A STUDY OF FS-FUNCTIONS AND STUDY OF IMAGES OF FS-SUBSETS IN THE LIGHT OF REFINED DEFINITION OF IMAGES UNDER VARIOUS FS-FUNCTIONS

${ }^{1}$ Vaddiparthi Yogeswara 1, ${ }^{2}$ Biswajit Rath 2

${ }^{1}$ Associate Professor Dept. Mathematics, GIT ,GITAM University,Visakhapatnam-530045,A.P State, India vaddiparthyy @ yahoo.com
${ }^{2}$ Research Scholar :Dept. of Mathematics,GITAM University, Visakhapatnam 530045, A.P State,India urwithbr@gmail.com

Abstract

Vaddiparthi Yogewsara, G.Srinivas and Biswajit Rath introduced the concept of Fs-set ,Fs-subset, complement an of Fs-subset and proved important results like De Morgan laws for Fs-sets which are called Fs- De Morgan laws. In another paper[5] Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy introduced the concept of Fs-Function between two Fs-subsets of a given Fs-set and defined an image of an Fs-subset under a given Fs-function. Also they studied the properties of images under various kinds of Fs-functions. In this paper we modify the definition of image of an Fs-subset under any given Fs-function and study the properties of images of Fs-subsets under various Fs-functions.

Keywords:Fs-set, Fs-subset, Fs-empty set, Fs-union, Fsintersection, Fs-complement, Fs-De Morgan laws and FsFunction and images of Fs-subsets

INTRODUCTION

Murthy[1] introduced F-set in order to prove Axiom of choice for fuzzy sets which is not true for L-fuzzy sets introduced by Goguen[2]. In the paper[3], Tridiv discussed fuzzy complement of an extended fuzzy subset and proved De Morgan laws etc. The extended Fuzzy set Tridiv considered contains the membership value $\mu_{1}(x)-\mu_{2}(x)$. $-\mu_{2}(x)$, a term in this expression will not be in the interval [0,1$]$.To answer this incomprehensiveness, In the paper[4], Vaddiparthi Yogeswara , G.Srinivas and Biswajit Rath introduced the concept of Fs-set and developed the theory of Fs-sets in order to prove collection of all Fs-subsets of given Fs-set is a complete Boolean algebra under Fs-unions, Fsintersections and Fs-complements. The Fs-sets they introduced contain Boolean valued membership functions .All most they are successful in their efforts in proving that result with some conditions. In another paper[5] Vaddiparthi Yogeswara, Biswajit Rath and S.V.G.Reddy introduced the concept of Fs-Function between two Fs-subsets of given Fsset and defined an image of an Fs-subset under a given Fsfunction. Also they studied the properties of images under various kinds of Fs-functions. In this paper we modify the definition of image of an Fs-subset under any given Fsfunction and study the properties of images of Fs-subsets under various Fs-functions. For convenience of readers before beginning the paper, we mention various definitions and results in paper[4]. We denote the largest element of a complete Boolean algebra $\mathrm{L}_{\mathrm{A}}[1.1]$ by M_{A}. We
denote Fs-union and crisp set union by same symbol U and similary Fs-intersection and crisp set intersection by the same symbol $\cap .[\mathrm{X}]$ denote the complete ideal generated by X and (X) denote the complete subalgebra generated by X in a complete Boolean algebra. For all lattice theoretic properties and Boolean algebraic properties we refer Szasz [7], Garret Birkhoff[8],Steven Givant • Paul Halmos[8] and Thomas Jech[9]

THEORY OF FS-SETS

1.1 Fs-set: Let U be a universal set, $A_{1} \subseteq U$ and let $A \subseteq U$ be non-empty. A four tuple
$\mathcal{A}=\left(A_{1}, A, \bar{A}\left(\mu_{1 A_{1}}, \mu_{2 A}\right), L_{A}\right)$ is said be an Fs-set if, and only if
(1) $A \subseteq A_{1}$
(2) L_{A} is a complete Boolean Algebra
(3) $\mu_{1 A_{1}}: A_{1} \rightarrow L_{A}, \mu_{2 A}: A \rightarrow L_{A}$, are functions such
that $\mu_{1 A_{1}} \mid A \geq \mu_{2 A}$
(4) $\bar{A}: \mathrm{A} \rightarrow L_{A}$ is defined by $\bar{A} x=\mu_{1 A_{1}} x \wedge\left(\mu_{2 A} x\right)^{c}$, for each $x \in A$

1.2 Fs-subset

Let $\mathcal{A}=\left(A_{1}, A, \bar{A}\left(\mu_{1 A_{1}}, \mu_{2 A}\right), L_{A}\right)$ and
$\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$ be a pair of Fs-sets. \mathcal{B} is said to be an Fs-subset of \mathcal{A}, denoted by $\mathcal{B} \subseteq \mathcal{A}$, if, and only if
(1) $B_{1} \subseteq A_{1}, A \subseteq B$
(2) L_{B} is a complete subalgebra of L_{A} or $\mathrm{L}_{\mathrm{B}} \leq \mathrm{L}_{\mathrm{A}}$
(3) $\mu_{1 B_{1}} \leq \mu_{1 A_{1}} \mid B_{1}$, and $\mu_{2 B} \mid A \geq \mu_{2 A}$
1.3 Proposition: Let \mathcal{B} and \mathcal{A} be a pair of Fs-sets such that $\mathcal{B} \subseteq \mathcal{A}$. Then $\overline{\mathrm{B}} \mathrm{x} \leq \overline{\mathrm{A}} \mathrm{x}$ is true for each $\mathrm{x} \in \mathrm{A}$
1.4 Definition: For some L_{X}, such that $L_{X} \leq L_{A}$ a four tuple $\mathcal{X}=\left(X_{1}, X, \bar{X}\left(\mu_{1 X_{1}}, \mu_{2 X}\right), L_{X}\right)$ is not an Fs-set if, and only if (a) $X \nsubseteq X_{1}$ or
(b) $\mu_{1 X_{1}} x \not \geq \mu_{2 X} x$, for some $x \in X \cap X_{1}$

Here onwards, any object of this type is called an Fs-empty set of first kind and we accept that it is an Fs-subset of \mathcal{B} for any $\mathcal{B} \subseteq \mathcal{A}$.
Definition: An Fs-subset $\mathcal{Y}=\left(Y_{1}, Y, \bar{Y}\left(\mu_{1 Y_{1}}, \mu_{2 Y}\right), L_{Y}\right)$ of \mathcal{A}, is said to be an Fs-empty set of second kind if, and only if
(a') $Y_{1}=Y=A$
(b') $\quad L_{Y} \leq L_{A}$
(c') $\bar{Y}=0$

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3, No.3, Pages : 06-14 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKRO YAL on Kitchener Road, Singapore
1.4.1 Remark: we denote Fs-empty set of first kind or Fsempty set of second kind by $\Phi_{\mathcal{A}}$ and we prove later (1.15), $\Phi_{\mathcal{A}}$ is the least Fs-subset among all Fs-subsets of \mathcal{A}.
1.5 Definition: Let $\mathcal{B}_{1}=\left(B_{11}, B_{1}, \bar{B}_{1}\left(\mu_{1 B_{11}}, \mu_{2 B_{1}}\right), L_{B_{1}}\right)$ and $\mathcal{B}_{2}=\left(B_{12}, B_{2}, \bar{B}_{2}\left(\mu_{1 B_{12}}, \mu_{2 B_{2}}\right), L_{B_{2}}\right)$ be a pair of Fs-sets.
We say that \mathcal{B}_{1} and \mathcal{B}_{2} are equal, denoted by $\mathcal{B}_{1}=\mathcal{B}_{2}$ if, only if
[1] $B_{11}=B_{12}, B_{1}=B_{2}$
[2] $L_{B_{1}}=L_{B_{2}}$
[3] (a) $\left(\mu_{1 B_{11}}=\mu_{1 B_{12}}\right.$ and $\left.\mu_{2 B_{1}}=\mu_{2 B_{2}}\right)$,or (b) $\bar{B}_{1}=$ \bar{B}_{2}
1.5.1Remark: We can easily observed that 3(a) and 3(b) not equivalent statements.
1.6 Proposition: $\mathcal{B}_{1}=\left(B_{11}, B_{1}, \bar{B}_{1}\left(\mu_{1 B_{11}}, \mu_{B_{1}}\right), L_{B_{1}}\right)$ and $\mathcal{B}_{2}=\left(B_{12}, B_{2}, \bar{B}_{2}\left(\mu_{1 B_{12}}, \mu_{B_{2}}\right), L_{B_{2}}\right)$ are equal if, only if $\mathcal{B}_{1} \subseteq \mathcal{B}_{2}$ and $\mathcal{B}_{2} \subseteq \mathcal{B}_{1}$
1.7 Definition of Fs-union for a given pair of Fs-subsets of \mathcal{A} :
Let $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$ and
$\mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 C}\right), L_{C}\right)$, be a pair of Fs-subsets of \mathcal{A}. Then,
the Fs-union of \mathcal{B} and \mathcal{C}, denoted by $\mathcal{B} \cup \mathcal{C}$ is defined as
$\mathcal{B} \cup \mathcal{C}=\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 D}\right), L_{D}\right)$, where
(1) $D_{1}=B_{1} \cup C_{1}, D=B \cap C$
(2) $L_{D}=L_{B} \vee L_{C}=$ complete subalgebra generated by $L_{B} \cup L_{C}$
(3) $\mu_{1 D_{1}}: D_{1} \rightarrow L_{D}$ is defined by $\mu_{1 D_{1}} x=\left(\mu_{1 B_{1}} \vee \mu_{1 C_{1}}\right) x$ $\mu_{2 D}: D \rightarrow \mathrm{~L}_{D}$ is defined by $\mu_{2 D} x=\mu_{2 B} x \wedge \mu_{2 C} x$ $\bar{D}: D \rightarrow L_{D}$ is defined by $\bar{D} x=\mu_{1 D_{1}} x \wedge\left(\mu_{2 D} x\right)^{c}$
1.8 Proposition: $\mathcal{B} \cup \mathcal{C}$ is an $F s$-subset of \mathcal{A}.
1.9 Definition of Fs-intersection for a given pair of Fssubsets of \mathcal{A} :
Let $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$ and
$\mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 C}\right), L_{C}\right)$ be a pair of Fs-subsets of \mathcal{A} satisfying the following conditions:
(i) $B_{1} \cap C_{1} \supseteq B \cup C$
(ii) $\mu_{1 B_{1}} x \wedge \mu_{1 C_{1}} x \geq\left(\mu_{2 B} \vee \mu_{2 C}\right) x$,for each $x \in A$
Then, the Fs-intersection of \mathcal{B} and \mathcal{C}, denoted by $\mathcal{B} \cap \mathcal{C}$ is defined as
$\mathcal{B} \cap \mathcal{C}=\mathcal{E}=\left(E_{1}, E, \bar{E}\left(\mu_{1 E_{1}}, \mu_{2 E}\right), L_{E}\right)$,where
(a) $E_{1}=B_{1} \cap C_{1}, E=B \cup C$
(b) $L_{E}=L_{B} \wedge L_{C}=L_{B} \cap L_{C}$
(c) $\mu_{1 E_{1}}: E_{1} \rightarrow L_{E}$ is defined by $\mu_{1 E_{1}} x=\mu_{1 B_{1}} x \wedge \mu_{1 C_{1}} x$
$\mu_{2 E}: E \rightarrow \mathrm{~L}_{E}$ is defined by
$\mu_{2 E} x=\left(\mu_{2 B} \vee \mu_{2 C}\right) x$
$\bar{E}: E \rightarrow L_{E}$ is defined by
$\bar{E} x=\mu_{1 E_{1}} x \wedge\left(\mu_{2 E} x\right)^{c}$.
1.9.1 Remark: If (i) or (ii) fails we define $\mathcal{B} \cap \mathcal{C}$ as $\mathcal{B} \cap \mathcal{C}=\Phi_{\mathcal{A}}$, which is the Fs-empty set of first kind.
1.10 Proposition: For any pair of $F s$-subsets
$\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$ and $\mathcal{C}=\left(C_{1}, C, \bar{C}\left(\mu_{1 C_{1}}, \mu_{2 C}\right), L_{C}\right)$
of \mathcal{A}, the following results are true
(1) $\mathcal{B} \subseteq \mathcal{B} \cup \mathcal{C}$ and $\mathcal{C} \subseteq \mathcal{B} \cup \mathcal{C}$
(2) $\mathcal{B} \cap \mathcal{C} \subseteq \mathcal{B}$ and $\mathcal{B} \cap \mathcal{C} \subseteq \mathcal{C}$ provided $\mathcal{B} \cap \mathcal{C}$ exists
(3) $\mathcal{B} \subseteq \mathcal{C}$ implies $\mathcal{B} \cup \mathcal{C}=\mathcal{C}$
(4) $\mathcal{B} \cap \mathcal{C}=\mathcal{B}$ when $\mathcal{B} \neq \Phi_{\mathcal{A}}$ and $\mathcal{B} \subseteq \mathcal{C}$ and $\Phi_{\mathcal{A}} \cap \mathcal{C}=\Phi_{\mathcal{A}}$
(5) $\mathcal{B} \cup \mathcal{C}=\mathcal{C} \cup \mathcal{B}$ (commutative law of Fs -union)
(6) $\mathcal{B} \cap \mathcal{C}=\mathcal{C} \cap \mathcal{B}$ provided $\mathcal{B} \cap \mathcal{C}$ exists. (commutative law of Fs-intersection)
(7) $\mathcal{B} \cup \mathcal{B}=\mathcal{B}$
(8) $\mathcal{B} \cap \mathcal{B}=\mathcal{B} \quad($ (7)and (8) are Idempotent laws of Fsunion and Fs-intersection respectively)
1.11 Proposition: For any Fs-subsets \mathcal{B}, \mathcal{C} and \mathcal{D} of $\mathcal{A}=$ $\left(A_{1}, A, \bar{A}\left(\mu_{1 A_{1}}, \mu_{2 A}\right), L_{A}\right)$,
the following associative laws are true:
(I) $\mathcal{B} \cup(\mathcal{C} \cup \mathcal{D})=(\mathcal{B} \cup \mathcal{C}) \cup \mathcal{D}$
(II) $\mathcal{B} \cap(\mathcal{C} \cap \mathcal{D})=(\mathcal{B} \cap \mathcal{C}) \cap \mathcal{D}$, whenever Fsintersections exist.

1.12 Arbitrary Fs-unions and arbitrary Fs-intersections:

Given a family $\left(\mathcal{B}_{i}\right)_{i \in I}$ of Fs-subsets of
$\mathcal{A}=\left(A_{1}, A, \bar{A}\left(\mu_{1 A_{1}}, \mu_{2 A}\right), L_{A}\right)$, where
$\mathcal{B}_{i}=\left(B_{1 i}, B_{i}, \bar{B}_{i}\left(\mu_{1 B_{1 i}}, \mu_{2 B_{i}}\right), L_{B_{i}}\right)$,for any $i \in I$

1.13 Definition of $\mathbf{F s}$-union is as follows

Case (1): For $\mathrm{I}=\Phi$, define Fs-union of $\left(\mathcal{B}_{i}\right)_{i \in I}$, denoted by $\bigcup_{i \in I} \mathcal{B}_{i}$ as $_{i \in I} \mathcal{B}_{i}=\Phi_{\mathcal{A}}$, which is the Fs-empty set
Case (2): Define for $\mathrm{I} \neq \Phi$, Fs-union of $\left(\mathcal{B}_{i}\right)_{i \in I}$ denoted by $\bigcup_{i \in I} \mathcal{B}_{i}$ as follow

$$
\bigcup_{i \in I} \mathcal{B}_{i}=\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right),
$$

where
(a) $B_{1}=\bigcup_{i \in I} B_{1 i}, B=\bigcap_{i \in I} B_{i}$
(b) $L_{B}=\bigvee_{i \in I} L_{B_{i}}=$ complete subalgebra generated by $\cup L_{i}\left(L_{i}=L_{B_{i}}\right)$
(c) $\mu_{1 B_{1}}: B_{1} \rightarrow L_{B}$ is defined by $\mu_{1 B_{1}} x=\left(\mathrm{V}_{i \in I} \mu_{1 B_{1 i}}\right) x=\mathrm{V}_{\mathrm{i} \in \mathrm{I}_{\mathrm{X}}} \mu_{1 \mathrm{~B}_{1 \mathrm{i}}} \mathrm{x}$, where $\mathrm{I}_{\mathrm{x}}=\left\{\mathrm{i} \in \mathrm{I} \mid \mathrm{x} \in \mathrm{B}_{\mathrm{i}}\right\}$ $\mu_{2 \mathrm{~B}}: B \rightarrow L_{B}$ is defined by $\mu_{2 B} x=\left(\wedge_{i \in I} \mu_{2 B_{i}}\right) x$ $=\bigwedge_{i \in I} \mu_{2 B_{i}} x$ $\bar{B}: B \rightarrow L_{B}$ is defined by $\bar{B} x=\mu_{1 B_{1}} x \wedge\left(\mu_{2 B} x\right)^{c}$
1.13.1Remark: We can easily show that (d) $B_{1} \supseteq B$ and $\mu_{1 B_{1}} \mid B \geq \mu_{2 B}$.

1.14 Definition of Fs-intersection:

Case (1): For $\mathrm{I}=\Phi$, we define Fs-intersection of $\left(\mathcal{B}_{i}\right)_{i \in I}$, denoted by $\bigcap_{i \in I} \mathcal{B}_{i}$ as $\bigcap_{i \in I} \mathcal{B}_{i}=\mathcal{A}$
Case (2): Suppose
$\bigcap_{i \in I} B_{1 i} \supseteq \bigcup_{i \in I} B_{i}$ and $\bigwedge_{i \in I} \mu_{1 B_{1 i}} \mid\left(\bigcup_{i \in I} B_{i}\right) \geq \bigvee_{i \in \mathrm{I}} \mu_{2 B_{i}}$ Then, we define Fs-intersection of $\left(\mathcal{B}_{i}\right)_{i \in I}$, denoted by $\bigcap_{i \in I} \mathcal{B}_{i}$ as follows

$$
\bigcap_{i \in I} \mathcal{B}_{i}=\mathcal{C}=\left(C_{1}, C, \bar{C}\left(\mu_{1 C_{1}}, \mu_{2 C}\right), L_{C}\right)
$$

(a') $C_{1}=\bigcap_{i \in I} B_{1 i}, C=\bigcup_{i \in I} B_{i}$
(b') $L_{C}=\bigwedge_{i \in I} L_{B_{i}}$

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3, No.3, Pages: 06-14 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKRO YAL on Kitchener Road, Singapore
(c') $\mu_{1 C_{1}}: C_{1} \rightarrow L_{C}$ is defined by
$\mu_{1 C_{1}} x=\left(\Lambda_{i \in I} \mu_{1 B_{1 i}}\right) x=\Lambda_{i \in I} \mu_{1 B_{1 i}} x$
$\mu_{2 C}: C \rightarrow L_{C}$ is defined by
$\mu_{2 C} x=\left(\mathrm{V}_{i \in I} \mu_{2 B_{i}}\right) x=\mathrm{V}_{i \in I_{x}} \mu_{2 B_{i}} x$,
where, $I_{x}=\left\{i \in I \mid x \in B_{i}\right\}$
$\bar{C}: C \rightarrow L_{C}$ is defined by $\bar{C} x=\mu_{1 C_{1}} x \wedge\left(\mu_{2 C} x\right)^{c}$
Case (3): $\bigcap_{i \in I} B_{1 i} \nsupseteq \bigcup_{i \in I} B_{i}$ or $\bigwedge_{i \in I} \mu_{1 B_{1 i}} \mid\left(\bigcup_{i \in I} B_{i}\right) \nsupseteq$ $\mathrm{V}_{i \in \mathrm{I}} \mu_{2 B_{i}}$
We define

$$
\bigcap_{i \in I} \mathcal{B}_{i}=\Phi_{\mathcal{A}}
$$

1.14.1Lemma: For any Fs-subset
$\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{A}\right)$ and
$\mathcal{B} \subseteq \mathcal{B}_{i}=\left(B_{1 i}, B_{i}, \bar{B}_{i}\left(\mu_{1 B_{1 i}}, \mu_{2 B_{i}}\right), L_{B_{i}}\right)$
1.15 Proposition: $(\mathcal{L}(\mathcal{A}), \cap)$ is Λ-complete lattics.
1.15.1 Corollary: For any Fs-subset \mathcal{B} of \mathcal{A}, the following results are true
(i) $\Phi_{\mathcal{A}} \cup \mathcal{B}=\mathcal{B}$
(ii) $\Phi_{\mathcal{A}} \cap \mathcal{B}=\Phi_{\mathcal{A}}$.
1.16 Proposition: $(\mathcal{L}(\mathcal{A}), U)$ is V-complete lattics.
1.16.1 Corollary: $(\mathcal{L}(\mathcal{A}), \cup, \cap)$ is a complete lattice withVand^
1.17 Proposition: Let $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$,
$\mathcal{C}=\left(C_{1}, C, \bar{C}\left(\mu_{1 C_{1}}, \mu_{2 C}\right), L_{C}\right)$ and
$\mathcal{D}=\left(D_{1}, D, \bar{D}\left(\mu_{1 D_{1}}, \mu_{2 D}\right), L_{D}\right)$.Then $\mathcal{B} \cup(\mathcal{C} \cap \mathcal{D})=(\mathcal{B} \cup \mathcal{C}) \cap$ $(\mathcal{B} \cup \mathcal{D})$ provided $\mathcal{C} \cap \mathcal{D}$ exists.
1.18 Proposition: Let $\mathcal{B}=\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$,
$\mathcal{C}=\left(C_{1}, C, \bar{C}\left(\mu_{1 C_{1}}, \mu_{2 C}\right), L_{C}\right)$ and
$\mathcal{D}=\left(D_{1}, D, \bar{D}\left(\mu_{1 D_{1}}, \mu_{2 D}\right), L_{D}\right)$.Then $\mathcal{B} \cap(\mathcal{C} \cup \mathcal{D})=(\mathcal{B} \cap \mathcal{C}) \cup$ $(\mathcal{B} \cap \mathcal{D})$ provided in R.H.S
$(\mathcal{B} \cap \mathcal{C})$ and $(\mathcal{B} \cap \mathcal{D})$ exist.

THEORY OF FS-FUNCTIONS
 2.1 Fs-Function

A Triplet $\left(f_{1}, f, \Phi\right)$ is said to be is an Fs-Function between two given Fs-subsets
$\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ and $\mathcal{C}=$
$\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 C}\right), L_{C}\right)$ of \mathcal{A}, denoted by $\left(\mathrm{f}_{1}, \mathrm{f}, \Phi\right): \mathcal{B}=$ $\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \rightarrow \mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$ if, and only if (using the diagrams).

(Fig-1:Fs-function $\overline{\mathrm{f}}: \mathcal{B} \rightarrow \mathcal{C}$)
(1a) $\left.f_{1}\right|_{\mathrm{B}}=f$ is onto
(1b) $\Phi: \mathrm{L}_{\mathrm{B}} \rightarrow \mathrm{L}_{\mathrm{c}}$ is complete homomorphism In general $\left(\mathrm{f}_{\mathbf{1}}, \mathrm{f}, \Phi\right)$ is denoted by $\overline{\mathrm{f}}$
2.2 Proposition: (i) $\left.\left.\mu_{1 \mathrm{C}_{1}}\right|_{\mathrm{C}} \circ f_{1}\right|_{\mathrm{B}} \geq \mu_{2 \mathrm{C}} \circ f$
(ii) $\left.\Phi \circ \mu_{1 B_{1}}\right|_{B} \geq \Phi \circ \mu_{2 B}$

Proof (i): $f_{1} x=f$, for each $x \in \mathrm{~B}$
$\left(\left.\left.\mu_{1 \mathrm{C}_{1}}\right|_{\mathrm{C}} \circ f_{1}\right|_{\mathrm{B}}\right) x=\mu_{1 \mathrm{C}_{1}}\left(f_{1} x\right)=\mu_{1 \mathrm{C}_{1}}(f x) \geq$
$\mu_{2 \mathrm{C}}(f x)=\left(\mu_{2 \mathrm{C}} \circ f\right) x$
Hence $\left.\mu_{1 \mathrm{C}_{1}} I_{\mathrm{C}} \circ f_{1}\right|_{\mathrm{B}} \geq \mu_{2 \mathrm{C}} \circ f$.
Proof (ii): $\quad \mu_{1 B_{1}} x \geq \mu_{2 B} X$

$$
\Rightarrow \Phi\left(\mu_{1 \mathrm{~B}_{1}} \mathrm{x}\right) \geq \Phi\left(\mu_{2 \mathrm{~B}} \mathrm{x}\right)
$$

($\because \Phi$ is a complete homomorphism)

$$
\Rightarrow\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right) \mathrm{x} \geq\left(\Phi \circ \mu_{2 \mathrm{~B}}\right) \mathrm{x}
$$

Hence $\Phi \circ \mu_{1 \mathrm{~B}_{1}} \mathrm{I}_{\mathrm{B}} \geq \Phi \circ \mu_{2 \mathrm{~B}}$
2.2.1 Remark: Φ is a complete homomorphism between complete Boolean algebras implies $\Phi(0)=0$ and $\Phi(1)=1$ $\operatorname{and}[\Phi(a)]^{\mathrm{c}}=\Phi\left(a^{c}\right)$
Therefore $\Phi(a) \wedge \Phi\left(a^{c}\right)=\Phi\left(a \wedge a^{c}\right)=\Phi(0)=0$

$$
\Phi(a) \vee \Phi\left(a^{c}\right)=\Phi\left(a \vee a^{c}\right)=\Phi(1)=1
$$

2.3 Def: Increasing Fs-function

$\overline{\mathrm{f}}$ is said to be an increasing Fs- function, and denoted by $\overline{\mathrm{f}}_{\mathrm{i}}$ if , and only if(using fig-1)
(2a) $\left.\quad \mu_{1 \mathrm{C}_{1}} I_{\mathrm{C}} \circ f_{1}\right|_{\mathrm{B}} \geq \Phi \circ \mu_{1 \mathrm{~B}_{1}}$
(2b) $\quad \mu_{2 C} \circ f \leq \Phi \circ \mu_{2 B}$
2.4 Proposition: $\Phi \circ\left(\mu_{2 \mathrm{~B}} x\right)^{c}=\left[\left(\Phi \circ \mu_{2 \mathrm{~B}}\right) x\right]^{c}$

Proof: LHS: $\Phi \circ\left(\mu_{2 \mathrm{~B}} x\right)^{c}=\Phi\left[\left(\mu_{2 \mathrm{~B}} x\right)^{c}\right]=\left[\Phi\left(\mu_{2 \mathrm{~B}} x\right)\right]^{c}=$ $\left[\left(\Phi \circ \mu_{2 B}\right) x\right]^{c}$
2.5 Proposition: $\Phi \circ \overline{\mathrm{B}} \leq \overline{\mathrm{C}} \circ f$, provided $\overline{\mathrm{f}}$ is an increasing Fs-function
Proof: $\Phi(\overline{\mathrm{B}} x)=\Phi\left(\mu_{\mathrm{B}_{1}} x \wedge\left(\mu_{2 \mathrm{~B}} x\right)^{\mathrm{c}}\right)$

$$
=\Phi\left(\mu_{1 \mathrm{~B}_{1}} x\right) \wedge \Phi\left[\left(\mu_{2 \mathrm{~B}} x\right)^{\mathrm{c}}\right]
$$

$=\Phi\left(\mu_{1 \mathrm{~B}_{1}} x\right) \wedge\left[\Phi\left(\mu_{2 \mathrm{~B}} x\right)\right]^{c}$
$=\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right) x \wedge\left[\left(\Phi \circ \mu_{2 \mathrm{~B}}\right) x\right]^{c} \leq\left(\mu_{1 \mathrm{C}_{1}} \circ f_{1}\right) x \wedge$
$\left[\left(\mu_{2 \mathrm{C}} \circ f\right) x\right]^{\mathrm{c}}=\mu_{1 \mathrm{C}_{1}}\left(f_{1} x\right) \wedge\left[\mu_{2 \mathrm{C}}(f x)\right]^{\mathrm{C}}$
$=\mu_{1 \mathrm{C}_{1}}(f x) \wedge\left[\mu_{2 \mathrm{C}}(f x)\right]^{\mathrm{C}}=\overline{\mathrm{C}}(f x)$
Hence $\Phi \circ \overline{\mathrm{B}} \leq \overline{\mathrm{C}} \circ f$

2.6 Def: Decreasing Fs-function

$\overline{\mathrm{f}}$ is said to be decreasing Fs-function denoted as $\overline{\mathrm{f}}_{\mathrm{d}}$ and if and only if

```
(3a) }\mp@subsup{\mu}{1\mp@subsup{\textrm{C}}{1}{}}{}\mp@subsup{|}{\textrm{C}}{\circ}\circ\mp@subsup{f}{1}{}\mp@subsup{|}{\textrm{B}}{}\leq\Phi\circ\mp@subsup{\mu}{1\mp@subsup{\textrm{B}}{1}{}}{
```

(3b) $\mu_{2 C} \circ f \geq \Phi \circ \mu_{2 B}$
2.7 Proposition: $\Phi \circ \overline{\mathrm{B}} \geq \overline{\mathrm{C}} \circ f$, provided $\overline{\mathrm{f}}$ is a decreasing Fs-function

$$
\begin{aligned}
& \text { Proof: } \Phi(\overline{\mathrm{B}} x)=\Phi\left(\mu_{1 \mathrm{~B}_{1}} x \wedge\left(\mu_{2 \mathrm{~B}} x\right)^{\mathrm{c}}\right) \\
& \quad=\Phi\left(\mu_{1 \mathrm{~B}_{1}} x\right) \wedge \Phi\left[\left(\mu_{2 \mathrm{~B}} x\right)^{\mathrm{c}}\right] \\
& =\Phi\left(\mu_{1 \mathrm{~B}_{1}} x\right) \wedge\left[\Phi\left(\mu_{2 \mathrm{~B}} x\right)\right]^{c} \\
& =\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right) x \wedge\left[\left(\Phi \circ \mu_{2 \mathrm{~B}}\right) x\right]^{c} \geq\left(\mu_{1 \mathrm{C}_{1}} \circ f_{1}\right) x \wedge \\
& {\left[\left(\mu_{2 \mathrm{C}} \circ f\right) x\right]^{\mathrm{c}}=\mu_{1 \mathrm{C}_{1}}\left(f_{1} x\right) \wedge\left[\mu_{2 \mathrm{C}}(f x)\right]^{\mathrm{C}}} \\
& =\mu_{1 \mathrm{C}_{1}}(f x) \wedge\left[\mu_{2 \mathrm{C}}(f x)\right]^{\mathrm{C}}=\overline{\mathrm{C}}(f x) \\
& \text { Hence } \Phi \circ \overline{\mathrm{B}} \geq \overline{\mathrm{C}} \circ f \\
& \text { 2. } 8 \text { Def:Preserving Fs- function }
\end{aligned}
$$

$\overline{\mathrm{f}}$ is said to be preserving Fs-function and denoted as $\overline{\mathrm{f}}_{\mathrm{p}}$ if ,and only if
(4a) $\left.\quad \mu_{1 \mathrm{C}_{1}} I_{\mathrm{C}} \circ f_{1}\right|_{\mathrm{B}}=\Phi \circ \mu_{1 \mathrm{~B}_{1}}$
(4b) $\quad \mu_{2 \mathrm{C}} \circ f=\Phi \circ \mu_{2 \mathrm{~B}}$
2.9 Proposition: $\Phi \circ \overline{\mathrm{B}}=\overline{\mathrm{C}} \circ f$, provided $\overline{\mathrm{f}}$ is Fs- preserving function

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3, No.3, Pages: 06-14 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKRO YAL on Kitchener Road, Singapore

Proof: $\Phi(\overline{\mathrm{B}} x)=\Phi\left(\mu_{1 \mathrm{~B}_{1}} x \wedge\left(\mu_{2 \mathrm{~B}} x\right)^{\mathrm{c}}\right)$
$=\Phi\left(\mu_{1 \mathrm{~B}_{1}} x\right) \wedge \Phi\left[\left(\mu_{2 \mathrm{~B}} x\right)^{\mathrm{c}}\right]$
$=\Phi\left(\mu_{1 \mathrm{~B}_{1}} x\right) \wedge\left[\Phi\left(\mu_{2 \mathrm{~B}} x\right)\right]^{c}$
$=\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right) x \wedge\left[\left(\Phi \circ \mu_{2 \mathrm{~B}}\right) x\right]^{c}$
$=\left(\mu_{1 \mathrm{C}_{1}} \circ f_{1}\right) x \wedge\left[\left(\mu_{2 \mathrm{C}} \circ f\right) x\right]^{\mathrm{c}}$
$=\mu_{1 \mathrm{C}_{1}}\left(f_{1} x\right) \wedge\left[\mu_{2 \mathrm{C}}(f x)\right]^{\mathrm{C}}$
$=\mu_{1 \mathrm{C}_{1}}(f x) \wedge\left[\mu_{2 \mathrm{C}}(f x)\right]^{\mathrm{C}}=\overline{\mathrm{C}}(f x)$
Hence $\Phi \circ \overline{\mathrm{B}}=\overline{\mathrm{C}} \circ f$

2.10 Def: Composition of two Fs-function

Given two Fs-functions $\overline{\mathrm{f}} \mathcal{B} \rightarrow \mathcal{C}$ and $\overline{\mathrm{g}}: \mathcal{C} \rightarrow \mathcal{D}$. We denote composition of $\overline{\mathrm{g}}$ and $\overline{\mathrm{f}}$ as $\overline{\mathrm{g}} \circ \overline{\mathrm{f}}$ and define as $(\overline{\mathrm{g}} \circ \overline{\mathrm{f}})=$ $\left(g_{1}, g, \Psi\right) \circ\left(f_{1}, f, \Phi\right)=\left[g_{1} \circ f_{1}, g \circ f, \Psi \circ \Phi\right]$
2.11 Proposition: Composition of two increasing Fsfunction are increasing.

Proof: suppose $\overline{\mathrm{f}}_{\mathrm{i}}:\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \rightarrow$ $\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$ and $\overline{\mathrm{g}}_{\mathrm{i}}:\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right) \rightarrow$ $\left(D_{1}, D, \bar{D}\left(\mu_{1 D_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$ are two increasing Fs-functions

Implies (1) $\left.\left.\mu_{1 \mathrm{C}_{1}}\right|_{\mathrm{C}} \circ \mathrm{f}_{1}\right|_{\mathrm{B}} \geq \Phi \circ \mu_{1 \mathrm{~B}_{1}}$
(2) $\mu_{2 C} \circ f \leq \Phi \circ \mu_{2 B}$

And (3) $\left.\mu_{1 D_{1}} I_{D} \circ \mathrm{~g}_{1}\right|_{\mathrm{c}} \geq \Psi \circ \mu_{1 \mathrm{c}_{1}}$ (4) $\mu_{2 D} \circ g \leq \Psi \circ \mu_{2 C}$

Need to prove that
(5) $\left.\left.\left.\mu_{1 \mathrm{D}_{1}}\right|_{\mathrm{D}} \circ \mathrm{g}_{1}\right|_{\mathrm{c}} \mathrm{f}_{1}\right|_{\mathrm{B}} \geq(\Psi \circ \Phi) \circ \mu_{1 \mathrm{~B}_{1}}$
(6) $\mu_{2 \mathrm{D}} \circ \mathrm{gf} \leq(\Psi \circ \Phi) \circ \mu_{2 \mathrm{C}}$

Proof (5): $\left(\left.\left.\left.\mu_{1 D_{1}}\right|_{D} \circ \mathrm{~g}_{1}\right|_{\mathrm{c}} \mathrm{f}_{1}\right|_{\mathrm{B}}\right) x$
$=\left(\left.\mu_{1 D_{1}}\right|_{D} \circ\left(\left.\left.g_{1}\right|_{c} \circ f_{1}\right|_{B}\right)\right) x$
$=\left(\left.\left(\left.\left.\mu_{1 D_{1}}\right|_{D} \circ \mathrm{~g}_{1}\right|_{\mathrm{c}}\right) \circ \mathrm{f}_{1}\right|_{\mathrm{B}}\right) x$
$=\left(\left.\left.\mu_{1 D_{1}}\right|_{D} \circ \mathrm{~g}_{1}\right|_{c}\right)\left(\mathrm{f}_{1} x\right)$
$\geq\left(\Psi \circ \mu_{1 c_{1}}\right)\left(f_{1} x\right)$
$=\Psi\left(\mu_{1 \mathrm{c}_{1}}\left(\mathrm{f}_{1} x\right)\right)=\Psi\left[\left(\mu_{1 \mathrm{C}_{1}} \circ \mathrm{f}_{1} \mathrm{I}_{\mathrm{B}}\right)\right] x \quad(\because \Psi$ is
a homomorphism)
$\geq \Psi\left[\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right)\right] x=\left[\Psi \circ\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right)\right] x$
$=\left[(\Psi \circ \Phi) \circ \mu_{1 \mathrm{~B}_{1}}\right] x$
Hence $\left.\left.\left.\mu_{1 \mathrm{D}_{1}}\right|_{\mathrm{D}} \circ \mathrm{g}_{1}\right|_{\mathrm{c}} \mathrm{f}_{1}\right|_{\mathrm{B}} \geq(\Psi \circ \Phi) \circ \mu_{1 \mathrm{~B}_{1}}$
Proof (6): $\left[\mu_{2 D} \circ(\mathrm{~g} \circ \mathrm{f})\right] x$
$=\left[\left(\mu_{2 \mathrm{D}} \circ \mathrm{g}\right) \circ \mathrm{f}\right] x=\left(\mu_{2 \mathrm{D}} \circ \mathrm{g}\right)(\mathrm{f} x)$
$\leq\left(\Psi \circ \mu_{2 \mathrm{C}}\right)(\mathrm{f} x)$
$=\Psi\left(\mu_{2 \mathrm{C}}(\mathrm{f} x)\right)=\Psi\left[\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}\right) x\right]$
$\leq \Psi\left[\left(\Phi \circ \mu_{2 \mathrm{~B}}\right) x\right]=\left[\Psi \circ\left(\Phi \circ \mu_{2 \mathrm{~B}}\right)\right] x=$ $\left[(\Psi \circ \Phi) \circ \mu_{2 \mathrm{~B}}\right] x$
Hence $\mu_{2 \mathrm{D}} \circ \mathrm{gf} \leq(\Psi \circ \Phi) \circ \mu_{2 \mathrm{C}}$
Hence $\left(g_{1}, \mathrm{~g}, \Psi\right)_{\mathrm{i}} \circ\left(\mathrm{f}_{1}, \mathrm{f}, \Phi\right)_{\mathrm{i}}=\left[\mathrm{g}_{1} \circ \mathrm{f}_{1}, \mathrm{~g} \circ \mathrm{f}, \Psi \circ \Phi\right]_{\mathrm{i}}$
2.12 Proposition: Composition of two decreasing Fs-
function are decreasing.
Proof: suppose $\overline{\mathrm{f}}_{\mathrm{d}}:\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \rightarrow$
$\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$ and
$\bar{g}_{d}:\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right) \rightarrow\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$
are two decreasing functions

Implies (a) $\left.\left.\mu_{1 \mathrm{C}_{1}}\right|_{\mathrm{C}} \circ \mathrm{f}_{1}\right|_{\mathrm{B}} \leq \Phi \circ \mu_{1 \mathrm{~B}_{1}}$
(b) $\mu_{2 \mathrm{C}} \circ \mathrm{f} \geq \Phi \circ \mu_{2 \mathrm{~B}}$

And (c) $\left.\mu_{1 D_{1}} I_{D} \circ \mathrm{~g}_{1}\right|_{\mathrm{c}} \leq \Psi \circ \mu_{1 \mathrm{c}_{1}}$
(d) $\mu_{2 \mathrm{D}} \circ \mathrm{g} \geq \Psi \circ \mu_{2 \mathrm{C}}$

Need to prove that
(e) $\left.\mu_{1 D_{1}}\right|_{D} \circ\left(\left.\left.g_{1}\right|_{c} \circ f_{1}\right|_{B}\right) \leq(\Psi \circ \Phi) \circ \mu_{1 B_{1}}$
(f) $\mu_{2 D} \circ(g \circ f) \geq(\Psi \circ \Phi) \circ \mu_{2 C}$

(Fs - function $\overline{\mathrm{f}}: \mathcal{B} \rightarrow \mathcal{C}$)

(Fs - function $\overline{\mathrm{g}}: \mathcal{C} \rightarrow \mathcal{D}$)

(Fig 2: Compsition of \bar{f} and $\overline{\mathrm{g}}$ i.e. $(\overline{\mathrm{g}} \circ \overline{\mathrm{f}}): \mathcal{B} \rightarrow \mathcal{D})$
Proof (e): $\left(\left.\left.\left.\mu_{1 D_{1}}\right|_{D} \circ \mathrm{~g}_{1}\right|_{\mathrm{c}} \mathrm{f}_{1}\right|_{\mathrm{B}}\right) x$
$=\left(\left.\mu_{1 D_{1}}\right|_{D} \circ\left(\left.\left.g_{1}\right|_{c} \circ \mathrm{f}_{1}\right|_{\mathrm{B}}\right)\right) x$
$=\left(\left.\left(\left.\left.\mu_{1 D_{1}}\right|_{D} \circ g_{1}\right|_{c}\right) \circ \mathrm{f}_{1}\right|_{\mathrm{B}}\right) x$
$=\left(\mu_{1 \mathrm{D}_{1}} \mathrm{I}_{\mathrm{D}} \circ \mathrm{g}_{1} \mathrm{l}_{\mathrm{c}}\right)\left(\mathrm{f}_{1} x\right) \leq\left(\Psi \circ \mu_{1 \mathrm{c}_{1}}\right)\left(\mathrm{f}_{1} x\right)$
$=\Psi\left(\mu_{1 \mathrm{c}_{1}}\left(\mathrm{f}_{1} x\right)\right)=\Psi\left[\left(\left.\mu_{1 \mathrm{C}_{1}} \circ \mathrm{f}_{1}\right|_{\mathrm{B}}\right)\right] x \quad(\because \Psi$ is a
homomorphism)
$\leq \Psi\left[\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right)\right] x=\left[\Psi \circ\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right)\right] x$
$=\left[(\Psi \circ \Phi) \circ \mu_{1 \mathrm{~B}_{1}}\right] x$
Hence $\left.\mu_{1 \mathrm{D}_{1}} \mathrm{l}_{\mathrm{D}} \circ \mathrm{g}_{1}{ }_{\mathrm{c}} \mathrm{f}_{1}\right|_{\mathrm{B}} \leq(\Psi \circ \Phi) \circ \mu_{1 \mathrm{~B}_{1}}$
Proof (f): $\left[\mu_{2 D} \circ(\mathrm{~g} \circ \mathrm{f})\right] x$
$=\left[\left(\mu_{2 \mathrm{D}} \circ \mathrm{g}\right) \circ \mathrm{f}\right] x$
$=\left(\mu_{2 \mathrm{D}} \circ \mathrm{g}\right)(\mathrm{f} x) \geq\left(\Psi \circ \mu_{2 \mathrm{C}}\right)(\mathrm{f} x)$
$=\Psi\left(\mu_{2 \mathrm{C}}(\mathrm{f} x)\right)=\Psi\left[\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}\right) x\right]$
$\geq \Psi\left[\left(\Phi \circ \mu_{2 \mathrm{~B}}\right) x\right]=\left[\Psi \circ\left(\Phi \circ \mu_{2 \mathrm{~B}}\right)\right] x$

$$
=\left[(\Psi \circ \Phi) \circ \mu_{2 \mathrm{~B}}\right] x
$$

Hence $\mu_{2 D} \circ(g \circ f) \geq(\Psi \circ \Phi) \circ \mu_{2 C}$
Hence $\left(g_{1}, g, \Psi\right)_{d} \circ\left(f_{1}, f, \Phi\right)_{d}=\left[g_{1} \circ f_{1}, g \circ f, \Psi \circ \Phi\right]_{d}$
2.13 Proposition: Composition of two preserving Fsfunction are preserving.

Proof: suppose $\overline{\mathrm{f}}_{\mathrm{p}}:\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \rightarrow$
$\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$ and
$\overline{\mathrm{g}}_{\mathrm{p}}:\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right) \rightarrow$
$\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right)$ are two preserving functions

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3, No.3, Pages: 06-14 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKRO YAL on Kitchener Road, Singapore

Implies (a) $\left.\left.\mu_{1 \mathrm{C}_{1}}\right|_{\mathrm{C}} \circ \mathrm{f}_{1}\right|_{\mathrm{B}}=\Phi \circ \mu_{1 \mathrm{~B}_{1}}$
(b) $\mu_{2 \mathrm{C}} \circ \mathrm{f}=\Phi \circ \mu_{2 \mathrm{~B}}$

And (c) $\mu_{1 D_{1}} I_{D} \circ g_{1} I_{c}=\Psi \circ \mu_{1 c_{1}}$
(d) $\mu_{2 D} \circ g=\Psi \circ \mu_{2 C}$

Need to prove that
(e) $\mu_{1 \mathrm{D}_{1}} I_{\mathrm{D}} \circ\left(\left.\mathrm{g}_{1} \mathrm{I}_{\mathrm{c}} \circ \mathrm{f}_{1}\right|_{\mathrm{B}}\right)=(\Psi \circ \Phi) \circ \mu_{1 \mathrm{~B}_{1}}$
(f) $\mu_{2 D} \circ(g \circ f)=(\Psi \circ \Phi) \circ \mu_{2 C}$
$\operatorname{Proof}(e):\left(\mu_{1 D_{1}} I_{D} \circ\left(\left.\left.g_{1}\right|_{c} \circ \mathrm{f}_{1}\right|_{B}\right)\right) x$
$=\left(\left.\left(\left.\left.\mu_{1 D_{1}}\right|_{D} \circ \mathrm{~g}_{1}\right|_{\mathrm{C}}\right) \circ \mathrm{f}_{1}\right|_{\mathrm{B}}\right) x$
$=\left(\mu_{1 \mathrm{D}_{1}} \mathrm{I}_{\mathrm{D}} \circ \mathrm{g}_{1} \mathrm{I}_{\mathrm{C}}\right)\left(\mathrm{f}_{1} x\right)=\left(\Psi \circ \mu_{1 \mathrm{c}_{1}}\right)\left(\mathrm{f}_{1} x\right)$
$=\Psi\left(\mu_{1 c_{1}}\left(\mathrm{f}_{1} x\right)\right)=\Psi\left[\left(\left.\mu_{1 \mathrm{c}_{1}} \circ \mathrm{f}_{1}\right|_{\mathrm{B}}\right)\right] x$
a homomorphism)
$=\Psi\left[\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right)\right] x=\left[\Psi \circ\left(\Phi \circ \mu_{1 \mathrm{~B}_{1}}\right)\right] x$
$=\left[(\Psi \circ \Phi) \circ \mu_{1 \mathrm{~B}_{1}}\right] x$
Hence

$$
\begin{aligned}
& \mu_{1 \mathrm{D}_{1}} \mathrm{I}_{\mathrm{D}} \circ\left(\left.\left.\mathrm{~g}_{1}\right|_{\mathrm{c}} \circ \mathrm{f}_{1}\right|_{\mathrm{B}}\right)=(\Psi \circ \Phi) \circ \mu_{1 \mathrm{~B}_{1}} \\
& \quad \text { Proof }(\mathrm{f}):\left[\mu_{2 \mathrm{D}} \circ(\mathrm{~g} \circ \mathrm{f})\right] x \\
&= {\left[\left(\mu_{2 \mathrm{D}} \circ \mathrm{~g}\right) \circ \mathrm{f}\right] x } \\
&=\left(\mu_{2 \mathrm{D}} \circ \mathrm{~g}\right)(\mathrm{f} x)=\left(\Psi \circ \mu_{2 \mathrm{C}}\right)(\mathrm{f} x) \\
&= \Psi\left(\mu_{2 \mathrm{C}}(\mathrm{f} x)\right)=\Psi\left[\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}\right) x\right] \\
&= \Psi\left[\left(\Phi \circ \mu_{2 \mathrm{~B}}\right) x\right]=\left[\Psi \circ\left(\Phi \circ \mu_{2 \mathrm{~B}}\right)\right] x=\left[(\Psi \circ \Phi) \circ \mu_{2 \mathrm{~B}}\right] x \\
& \quad \text { Hence } \mu_{2 \mathrm{D}} \circ(\mathrm{~g} \circ \mathrm{f})=\left(\Psi \circ(\Psi) \circ \mu_{2 \mathrm{C}}\right. \\
& \quad \text { Hence }\left(\mathrm{g}_{1}, \mathrm{~g}, \Psi\right)_{\mathrm{pl}} \circ\left(\mathrm{f}_{1}, \mathrm{f}, \Phi\right)_{\mathrm{p}}=\left[\mathrm{g}_{1} \circ \mathrm{f}_{1}, \mathrm{~g} \circ \mathrm{f}, \Psi \circ \Phi\right]_{\mathrm{p}}
\end{aligned}
$$

2.13.1 Remark: $\left(f_{1}, f, \Phi\right)$ is preserving if, and only if ($\mathrm{f}_{1}, \mathrm{f}, \Phi$) simultaneously both increasing and decreasing
2.14 Proposition: The class of all Fs-sets as objects together with morphism sets Fs-functions under the partial operation denoted by \circ is called composition between Fs-functions whenever it exists is a category denoted by $\mathbb{F s}$-SET

Where $\left(\mathrm{g}_{1}, \mathrm{~g}, \Psi\right) \circ\left(\mathrm{f}_{1}, \mathrm{f}, \Phi\right)=\left(\mathrm{g}_{1} \circ \mathrm{f}_{1}, \mathrm{~g} \circ \mathrm{f}, \Psi \circ \Phi\right)$
Proof: Given objects ($\left.\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{\mathrm{B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ and $\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$ with an Fs-function $\left(\mathrm{f}_{1}, \mathrm{f}, \Phi\right): \mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \rightarrow \mathcal{C}=$ $\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$

We can easily show that
(5a) $\quad\left(f_{1}, f, \Phi\right) \circ\left(1_{B_{1}}, 1_{B}, 1_{L_{B}}\right)=\left(f_{1}, f, \Phi\right)$
(5b) $\left(1_{\mathrm{C}_{1}}, 1_{\mathrm{C}}, 1_{\mathrm{L}_{\mathrm{C}}}\right) \circ\left(\mathrm{f}_{1}, \mathrm{f}, \Phi\right)=\left(\mathrm{f}_{1}, \mathrm{f}, \Phi\right)$
Where $\left(1_{\mathrm{B}_{1}}, 1_{\mathrm{B}}, 1_{\mathrm{L}_{\mathrm{B}}}\right):\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{\mathrm{B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \rightarrow$ $\left(B_{1}, B, \bar{B}\left(\mu_{1 B_{1}}, \mu_{2 B}\right), L_{B}\right)$ is identity Fs-function, where $1_{\mathrm{B}_{1}}: \mathrm{B}_{1} \rightarrow \mathrm{~B}_{1}, 1_{\mathrm{B}}: \mathrm{B} \rightarrow \mathrm{B}$ and $1_{\mathrm{L}_{\mathrm{B}}}: \mathrm{L}_{\mathrm{B}} \rightarrow \mathrm{L}_{\mathrm{B}}$ are identity functions
(2) For any given Fs-sets

$$
\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right),\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)
$$

$$
\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right) \text { and }\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right), \mathrm{L}_{\mathrm{E}}\right)
$$

and Fs -functions

$$
\begin{aligned}
& \left(\mathrm{f}_{1}, \mathrm{f}, \Phi_{1}\right):\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \rightarrow \\
& \left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}} \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right) \\
& \left(\mathrm{g}_{1}, \mathrm{~g}, \Phi_{2}\right):\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right) \rightarrow \\
& \left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right) \\
& \left(\mathrm{h}_{1}, \mathrm{~h}, \Phi_{3}\right):\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right) \rightarrow \\
& \left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right), \mathrm{L}_{\mathrm{E}}\right)
\end{aligned}
$$

