
 ISSN 2278-3091

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.3, Pages : 01 - 05 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKROYAL on Kitchener Road, Singapore

1

Abstract: Wireless data broadcast is a popular data
dissemination method in mobile computing environments
because of its capability of concurrently disseminating data
to multiple users. When an application involves wireless
mobile clients that run multiple-operation transactions and
dynamically update the server database, those updates have
to be appear in the next broadcast cycle. Earlier show up of
such updates is highly improving the performance. In this
paper we aim to decompose the main broadcast cycle into
sub cycles which only contain a subset of data items in the
database. This decomposition contains both the original
data to be broadcast and the updates come from the
committed transactions on these data items. Perfecting and
Back off at sub cycle level will be used for further
improvements. At sub cycle level, it is more powerful for both
update and read-only transactions which allow more than
one conflicting transactions to be committed on the same
broadcast cycle. Moreover, by using sub cycle the currency
of the data may be higher since the delays in performing the
updates are shorter.

Key words: data broadcast, mobile transaction, concurrency
control, cycle decomposition, back off.

INTRODUCTION
 Data broadcast is becoming a promising way to
disseminate information to a large population of mobile
clients by mean of transaction. Unlike the conventional client
server approach, where a data item have to be send many
times to deliver the requested data even in the case of read
–only transactions. Broadcast has the potential to satisfy all
outstanding requests for the same data with a single
response. It increases the efficiency of shared bandwidth and
improves the system throughput. On the other hand, the
presence of update transactions make the management of
transactions over such environment is non trivial and
revisiting the conventional concurrency protocol is must. In
more specific, the data broadcast model requires the minimal
usage of the uplink communication from mobile clients to the
server. This makes conventional schemes such as 2-phase
locking and time stamp ordering concurrency control are not
applicable to control concurrency in broadcast-based
transaction processing because all these methods require
extensive communication among clients and server. There
have been many research efforts reported in the literature that
tackle the concurrency problems in wireless broadcast

environments, such as Update First Ordering (UFO) [2],
Multi-Version Broadcast [3], Serialization Graph [5],
Broadcast Concurrency Control with Time Stamp Interval
(BCC-TI) [2], F-Matrix [1], and Certification Report [4, 6].
The drawbacks of these methods have been analyzed in [9,
7]. In general, some of these methods only support client
read-only transactions, and some of them could have
substantial processing overhead.
 To the best of our knowledge, this is the first effort on
the study of cycle decomposition to support concurrency
control in presence of update transactions over a broadcast
environment. The major contribution of this research is
two-fold. First of all, we have identified and analyzed the
performance problem, namely one mobile update
transaction is allowed to commit during one broadcast cycle
problem. Furthermore, combining back-off technique with
cycle decomposition approach called CCBR-SL in
scheduling the mobile transactions to perform an effective
scheduling in terms of up-link bandwidth utilization and
power consumption. According to the extensive analysis
and comprehensive performance evaluation, the proposed
approach shows a satisfactory performance in transactions
processing on broadcast environments.
 The rest of this paper is organized as follows: Section
II summarizes the related works. Section III motivate our
work by evaluating the random back –off at different
broadcast cycle length. Section IV describes how broadcast
cycle decomposition could be achieved. Section V proposes
a new CCBR-SL approach and its algorithm. The
simulation model and the performance evaluation metrics.
The experimental results discussed in Section VI
demonstrate the problem suffered by existing algorithms.
Finally, we conclude the paper in Section VII.

RELATED WORKS
Concurrency control using random back-off at sub cycle
level (CCRB-SL) method is based on the optimal
concurrency control method. Optimistic concurrency
control method well suits for wireless broadcast
environments. Usually, there are two ways of validating
transactions in optimistic concurrency control methods,
forward validation and backward validation. In a backward
validation, the validating process is done against committed
transactions. If there is a conflict, the validating transaction
has to be aborted. In a forward validation, the validating
process is done against the currently running transactions.
If there is a conflict among them, either the validating
transaction or the currently running transactions relevant to
the conflict have to be aborted. Normally, it is more
expensive to abort the validating transaction than to abort

 Distribution of Updated Data in Wireless Broadcasting Environment

Ahmad al-Qerem*
* Department of Computer Science, