < F(H,) (~ Proposition2.22) .....(11)

Similarly #£; n 7, € #, (~ Proposition 1.10 in [4])
=f(#, n H,) € T(#,) (~ Proposition 2.22) .....(IV)

(1 and (IV) imply (3, n 3t,) € T(3,) n1(3,) (~
Proposition 1.14.1 in [4])

2.25 Proposition: For any Fs-function f: B —» ¢ and any
family of Fs-subsets 7 , i€l of B the following are true.

(@) f(Uier #3) 2 Ui F(31)
(b) (it ) S Nier F(H)

Proof:(a): H; S Uie; H; (+ Proposition 1.13 in [4])
=T(H,) € T(U;g H;) (~ Proposition 2.22)

f(Uier Hi) 2 Ujep F() (~+For a given family of Fs-
subset B;and an Fs-set € such that B; < C for i€l
thenU;¢; B; € C)

The proof of (b): The proof follows clearly

2.26 Result: If f is increasing Fs-function, DEB and
fi(D)=¢€= (E1, E,E(Husl, P—ZE): LE) then gy =
Vy=f,x Pl1p, X and pogy = Vy=f,x Popx .

x€Dq x€D

Proof: Given f(D) = € = (E;,E,E(wyg, . Mo )Lg ), Where

(a) El = fl(Dl)

(b) E=1,(D)

(© Lg = (IX]U dLyp), [X] is complete ideal generated
by X = {ic,yly €Ey.y = fx,x €Dy}

(d) wyg,:E; — Lg is define by

Mig,Y = HacV [lhcl/\ <Vy=f1x q’”lolx)] given

x€Dq
f="1.
For Xx€ Dy, iyp,x < pyp,x and @ is a complete
homomorphism imply
Puyp, x < Py X < (ll1c1 ofy)x = Hic,Y inturn

imply
Vy=fix Plip, X < Wi,y - - - - - )
x€Dq
Again, pyp, X = HpX = Hpx , for each x€ Dy
inturn imply
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©)

Ppyp, ¥ = Ppppx = Ppppx = (pc o Px =
(¢ © f1)x = ppcy and
Vy=f1x Plip, X = HycY

x€Dq
Therefore from(l) and(11) we get pg,y =
Vy=f1x Plip, X

x€Dq

W E — Lg is define by

MY = HacV [lhcl/\ <Vy=f1xcpllzox>]

x€D
for X€ B, Wypx = pypx imply
Ppypx = Ppypx = (Hpc © DX = (Mpc o fi)x =
Uycy inturn imply
Vy=t;x PlzpX = Hacy

x€D
Again, ®p,px < Ppyp x < Py x <

(chl ° fl)x = Wi,y inturn imply
Vy=fx PlppX < My, Y

x€D
Therefore from(l11) and(IV) we get p,py =
Vy=t,x PlzpXx

x€D

2.27 Result: If T is decreasing Fs-function, DEB and

2.28

fi(D) = € = (Ey, E E(p4g,  Mzg), L) then

Mg, Y = HacV [lhcl/\ <Vy=f1x CDplDlx)]

xX€Dq

and popy = pycV [lhcl/\ <Vy=f1x CDpZDx)]

x€D

Result: If T is preserving Fs-function, DEB and

fp(D) =E&= (E1, E,E(Huzlx HZE)LE) then g,y =

Vy=f,x Plyp, X and popy = Vy=f,x Plizpx -

xX€Dq x€D

Proof: Given f(D) = € = (E;,E, E(pyg,., 1or)Lg ), Where

@
(b)
(©

(d)

E, =f,(D,)
E=1,(D)
Lg = ([X] u ®Lp), [X] is complete ideal generated

by X = {H1c1y|y EELy=fix,x€ D1}
Mg, E; — Lg isdefined by g,y =
HzcV [lhcl/\ <Vy=f1x q:)ulDlx)] given f=f,.