We can easily show that

$$
\begin{aligned}
& {\left[\left(\mathrm{h}_{1}, \mathrm{~h}, \Phi_{3}\right) \circ\left(\mathrm{g}_{1}, \mathrm{~g}, \Phi_{2}\right)\right] \circ\left(\mathrm{f}_{1}, \mathrm{f}, \Phi_{1}\right)=\left(\mathrm{h}_{1}, \mathrm{~h}, \Phi_{3}\right) \circ} \\
& {\left[\left(\mathrm{g}_{1}, \mathrm{~g}, \Phi_{2}\right) \circ\left(\mathrm{f}_{1}, \mathrm{f}, \Phi_{1}\right)\right]}
\end{aligned}
$$

2.15 Proposition: The class of all Fs-sets as objects together with morphism sets increasing Fs-functions under the partial operation denoted by \circ is called composition between increasing Fs-functions whenever it exists is a category denoted by $\mathbb{F s}-\mathrm{SET}_{\mathrm{i}}$
2.16 Proposition: The class of all Fs-sets as objects together with morphism sets decreasing Fs-functions under the partial operation denoted by \circ is called composition between decreasing Fs-functions whenever it exists is a category denoted by $\mathbb{F s}-\mathrm{SET}_{\mathrm{d}}$
2.17 Proposition: The class of all Fs-sets as objects together with morphism sets preserving Fs-functions under the partial operation denoted by \circ is called composition between preserving Fs-functions whenever it exists is a category denoted by $\mathbb{F s}-\mathrm{SET}_{\mathrm{p}}$

IMAGES OF FS-SUBSETS UNDER FS-FUNCTION 2.18 Def: Fs-image of an Fs-subset Fs-function:

Let $\overline{\mathrm{f}}:\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \rightarrow\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$
Let
$\mathcal{D}=\left(\mathrm{D}_{1}, \mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}\right) \subseteq \mathcal{B}=$ $\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ then
(a) $\mathrm{D}_{1} \subseteq \mathrm{~B}_{1}, \quad \mathrm{~B} \subseteq \mathrm{D}$
(b) $\mathrm{L}_{\mathrm{D}} \leq \mathrm{L}_{\mathrm{B}}$
(c) $\left(\mu_{1 \mathrm{D}_{1}} \leq \mu_{1 \mathrm{~B}_{1}} \mid \mathrm{D}_{1}\right.$, and $\left.\mu_{2 \mathrm{D}} \mid \mathrm{B} \geq \mu_{2 \mathrm{~B}}\right)$ or $\overline{\mathrm{D}} x \leq \overline{\mathrm{B}} x$ for each $x \in \mathrm{~B}$

Define $\overline{\mathrm{f}}(\mathcal{D})=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right) \mathrm{L}_{\mathrm{E}}\right)$, where
(d) $E_{1}=f_{1}\left(D_{1}\right)$
(e) $E=f_{1}(D)$
(f) $\mathrm{L}_{\mathrm{E}}=\left([\mathrm{X}] \cup \Phi \mathrm{L}_{\mathrm{D}}\right),[\mathrm{X}]$ is complete ideal generated by $\mathrm{X}=\left\{\mu_{1 \mathrm{C}_{1}} \mathrm{y} \mid \mathrm{y} \in \mathrm{E}_{1}, \mathrm{y}=\mathrm{f}_{1} x, x \in \mathrm{D}_{1}\right\}$,
(g) $\mu_{1 \mathrm{E}_{1}}: \mathrm{E}_{1} \rightarrow \mathrm{~L}_{\mathrm{E}}$ is define by $\mu_{1 \mathrm{E}_{1}} \mathrm{y}=\mu_{2 \mathrm{C}} \vee\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}_{1}}}{\mathrm{~V}_{1 \mathrm{D}_{1}} x}\right)\right]$

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3, No.3, Pages: 06-14 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKRO YAL on Kitchener Road, Singapore
(h) $\mu_{2 \mathrm{E}}: \mathrm{E} \rightarrow \mathrm{L}_{\mathrm{E}}$ is define by

$$
\mu_{2 \mathrm{E}} y=\mu_{2 \mathrm{C}} \vee\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}}{\vee_{2 \mathrm{D}} x}\right)\right]
$$

2.19 Propositions: $\overline{\mathrm{f}}(\mathcal{D})$ is an Fs-subset of $\mathcal{C}=\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$

Proof: $\overline{\mathrm{f}}(\mathcal{D})=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right) \mathrm{L}_{\mathrm{E}}\right)$, where
[1] $E_{1}=f_{1}\left(D_{1}\right) \subseteq C_{1}$
[2] $E=f_{1}(D) \supseteq f_{1}(B)=f(B)=C(\because f$ is onto $)$
[3] $\mathrm{L}_{\mathrm{E}}=\left([\mathrm{X}] \cup \Phi \mathrm{L}_{\mathrm{D}}\right),[\mathrm{X}]$ is complete ideal generated by $\mathrm{X}=\left\{\mu_{1 \mathrm{C}_{1}} \mathrm{y} \mid \mathrm{y} \in \mathrm{E}_{1}, \mathrm{y}=\mathrm{f}_{1} x, x \in \mathrm{D}_{1}\right\}$ $\Rightarrow \mathrm{L}_{\mathrm{E}} \leq \mathrm{L}_{\mathrm{C}}$
[4] $\mu_{1 \mathrm{E}_{1}}: \mathrm{E}_{1} \rightarrow \mathrm{~L}_{\mathrm{E}}$ is define by

$$
\mu_{1 \mathrm{E}_{1}} \mathrm{y}=\mu_{2 \mathrm{C}} \mathrm{y} V\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}_{1}}}{\left.\mathrm{~V}_{1 \mathrm{D}_{1}} x\right)} \operatorname{lil}^{2}\right) \leq\right.
$$

$\mu_{1 \mathrm{C}_{1}} \mathrm{y}$
[5] $\mu_{2 \mathrm{E}}: \mathrm{E} \rightarrow \mathrm{L}_{\mathrm{E}}$ is define by

$$
\mu_{2 \mathrm{E}} y=\mu_{2 \mathrm{C}} \mathrm{y} \vee\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}}{ } \Phi \mu_{2 \mathrm{D}} x\right)\right] \geq \mu_{2 \mathrm{C}} \mathrm{y}
$$

Hence all the above implies $\overline{\mathrm{f}}(\mathcal{D})$ is an Fs-subset of \mathcal{C}
2.20 Proposition: $\overline{\mathrm{f}}:\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{1 \mathrm{~B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right) \rightarrow$
$\left(\mathrm{C}_{1}, \mathrm{C}, \overline{\mathrm{C}}\left(\mu_{1 \mathrm{C}_{1}}, \mu_{2 \mathrm{C}}\right), \mathrm{L}_{\mathrm{C}}\right)$ and for any pair of Fs-subsets $\mathcal{H}_{1}=\left(\mathrm{H}_{11}, \mathrm{H}_{1}, \overline{\mathrm{H}}_{1}\left(\mu_{1 \mathrm{H}_{11}}, \mu_{2 \mathrm{H}_{1}}\right), \mathrm{L}_{\mathrm{H}_{1}}\right)$ and $\mathcal{H}_{2}=$ $\left(\mathrm{H}_{12}, \mathrm{H}_{2}, \overline{\mathrm{H}}_{2}\left(\mu_{1 \mathrm{H}_{12}}, \mu_{2 \mathrm{H}_{2}}\right), \mathrm{L}_{\mathrm{H}_{2}}\right)$ of $\mathcal{B}=\left(\mathrm{B}_{1}, \mathrm{~B}, \overline{\mathrm{~B}}\left(\mu_{\mathrm{B}_{1}}, \mu_{2 \mathrm{~B}}\right), \mathrm{L}_{\mathrm{B}}\right)$ such that $\mathcal{H}_{1} \subseteq \mathcal{H}_{2}$, then

$$
\overline{\mathrm{f}}\left(\mathcal{H}_{1}\right) \subseteq \overline{\mathrm{f}}\left(\mathcal{H}_{2}\right)
$$

Proof: Suppose
$\overline{\mathrm{f}}\left(\mathcal{H}_{1}\right)=\mathcal{G}_{1}=\left(\mathrm{G}_{11}, \mathrm{G}_{1}, \overline{\mathrm{G}}_{1}\left(\mu_{1 \mathrm{G}_{11}}, \mu_{2 \mathrm{G}_{1}}\right) \mathrm{L}_{\mathrm{G}_{1}}\right)$, where
(a) $\mathrm{G}_{11}=\mathrm{f}_{1}\left(\mathrm{H}_{11}\right)$
(b) $\mathrm{G}_{1}=\mathrm{f}_{1}\left(\mathrm{H}_{1}\right)$
(c) $\mathrm{L}_{\mathrm{G}_{1}}=\left(\left[\mathrm{X}_{1}\right] \cup \Phi \mathrm{L}_{\mathrm{H}_{1}}\right),\left[\mathrm{X}_{1}\right]$ is complete ideal generated by $X_{1}=\left\{\mu_{1 C_{1}} y l y \in G_{11}, y=f_{1} x, x \in\right.$ $\left.\mathrm{H}_{11}\right\}$
(d) $\mu_{1 \mathrm{G}_{11}}: \mathrm{G}_{11} \rightarrow \mathrm{~L}_{\mathrm{G}_{1}}$ is defined by $\mu_{1 \mathrm{G}_{11}} \mathrm{y}=$

$$
\mu_{2 \mathrm{C}} \mathrm{y} \bigvee\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \Lambda\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{11}}}{\mathrm{~V}_{1 \mathrm{H}_{11}} x}\right)\right]
$$

(e) $\mu_{2 G_{1}}: G_{1} \rightarrow L_{G_{2}}$ is defined by $\mu_{2 G_{1}} y=$

$$
\mu_{2 \mathrm{C}} \mathrm{y} \mathrm{~V}\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\bigvee_{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{1}}} \Phi \mu_{2 \mathrm{H}_{1}} x\right)\right]
$$

Again suppose
$\overline{\mathrm{f}}\left(\mathcal{H}_{2}\right)=\mathcal{G}_{2}=\left(\mathrm{G}_{12}, \mathrm{G}_{2}, \overline{\mathrm{G}}_{2}\left(\mu_{1 \mathrm{G}_{12}}, \mu_{2 \mathrm{G}_{2}}\right) \mathrm{L}_{\mathrm{G}_{2}}\right)$, where
(f) $\mathrm{G}_{12}=\mathrm{f}_{1}\left(\mathrm{H}_{12}\right)$
(g) $\mathrm{G}_{2}=\mathrm{f}_{1}\left(\mathrm{H}_{2}\right)$
(h) $\mathrm{L}_{\mathrm{G}_{2}}=\left(\left[\mathrm{X}_{2}\right] \cup \Phi \mathrm{L}_{\mathrm{H}_{2}}\right),\left[\mathrm{X}_{2}\right]$ is complete ideal generated by $X_{2}=\left\{\mu_{1 C_{1}} y \mid y \in G_{12}, y=f_{1} x, x \in\right.$ $\left.\mathrm{H}_{12}\right\}$
(i) $\mu_{1 G_{12}}: G_{12} \rightarrow L_{G_{2}}$ is defined by $\mu_{1 G_{12}} y=$ $\mu_{2 \mathrm{C}} \mathrm{y} V\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{11}}}{\mathrm{~V}_{1 \mathrm{H}_{12}} x}\right)\right]$
(j) $\mu_{2 \mathrm{G}_{2}}: \mathrm{G}_{2} \rightarrow \mathrm{~L}_{\mathrm{G}_{2}}$ is defined by $\mu_{2 \mathrm{G}_{2}} \mathrm{y}=$

$$
\mu_{2 \mathrm{C}} \mathrm{y} \mathrm{~V}\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{2}}}{\left.\mathrm{~V}_{2 \mathrm{H}_{2}} x\right)} \operatorname{lic}^{2}\right)\right]
$$

From definition of Fs-subsets $\mathcal{H}_{1} \subseteq \mathcal{H}_{2}$ imply
(k) $\mathrm{H}_{11} \subseteq \mathrm{H}_{12} \Rightarrow \mathrm{f}_{1}\left(\mathrm{H}_{11}\right) \subseteq \mathrm{f}_{1}\left(\mathrm{H}_{12}\right) \Rightarrow \mathrm{G}_{11} \subseteq \mathrm{G}_{12}$, $\mathrm{H}_{1} \supseteq \mathrm{H}_{2} \Rightarrow \mathrm{f}_{1}\left(\mathrm{H}_{1}\right) \supseteq \mathrm{f}_{1}\left(\mathrm{H}_{2}\right) \Rightarrow \mathrm{G}_{1} \supseteq \mathrm{G}_{2}$
(l) $\mathrm{L}_{\mathrm{H}_{1}} \leq \mathrm{L}_{\mathrm{H}_{2}} \Rightarrow \Phi \mathrm{~L}_{\mathrm{H}_{1}} \leq \Phi \mathrm{L}_{\mathrm{H}_{2}}, \mathrm{X}_{1} \subseteq \mathrm{X}_{2}$
$\Rightarrow \Phi \mathrm{L}_{\mathrm{H}_{1}} \leq \Phi \mathrm{L}_{\mathrm{H}_{2}},\left[\mathrm{X}_{1}\right] \subseteq\left[\mathrm{X}_{2}\right]$ $\Rightarrow\left(\left[\mathrm{X}_{1}\right] \cup \Phi \mathrm{L}_{\mathrm{H}_{1}}\right) \subseteq\left(\left[\mathrm{X}_{2}\right] \cup \Phi \mathrm{L}_{\mathrm{H}_{2}}\right) \Rightarrow \mathrm{L}_{\mathrm{G}_{1}} \leq \mathrm{L}_{\mathrm{G}_{2}}$
(m) $\mu_{1 \mathrm{H}_{11}} x \leq \mu_{1 \mathrm{H}_{12}} x, \forall x \in \mathrm{H}_{11}$
$\Rightarrow \underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{11}}}{ } \Phi \mu_{1 \mathrm{H}_{11}} x \leq \mathrm{V}_{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{12}}} \Phi \mu_{1 \mathrm{H}_{12}} x$
$\Rightarrow \mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{11}}}{\left.\mathrm{~V}_{1 \mathrm{H}_{11}} x\right) \leq}\right.$
$\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{12}}}{ } \Phi \mu_{1 \mathrm{H}_{12}} x\right)$
$\Rightarrow \mu_{2 \mathrm{C}} \mathrm{y} \vee\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{11}}}{\mathrm{~V}_{1 \mathrm{H}_{11}} x}\right)\right] \leq$
$\mu_{2 \mathrm{C}} \mathrm{y} V\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{12}}}{\mathrm{~V}_{1 \mathrm{H}_{12}} x}\right)\right]$
$\Rightarrow \mu_{1 \mathrm{G}_{11}} x \leq \mu_{1 \mathrm{G}_{12}} x$
And $\mu_{2 \mathrm{H}_{1}} x \geq \mu_{2 \mathrm{H}_{2}} x, \forall x \in \mathrm{H}_{2}$
$\Rightarrow \underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{1}}}{ } \Phi \mu_{2 \mathrm{H}_{1}} x \geq \underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{2}}}{ } \Phi \mu_{2 \mathrm{H}_{2}} x$
$\Rightarrow \mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{1}}}{ } \Phi \mu_{2 \mathrm{H}_{1}} x\right) \geq=$
$\circ \gamma \mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{2}}}{\mathrm{~V}_{2 \mathrm{H}_{2}} x}\right)$
$\Rightarrow \mu_{2 \mathrm{C}} \mathrm{y} V\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{1}}}{\mathrm{~V}_{2 \mathrm{H}_{1}} x}\right)\right] \geq$
$\mu_{2 \mathrm{C}} \mathrm{y} V\left[\mu_{1 \mathrm{C}_{1}} \mathrm{y} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{2}}}{\mathrm{~V}_{2 \mathrm{H}_{2}} x}\right)\right]$
$\Rightarrow \mu_{2 \mathrm{G}_{1}} x \geq \mu_{2 \mathrm{G}_{2}} x$
(k),(l) and (m) imply $\mathcal{G}_{1} \subseteq \mathcal{G}_{2} \Rightarrow \overline{\mathrm{f}}\left(\mathcal{H}_{1}\right) \subseteq \overline{\mathrm{f}}\left(\mathcal{H}_{2}\right)$.

2.21 Image of Fs-empty set of first kind under an Fsfunction:

Let $\Phi_{\mathcal{A}}=\mathcal{X}=\left(\mathrm{X}_{1}, \mathrm{X}, \overline{\mathrm{X}}\left(\mu_{1 \mathrm{X}_{1}}, \mu_{2 \mathrm{X}}\right), \mathrm{L}_{\mathrm{X}}\right)$, where
(1) $A \subseteq X_{1} \cap X$ and $X_{1} \nsupseteq X$ or

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3, No.3, Pages: 06-14 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKRO YAL on Kitchener Road, Singapore
(2) $\mu_{1 \mathrm{D}_{1}} x \neq \mu_{2 \mathrm{D}} x$, for $x \in \mathrm{X}_{1} \cap \mathrm{X}$

We define $\overline{\mathrm{f}}\left(\Phi_{\mathcal{A}}\right)=\Phi_{\mathcal{A}}$.
2.22 Result: $\overline{\mathrm{f}}\left(\Phi_{\mathcal{A}}\right)=\Phi_{\mathcal{A}}$, where $\Phi_{\mathcal{A}}=\mathcal{D}=$ (D, $\mathrm{D}, \overline{\mathrm{D}}\left(\mu_{1 \mathrm{D}_{1}}, \mu_{2 \mathrm{D}}\right), \mathrm{L}_{\mathrm{D}}$), where $\mathrm{D}_{1}=\mathrm{D}$ and $\Phi_{\mathcal{A}}$ is Fsempty set of second

Proof: Suppose $\overline{\mathrm{f}}\left(\Phi_{\mathcal{A}}\right)=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right) \mathrm{L}_{\mathrm{E}}\right)$, where
(a) $\mathrm{E}_{1}=\mathrm{f}_{1}(\mathrm{D})=\mathrm{E}$
(b) $\mathrm{L}_{\mathrm{E}}=\left([\mathrm{X}] \cup \Phi \mathrm{L}_{\mathrm{D}}\right),[\mathrm{X}]$ is complete ideal generated by $\mathrm{X}=\left\{\mu_{1 \mathrm{C}_{1}} \mathrm{y} \mid \mathrm{y} \in \mathrm{E}_{1}, \mathrm{y}=\mathrm{f}_{1} x, x \in \mathrm{D}_{1}=\mathrm{D}\right\}$
(c) $\mu_{1 \mathrm{E}_{1}}: \mathrm{E}_{1} \rightarrow \mathrm{~L}_{\mathrm{E}}$ is defined by

$$
\begin{aligned}
& \begin{aligned}
& \mu_{1 \mathrm{E}_{1}} \mathrm{y}=\mu_{2 \mathrm{C}} \mathrm{~V}\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\mathrm{~V}_{\substack{\mathrm{y}=\mathrm{f}_{1} x \\
x \in \mathrm{D}_{1}=\mathrm{D}}} \Phi \mu_{1 \mathrm{D}_{1}} x\right)\right] \\
&=\mu_{2 \mathrm{C}} \vee\left[\mu_{1 \mathrm{C}_{1}} \wedge \beta\right], \text { where } \\
& \beta=\mathrm{V} \\
& \begin{array}{c}
\mathrm{y}=\mathrm{f}_{1} x \\
x \in \mathrm{D}_{1}=\mathrm{D}
\end{array} \\
& \hline
\end{aligned} \mu_{1 \mathrm{D}_{1}} x
\end{aligned}
$$

(d) $\mu_{2 \mathrm{E}}: \mathrm{E} \rightarrow \mathrm{L}_{\mathrm{E}}$ is defined by

$$
\left.\begin{array}{rl}
\left.\left.\left.\begin{array}{rl}
\mu_{2 \mathrm{E}} y & =\mu_{2 \mathrm{C}} \mathrm{~V}\left[\mu _ { 1 \mathrm { C } _ { 1 } } \wedge \left(\underset{y}{\mathrm{y}=\mathrm{f}_{1} x} x \in \mathrm{D}\right.\right. \\
x
\end{array}\right) \mu_{2 \mathrm{D}} x\right)\right] \\
& =\mu_{2 \mathrm{C}} \mathrm{~V}\left[\mu_{1 \mathrm{C}_{1}} \wedge \gamma\right], \text { where }
\end{array}\right\} \begin{gathered}
\gamma=\mathrm{V}=\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\
x \in \mathrm{D}_{1}=\mathrm{D}}}{ } \Phi \mu_{2 \mathrm{D}} x=\beta\left(\because \mu_{1 \mathrm{D}_{1}} x=\mu_{2 \mathrm{D}} x\right)
\end{gathered}
$$

(d) and(e) imply $\mu_{1 \mathrm{E}_{1}} x=\mu_{2 \mathrm{E}} x=\alpha$,say
(e) $\overline{\mathrm{E}} \mathrm{y}=\mu_{1 \mathrm{E}_{1}} x \wedge\left(\mu_{2 \mathrm{E}} x\right)^{\mathrm{c}}=\alpha \wedge(\alpha)^{\mathrm{c}}=0$

Hence $\overline{\mathrm{f}}\left(\Phi_{\mathcal{A}}\right)=\Phi_{\mathcal{A}}$.
2.23 Proposition:_For any Fs-functionf $\overline{\mathcal{B}} \rightarrow \mathcal{C}, \overline{\mathrm{f}}\left(\Phi_{\mathcal{A}}\right)=$ $\Phi_{\mathcal{A}}$ where $\Phi_{\mathcal{A}}$ is Fs-empty set of first or Fs-empty set of second kind.
2.24 Proposition: For any Fs-function $\overline{\mathrm{f}}: \mathcal{B} \rightarrow \mathcal{C}$ and any two Fs-subsets \mathcal{H}_{1} and \mathcal{H}_{2} of \mathcal{B}, the following are true.
(1) $\overline{\mathrm{f}}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right) \supseteq \overline{\mathrm{f}}\left(\mathcal{H}_{1}\right) \cup \overline{\mathrm{f}}\left(\mathcal{H}_{2}\right)$
(2) $\overline{\mathrm{f}}\left(\mathcal{H}_{1} \cap \mathcal{H}_{2}\right) \subseteq \overline{\mathrm{f}}\left(\mathcal{H}_{1}\right) \cap \overline{\mathrm{f}}\left(\mathcal{H}_{2}\right)$

Proof:(1): $\mathcal{H}_{1} \subseteq \mathcal{H}_{1} \cup \mathcal{H}_{2}(\because$ Proposition 1.10 in [4] $)$
$\Rightarrow \overline{\mathrm{f}}\left(\mathcal{H}_{1}\right) \subseteq \overline{\mathrm{f}}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right)(\because$ Proposition 2.22) $\ldots . .(\mathrm{I})$
Similarly $\mathcal{H}_{2} \subseteq \mathcal{H}_{1} \cup \mathcal{H}_{2}(\because$ Proposition 1.10 in [4])
$\Rightarrow \overline{\mathrm{f}}\left(\mathcal{H}_{2}\right) \subseteq \overline{\mathrm{f}}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right)(\because$ Proposition 2.22$)$
(I) and (II) imply $\overline{\mathrm{f}}\left(\mathcal{H}_{1} \cup \mathcal{H}_{2}\right) \supseteq \overline{\mathrm{f}}\left(\mathcal{H}_{1}\right) \cup \overline{\mathrm{f}}\left(\mathcal{H}_{2}\right)(\because$ For a given family of Fs -subset \mathcal{B}_{i} and an Fs -set \mathcal{C} such that $\mathcal{B}_{\mathrm{i}} \subseteq \mathcal{C}$ for $\mathrm{i} \in \mathrm{I}$ then $\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}} \subseteq \mathcal{C}$)

Proof:(2):Case(a): $\mathcal{H}_{1} \cap \mathcal{H}_{2}=\Phi_{\mathcal{A}} \Rightarrow \overline{\mathrm{f}}\left(\mathcal{H}_{1} \cap \mathcal{H}_{2}\right)=$ $\overline{\mathrm{f}}\left(\Phi_{\mathcal{A}}\right)=\Phi_{\mathcal{A}} \subseteq \overline{\mathrm{f}}\left(\mathcal{H}_{1}\right) \cap \overline{\mathrm{f}}\left(\mathcal{H}_{2}\right)$

Case (b): $\mathcal{H}_{1} \cap \mathcal{H}_{2} \subseteq \mathcal{H}_{1}(\because$ Proposition 1.10$)$
$\Longrightarrow \overline{\mathrm{f}}\left(\mathcal{H}_{1} \cap \mathcal{H}_{2}\right) \subseteq \overline{\mathrm{f}}\left(\mathcal{H}_{1}\right)(\because$ Proposition 2.22$)$
Similarly $\mathcal{H}_{1} \cap \mathcal{H}_{2} \subseteq \mathcal{H}_{2}(\because$ Proposition 1.10 in [4])
$\Rightarrow \overline{\mathrm{f}}\left(\mathcal{H}_{1} \cap \mathcal{H}_{2}\right) \subseteq \overline{\mathrm{f}}\left(\mathcal{H}_{2}\right)(\because$ Proposition 2.22$)$
(III) and (IV) imply $\overline{\mathrm{f}}\left(\mathcal{H}_{1} \cap \mathcal{H}_{2}\right) \subseteq \overline{\mathrm{f}}\left(\mathcal{H}_{1}\right) \cap \overline{\mathrm{f}}\left(\mathcal{H}_{2}\right) \quad(\because$ Proposition 1.14.1 in [4])
2.25 Proposition: For any Fs-function $\overline{\mathrm{f}} \mathcal{B} \rightarrow \mathcal{C}$ and any family of Fs-subsets $\mathcal{H}_{\mathrm{i}}, \mathrm{i} \in \mathrm{I}$ of \mathcal{B} the following are true.
(a) $\overline{\mathrm{f}}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathcal{H}_{\mathrm{i}}\right) \supseteq \bigcup_{\mathrm{i} \in \mathrm{I}} \overline{\mathrm{f}}\left(\mathcal{H}_{\mathrm{i}}\right)$
(b) $\overline{\mathrm{f}}\left(\bigcap_{\mathrm{i} \in \mathrm{I}} \mathcal{H}_{\mathrm{i}}\right) \subseteq \bigcap_{\mathrm{i} \in \mathrm{I}} \overline{\mathrm{f}}\left(\mathcal{H}_{\mathrm{i}}\right)$