x€Dq
For x€ Dy, pyp,x < pp,x and @ is a complete
homomorphism imply
Puyp,x < Puyp x = (ll1c1 ofy)x = Hic,Y inturn
imply

Vy=f1x PHip, X < W,y -
x€Dq

Again, pyp, X = HpX = W,ppx , for each x€ Dy
inturn imply

Ppyp, X = Ppypx = Ppppx = (ppc o x =
(¢ © f1)x = ppcy and

13

Vy=fx Plip, X = UpcY

xX€Dq
Therefore from(1) and(1l) we get pgy =
Vy=t;x Pltip, X

xX€Dq

Wr: E — Lg is define by

HogY = HpcV [lhcl/\ <Vy=f1x q’”zox)]

x€D
for Xx€ B, pypx = pypx imply
Ppypx = Ppppx = (a0 Dx = (Mpc o fidx =
W,y inturn imply
Vy=t;x PlzpX 2 Upcy

x€D
Again, ®p,px < Pyp x < Py x =

(H1c1 ° f1)x = Hic,Y inturn imply
Vy=f2 PlapX < Hyc, Y

x€D
Therefore from(111) and(IV) we get ppy =
Vy=t,x PlgpX.

x€D

()

2.29 Proposition: For any pair of Fs-functions f: B — ¢ and
0:C —» D and any Fs-subset 7€ of B the following is true

(3-Nw0 cg(Te0)

Proof: LHS: (gef)(#) =[g, o f,gefWe d](H) =G =
(G1,G, G(ulGl,uzG)' LG) say

@
(b)
©

G, = (91 ° f1)(H1)

G= (91 ° f1)(H)

Le = ([X] U @Ly), [X] is complete ideal
generated by X = {p,p, 2|z € G;,z =

(91 °f)x,x € H;}

WG, Gy — Lg is defined by w6,z =

HypZV [ulDl ZN\ <VZ=(81°f1)X lpq)ulﬂlx)]

x€H,

(d)

(8) pag:G — Lg is defined by

H2Z = PppZV [Hml/\ <Vz=(g1°f1)x 1Pq>p2Hx>]

x€H

Let (1) = % = (K4, K, K(pak, Bak), Lk ), Where

M Ky="1H,)

(9) K=1(H)

(h) Lg = ([X.] U ®Ly), [X,] is complete ideal
generated by X; = {pc,yly €Ky y =fix,x €
H,},

(i) nik,: Ky — Lg is defined by pig, y =

HacV [lhcl/\ <Vy=f1x CDlelx)]

x€Hq

(i) Mok K — Ly is defined by

HokY = HacV [lhcl/\ <Vy=f1x CDP-ZHX>]

x€H
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rRHs: g (f0)) = g(x) = mr =
(M1r M, M(H1M1,H2M)r LM) say

K M; =g,(K,) = 91(f1(H1)) = (g, o f)(Hy)

N M=g,(K)= gl(fl(H)) =(g; o f)(H)

(m) Ly = ([X;] uWLy), [X,] is complete ideal
generated by X, = {u;p,z|z €M; =G,z =

01y, y €K4}
(n) WM, s My — Ly is defined by py v,z =

HzpZV [Hml zA <VZ=E1Y Wik, y)]
YEK;
Wom: M — Ly, is defined by p,yz =

HopzV [le A <Vz=g1y Wiax y)]
yeK

(©)

Clearly
(p) G, = M, follows from (a) and(k)
(q) G = M follows from (b) and(l)
() Lg is acomplete subalgebra of Ly i.e. Lg < Ly

follows from (c) and(m)

(8) Mig,Z < Hym,Z, for each zeG; = M, follows
from (d) and(n)

) MpgZ = pymz, for each zeG = M follows from
(e) and(m)

From all the above statements we can easily conclude
that

(@-fHEn) cg(fon).

CONCLUSION

We can observe that similarities between results in theory of
Fs-functions and some results in the theory of crisp
functions .
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