Proof:(a): $\mathcal{H}_{\mathrm{i}} \subseteq \mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathcal{H}_{\mathrm{i}}(\because$ Proposition 1.13 in [4])
$\Longrightarrow \overline{\mathrm{f}}\left(\mathcal{H}_{\mathrm{i}}\right) \subseteq \overline{\mathrm{f}}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathcal{H}_{\mathrm{i}}\right)(\because$ Proposition 2.22)
$\overline{\mathrm{f}}\left(\mathrm{U}_{\mathrm{i} \in \mathrm{I}} \mathcal{H}_{\mathrm{i}}\right) \supseteq \bigcup_{\mathrm{i} \in \mathrm{I}} \overline{\mathrm{f}}\left(\mathcal{H}_{\mathrm{i}}\right)(\because$ For a given family of Fssubset \mathcal{B}_{i} and an Fs -set \mathcal{C} such that $\mathcal{B}_{\mathrm{i}} \subseteq \mathcal{C}$ for $\mathrm{i} \in \mathrm{I}$ then $\bigcup_{\mathrm{i} \in \mathrm{I}} \mathcal{B}_{\mathrm{i}} \subseteq \mathcal{C}$)

The proof of (b): The proof follows clearly
2.26 Result: If \bar{f} is increasing Fs-function, $\mathcal{D} \subseteq \mathcal{B}$ and

$$
\begin{gathered}
\overline{\mathrm{f}}_{\mathrm{i}}(\mathcal{D})=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right), \mathrm{L}_{\mathrm{E}}\right) \text { then } \mu_{1 \mathrm{E}_{1}} \mathrm{y}= \\
\mathrm{V}_{\substack{\mathrm{y}=\mathrm{f}_{1} x \\
x \in \mathrm{D}_{1}}} \Phi \mu_{1 \mathrm{D}_{1}} x \text { and } \mu_{2 \mathrm{E}}=\mathrm{V}_{\mathrm{y}=\mathrm{f}_{1} x} \Phi \mu_{2 \mathrm{D}} x
\end{gathered}
$$

Proof: Given $\overline{\mathrm{f}}(\mathcal{D})=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right) \mathrm{L}_{\mathrm{E}}\right)$, where
(a) $\mathrm{E}_{1}=\mathrm{f}_{1}\left(\mathrm{D}_{1}\right)$
(b) $E=f_{1}(D)$
(c) $\mathrm{L}_{\mathrm{E}}=\left([\mathrm{X}] \cup \Phi \mathrm{L}_{\mathrm{D}}\right),[\mathrm{X}]$ is complete ideal generated by $\mathrm{X}=\left\{\mu_{1 \mathrm{C}_{1}} \mathrm{yly} \in \mathrm{E}_{1}, \mathrm{y}=\mathrm{f}_{1} x, x \in \mathrm{D}_{1}\right\}$
(d) $\mu_{1 \mathrm{E}_{1}}: \mathrm{E}_{1} \rightarrow \mathrm{~L}_{\mathrm{E}}$ is define by $\mu_{1 \mathrm{E}_{1}} \mathrm{y}=\mu_{2 \mathrm{C}} \vee\left[\mu_{1 \mathrm{C}_{1}} \Lambda\left(\bigvee_{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}_{1}}} \Phi \mu_{1 \mathrm{D}_{1}} x\right)\right]$ given $\overline{\mathrm{f}}=\overline{\mathrm{f}}_{\mathrm{i}}$.
For $x \in \mathrm{D}_{1}, \mu_{1 \mathrm{D}_{1}} x \leq \mu_{1 \mathrm{~B}_{1}} x$ and Φ is a complete homomorphism imply
$\Phi \mu_{1 \mathrm{D}_{1}} x \leq \Phi \mu_{1 \mathrm{~B}_{1}} x \leq\left(\mu_{1 \mathrm{C}_{1}} \circ \mathrm{f}_{1}\right) x=\mu_{1 \mathrm{C}_{1}} \mathrm{y}$ inturn imply
$\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}_{1}}}{ } \Phi \mu_{1 \mathrm{D}_{1}} x \leq \mu_{1 \mathrm{C}_{1}} \mathrm{y} \ldots \ldots$. . . (I)
Again, $\mu_{1 \mathrm{D}_{1}} x \geq \mu_{2 \mathrm{D}} x \geq \mu_{2 \mathrm{~B}} x$, for each $x \in \mathrm{D}_{1}$ inturn imply

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3, No.3, Pages: 06-14 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKRO YAL on Kitchener Road, Singapore
$\Phi \mu_{1 \mathrm{D}_{1}} x \geq \Phi \mu_{2 \mathrm{D}} x \geq \Phi \mu_{2 \mathrm{~B}} x \geq\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}\right) x=$
$\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}_{1}\right) x=\mu_{2 \mathrm{C}} \mathrm{y}$ and
$\mathrm{V}_{\mathrm{y}=\mathrm{f}_{1} x} \Phi \mu_{\mathrm{D}_{1}} x \geq \mu_{2 \mathrm{C}} \mathrm{Y}$
Therefore from(I) and(II) we get $\mu_{1 \mathrm{E}_{1}} \mathrm{y}=$
$\bigvee_{\substack{\mathrm{y}^{\prime}=\mathrm{f}_{1} x \\ x \in \mathrm{D}_{1}}} \Phi \mu_{\mathrm{D}_{1}} x$
(e) $\mu_{2 \mathrm{E}}: \mathrm{E} \rightarrow \mathrm{L}_{\mathrm{E}}$ is define by
$\mu_{2 \mathrm{E}} y=\mu_{2 \mathrm{C}} \vee\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}}{\left.\mathrm{V}_{2 \mathrm{D}} x\right)} \mathrm{H}_{2 \mathrm{D}} x\right.\right.$
for $x \in \mathrm{~B}, \mu_{2 \mathrm{D}} x \geq \mu_{2 \mathrm{~B}} x$ imply
$\Phi \mu_{2 \mathrm{D}} x \geq \Phi \mu_{2 \mathrm{~B}} x \geq\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}\right) x=\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}_{1}\right) x=$
$\mu_{2 \mathrm{C}} \mathrm{y}$ inturn imply
$\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}}{ } \Phi \mu_{2 \mathrm{D}} x \geq \mu_{2 \mathrm{C}} \mathrm{y}$
Again, $\Phi \mu_{2 \mathrm{D}} x \leq \Phi \mu_{1 \mathrm{D}_{1}} x \leq \Phi \mu_{1 \mathrm{~B}_{1}} x \leq$
$\left(\mu_{1 \mathrm{C}_{1}} \circ \mathrm{f}_{1}\right) x=\mu_{1 \mathrm{C}_{1}} \mathrm{y}$ inturn imply
$\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}}{ } \Phi \mu_{2 \mathrm{D}} x \leq \mu_{1 \mathrm{C}_{1}} \mathrm{y} \ldots \ldots$
Therefore from(III) and(IV) we get $\mu_{2 \mathrm{E}} \mathrm{y}=$
$\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}}{ } \Phi \mu_{2 \mathrm{D}} x$
2.27 Result: If \bar{f} is decreasing Fs-function, $\mathcal{D} \subseteq \mathcal{B}$ and
$\overline{\mathrm{f}}_{\mathrm{i}}(\mathcal{D})=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right), \mathrm{L}_{\mathrm{E}}\right)$ then $\mu_{1 \mathrm{E}_{1}} \mathrm{y}=\mu_{2 \mathrm{C}} \mathrm{V}\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}_{1}}}{\mathrm{~V}_{1 \mathrm{D}_{1}} x}\right)\right]$
and $\mu_{2 \mathrm{E}} \mathrm{y}=\mu_{2 \mathrm{C}} \vee\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}}{ } \Phi \mu_{2 \mathrm{D}} x\right)\right]$
2.28 Result: If \bar{f} is preserving Fs-function, $\mathcal{D} \subseteq \mathcal{B}$ and

$$
\begin{gathered}
\overline{\mathrm{f}}_{\mathrm{p}}(\mathcal{D})=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right) \mathrm{L}_{\mathrm{E}}\right) \text { then } \mu_{1 \mathrm{E}_{1}} \mathrm{y}= \\
\mathrm{V}_{\mathrm{y}=\mathrm{f}_{1} x} \Phi \mu_{1 \mathrm{D}_{1}} x \text { and } \mu_{2 \mathrm{E}} \mathrm{y}=\mathrm{V}_{\substack{\mathrm{y}=\mathrm{f}_{1} x \\
x \in \mathrm{D}}} \Phi \mu_{2 \mathrm{D}} x .
\end{gathered}
$$

Proof: Given $\overline{\mathrm{f}}(\mathcal{D})=\mathcal{E}=\left(\mathrm{E}_{1}, \mathrm{E}, \overline{\mathrm{E}}\left(\mu_{1 \mathrm{E}_{1}}, \mu_{2 \mathrm{E}}\right) \mathrm{L}_{\mathrm{E}}\right)$, where
(a) $E_{1}=f_{1}\left(D_{1}\right)$
(b) $E=f_{1}(D)$
(c) $\mathrm{L}_{\mathrm{E}}=\left([\mathrm{X}] \cup \Phi \mathrm{L}_{\mathrm{D}}\right),[\mathrm{X}]$ is complete ideal generated by $\mathrm{X}=\left\{\mu_{1 \mathrm{C}_{1}} \mathrm{y} \mid \mathrm{y} \in \mathrm{E}_{1}, \mathrm{y}=\mathrm{f}_{1} x, x \in \mathrm{D}_{1}\right\}$
(d) $\mu_{1 \mathrm{E}_{1}}: \mathrm{E}_{1} \rightarrow \mathrm{~L}_{\mathrm{E}}$ is defined by $\mu_{1 \mathrm{E}_{1}} \mathrm{y}=$
$\mu_{2 \mathrm{C}} \vee\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}_{1}}}{\vee_{1 \mathrm{D}_{1}} x}\right)\right]$ given $\overline{\mathrm{f}}=\overline{\mathrm{f}}_{\mathrm{i}}$.
For $x \in \mathrm{D}_{1}, \mu_{1 \mathrm{D}_{1}} x \leq \mu_{1 \mathrm{~B}_{1}} x$ and Φ is a complete homomorphism imply
$\Phi \mu_{1 \mathrm{D}_{1}} x \leq \Phi \mu_{1 \mathrm{~B}_{1}} x=\left(\mu_{1 \mathrm{C}_{1}} \circ \mathrm{f}_{1}\right) x=\mu_{1 \mathrm{C}_{1}} \mathrm{y}$ inturn imply
$\mathrm{V}_{\mathrm{y}=\mathrm{f}_{1} x} \Phi \mu_{1 \mathrm{D}_{1}} x \leq \mu_{\mathrm{C}_{1}} \mathrm{y} \ldots \ldots$. . . (I)
$x \in \mathrm{D}_{1}$
Again, $\mu_{1 \mathrm{D}_{1}} x \geq \mu_{2 \mathrm{D}} x \geq \mu_{2 \mathrm{~B}} x$, for each $x \in \mathrm{D}_{1}$ inturn imply
$\Phi \mu_{1 \mathrm{D}_{1}} x \geq \Phi \mu_{2 \mathrm{D}} x \geq \Phi \mu_{2 \mathrm{~B}} x=\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}\right) x=$ $\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}_{1}\right) x=\mu_{2 \mathrm{C}} \mathrm{y}$ and
$\bigvee_{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}_{1}}} \Phi \mu_{\mathrm{D}_{1}} x \geq \mu_{2 \mathrm{C}} \mathrm{y}$
Therefore from(I) and(II) we get $\mu_{1 \mathrm{E}_{1}} \mathrm{y}=$
$V_{\mathrm{y}=\mathrm{f}_{1} x} \Phi \mu_{\mathrm{D}_{1}} x$

$$
x \in \mathrm{D}_{1}
$$

(e) $\mu_{2 \mathrm{E}}: \mathrm{E} \rightarrow \mathrm{L}_{\mathrm{E}}$ is define by
$\mu_{2 \mathrm{E}} y=\mu_{2 \mathrm{C}} \vee\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}}{ } \Phi \mu_{2 \mathrm{D}} x\right)\right]$
for $x \in \mathrm{~B}, \mu_{2 \mathrm{D}} x \geq \mu_{2 \mathrm{~B}} x$ imply
$\Phi \mu_{2 \mathrm{D}} x \geq \Phi \mu_{2 \mathrm{~B}} x=\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}\right) x=\left(\mu_{2 \mathrm{C}} \circ \mathrm{f}_{1}\right) x=$
$\mu_{2 \mathrm{C}} \mathrm{y}$ inturn imply
$\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}}{ } \Phi \mu_{2 \mathrm{D}} x \geq \mu_{2 \mathrm{C}} \mathrm{y}$
Again, $\Phi \mu_{2 \mathrm{D}} x \leq \Phi \mu_{1 \mathrm{D}_{1}} x \leq \Phi \mu_{1 \mathrm{~B}_{1}} x=$
$\left(\mu_{1 \mathrm{C}_{1}} \circ \mathrm{f}_{1}\right) x=\mu_{1 \mathrm{C}_{1}} \mathrm{y}$ inturn imply
$\mathrm{V}_{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}} \Phi \mu_{2 \mathrm{D}} x \leq \mu_{1 \mathrm{C}_{1}} \mathrm{y} \ldots .$. . (IV)
Therefore from(III) and(IV) we get $\mu_{2 \mathrm{E}} \mathrm{y}=$
$\mathrm{V}_{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{D}}} \Phi \mu_{2 \mathrm{D}} x$.
2.29 Proposition: For any pair of Fs-functions $\overline{\mathrm{f}}: \mathcal{B} \rightarrow \mathcal{C}$ and $\overline{\mathrm{g}}: \mathcal{C} \rightarrow \mathcal{D}$ and any Fs-subset \mathcal{H} of \mathcal{B} the following is true

$$
(\overline{\mathrm{g}} \circ \overline{\mathrm{f}})(\mathcal{H}) \subseteq \overline{\mathrm{g}}(\overline{\mathrm{f}}(\mathcal{H}))
$$

Proof: LHS: $(\overline{\mathrm{g}} \circ \overline{\mathrm{f}})(\mathcal{H})=\left[\mathrm{g}_{1} \circ \mathrm{f}_{1}, \mathrm{~g} \circ \mathrm{f}, \Psi \circ \Phi\right](\mathcal{H})=\mathcal{G}=$ $\left(\mathrm{G}_{1}, \mathrm{G}, \overline{\mathrm{G}}\left(\mu_{1 \mathrm{G}_{1}}, \mu_{2 \mathrm{G}}\right), \mathrm{L}_{\mathrm{G}}\right)$ say
(a) $\mathrm{G}_{1}=\left(\mathrm{g}_{1} \circ \mathrm{f}_{1}\right)\left(\mathrm{H}_{1}\right)$
(b) $\mathrm{G}=\left(\mathrm{g}_{1} \circ \mathrm{f}_{1}\right)(\mathrm{H})$
(c) $\mathrm{L}_{\mathrm{G}}=\left([\mathrm{X}] \cup \Phi \mathrm{L}_{\mathrm{H}}\right),[\mathrm{X}]$ is complete ideal generated by $\mathrm{X}=\left\{\mu_{1 \mathrm{D}_{1}} \mathrm{z} \mid \mathrm{z} \in \mathrm{G}_{1}, \mathrm{z}=\right.$ $\left.\left(\mathrm{g}_{1} \circ \mathrm{f}_{1}\right) x, x \in \mathrm{H}_{1}\right\}$
(d) $\mu_{1 \mathrm{G}_{1}}: \mathrm{G}_{1} \rightarrow \mathrm{~L}_{\mathrm{G}}$ is defined by $\mu_{1 \mathrm{G}_{1}} \mathrm{Z}=$
$\mu_{2 \mathrm{D}} \mathrm{ZV}\left[\mu_{1 \mathrm{D}_{1}} \mathrm{z} \wedge\left(\underset{\substack{\mathrm{z}=\left(\mathrm{g}_{1} \mathrm{of}_{1}\right) x \\ x \in \mathrm{H}_{1}}}{ } \Psi \Phi \mu_{\mathrm{H}_{1}} x\right)\right]$
(e) $\mu_{2 G}: G \longrightarrow L_{G}$ is defined by

$$
\mu_{2 \mathrm{G}} \mathrm{Z}=\mu_{2 \mathrm{D}} \mathrm{Z} \mathrm{~V}\left[\mu_{1 \mathrm{D}_{1}} \wedge\left(\underset{\substack{\mathrm{z}=\left(\mathrm{g}_{1} \mathrm{ff}_{1}\right) x \\ x \in \mathrm{H}}}{\mathrm{~V}_{2}} \Psi \mu_{2 \mathrm{H}} x\right)\right]
$$

Let $\overline{\mathrm{f}}(\mathcal{H})=\mathcal{K}=\left(\mathrm{K}_{1}, \mathrm{~K}, \overline{\mathrm{~K}}\left(\mu_{1 \mathrm{~K}_{1}}, \mu_{2 \mathrm{~K}}\right), \mathrm{L}_{\mathrm{K}}\right)$, where
(f) $\mathrm{K}_{1}=\mathrm{f}_{1}\left(\mathrm{H}_{1}\right)$
(g) $\mathrm{K}=\mathrm{f}_{1}(\mathrm{H})$
(h) $\mathrm{L}_{\mathrm{K}}=\left(\left[\mathrm{X}_{1}\right] \cup \Phi \mathrm{L}_{\mathrm{H}}\right),\left[\mathrm{X}_{1}\right]$ is complete ideal generated by $\mathrm{X}_{1}=\left\{\mu_{1 \mathrm{C}_{1}} \mathrm{y} \mid \mathrm{y} \in \mathrm{K}_{1}, \mathrm{y}=\mathrm{f}_{1} x, x \in\right.$ $\left.\mathrm{H}_{1}\right\}$,
(i) $\mu_{1 \mathrm{~K}_{1}}: \mathrm{K}_{1} \rightarrow \mathrm{~L}_{\mathrm{K}}$ is defined by $\mu_{1 \mathrm{~K}_{1}} \mathrm{y}=$
$\mu_{\mathrm{ZC}} \vee\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}_{1}}}{\mathrm{~V}_{1 \mathrm{H}_{1}} x}\right)\right]$
(j) $\mu_{2 \mathrm{~K}}: \mathrm{K} \rightarrow \mathrm{L}_{\mathrm{K}}$ is defined by
$\mu_{2 \mathrm{~K}} y=\mu_{2 \mathrm{C}} \vee\left[\mu_{1 \mathrm{C}_{1}} \wedge\left(\underset{\substack{\mathrm{y}=\mathrm{f}_{1} x \\ x \in \mathrm{H}}}{ } \Phi \mu_{2 \mathrm{H}} x\right)\right]$

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3, No.3, Pages : 06-14 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKRO YAL on Kitchener Road, Singapore

$$
\begin{aligned}
& \text { RHS: } \overline{\mathrm{g}}(\overline{\mathrm{f}}(\mathcal{H}))=\overline{\mathrm{g}}(\mathcal{K})=\mathcal{M}= \\
& \left(\mathrm{M}_{1}, \mathrm{M}, \overline{\mathrm{M}}\left(\mu_{1 \mathrm{M}_{1}},,_{2 \mathrm{M}}\right), \mathrm{L}_{\mathrm{M}}\right) \text { say }
\end{aligned}
$$

(k) $\mathrm{M}_{1}=\mathrm{g}_{1}\left(\mathrm{~K}_{1}\right)=\mathrm{g}_{1}\left(\mathrm{f}_{1}\left(\mathrm{H}_{1}\right)\right)=\left(\mathrm{g}_{1} \circ \mathrm{f}_{1}\right)\left(\mathrm{H}_{1}\right)$
(l) $\quad \mathrm{M}=\mathrm{g}_{1}(\mathrm{~K})=\mathrm{g}_{1}\left(\mathrm{f}_{1}(\mathrm{H})\right)=\left(\mathrm{g}_{1} \circ \mathrm{f}_{1}\right)(\mathrm{H})$
(m) $\mathrm{L}_{\mathrm{M}}=\left(\left[\mathrm{X}_{2}\right] \cup \Psi \mathrm{L}_{\mathrm{K}}\right),\left[\mathrm{X}_{2}\right]$ is complete ideal generated by $X_{2}=\left\{\mu_{1 D_{1}} \mathrm{z} \mid \mathrm{z} \in \mathrm{M}_{1}=\mathrm{G}_{1}, \mathrm{z}=\right.$ $\left.\mathrm{g}_{1} \mathrm{y}, y \in \mathrm{~K}_{1}\right\}$
(n) $\mu_{1 \mathrm{M}_{1}}: \mathrm{M}_{1} \rightarrow \mathrm{~L}_{\mathrm{M}}$ is defined by $\mu_{1 \mathrm{M}_{1}} \mathrm{Z}=$
$\mu_{2 \mathrm{D}} \mathrm{ZV}\left[\mu_{1 \mathrm{D}_{1}} \mathrm{z} \Lambda\left(\underset{\substack{\mathrm{z}=\mathrm{g}_{1} \mathrm{y} \\ y \in \mathrm{~K}_{1}}}{ } \Psi \mu_{1 \mathrm{~K}_{1}} y\right)\right]$
(o) $\mu_{2 \mathrm{M}}: \mathrm{M} \rightarrow \mathrm{L}_{\mathrm{M}}$ is defined by $\mu_{2 \mathrm{M}} \mathrm{Z}=$ $\mu_{2 \mathrm{D}} \mathrm{ZV}\left[\mu_{1 \mathrm{D}_{1}} \wedge\left(\underset{\substack{\mathrm{z}=\mathrm{g}_{1} \mathrm{y} \\ y \in \mathrm{~K}}}{ } \Psi \mu_{2 \mathrm{~K}} \mathrm{y}\right)\right]$

Clearly
(p) $\mathrm{G}_{1}=\mathrm{M}_{1}$ follows from (a) and(k)
(q) $\mathrm{G}=\mathrm{M}$ follows from (b) and(l)
(r) L_{G} is a complete subalgebra of L_{M} i.e. $L_{G} \leq L_{M}$ follows from (c) and(m)
(s) $\mu_{1 \mathrm{G}_{1}} \mathrm{Z} \leq \mu_{1 \mathrm{M}_{1}} \mathrm{Z}$, for each $\mathrm{z} \in \mathrm{G}_{1}=\mathrm{M}_{1}$ follows from (d) and(n)
(t) $\mu_{2 G} Z \geq \mu_{2 M} Z$, for each $z \in G=M$ follows from (e) $\operatorname{and}(m)$

From all the above statements we can easily conclude that

$$
(\overline{\mathrm{g}} \circ \overline{\mathrm{f}})(\mathcal{H}) \subseteq \overline{\mathrm{g}}(\overline{\mathrm{f}}(\mathcal{H})) .
$$

CONCLUSION

We can observe that similarities between results in theory of Fs-functions and some results in the theory of crisp functions.

ACKNOWLEDGEMENT

The first author deeply acknowledges GITAM University Management, Visakhapatnam, A.P-India for providing facilities to do research .

REFERENCES

[1] Nistala V.E.S. Murthy, Is the Axiom of Choice True for Fuzzy Sets?, Journal of Fuzzy Mathematics, Vol 5(3),P495-523, 1997, U.S.A.
[2] Goguen J.A., L-Fuzzy Sets, Journal of Mathematical Analysis and Applications,Vol.18, P145-174,1967
[3] Tridiv Jyoti Neog and Dusmanta Kumar Sut , Complement of an Extended Fuzzy Set, International Journal of Computer Applications (0975 8887), Volume 29- No.3, September 2011
[4] Vaddiparthi Yogesara, G.Srinivas and Rath Biswajit A Theory of Fs-sets,Fs-Complements and Fs-De

Morgan Laws, International Journal of Advanced Research in Computer Science, Volume 4, No. 10, Sep-Oct 2013
[5] Vaddiparthi Yogesara, Rath Biswajit and S.V.G.Reddy A Study Of Fs-Functions And Properties Of Images Of Fs-Subsets Under Various Fs-Functions. Mathematical sciences international Research Journal, Vol-3,Issue-1
[6] Tridiv Jyoti Neog and Dusmanta Kumar Sut, An Extended Approach to Generalized Fuzzy Soft Sets, International Journal of Energy, Information and Communications Vol. 3, Issue 2, May, 2012
[7] Hemanta K. Baruah, Towards Forming A Field Of Fuzzy Sets, International Journal of Energy, Information and Communications, Vol. 2, Issue 1, February 2011
[8] Hemanta K. Baruah, The Theory of Fuzzy Sets: Beliefs and Realities, International Journal of Energy, Information and Communications, Vol. 2, Issue 2, May 2011
[9] Steven Givant - Paul Halmos, Introduction to Boolean algebras, Springer
[10] Szasz, G., An Introduction to Lattice Theory, Academic Press, New York.
[11] Garret Birkhoff, Lattice Theory, American Mathematical Society Colloquium publications Volume-xxv
[12] Thomas Jech , Set Theory, The Third Millennium Edition revised and expanded, Springer
[13] George J. Klir and Bo Yuan ,Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers by Lotfi A. Zadeh ,Advances in Fuzzy Systems-Applications and Theory Vol-6, World Scientific
[14] James Dugundji, Topology, Universal Book Stall, Delhi
[15] Nistala V.E.S Murthy and Vaddiparthi Yogeswara, A Representation Theorem forFuzzy Subsystems of A Fuzzy Partial Algebra, Fuzzy Sets and System, Vol 104,P359-371,1999,HOLLAND.
[16] Zadeh, L., Fuzzy Sets, Information and Control, Vol.8,P338-353,1965

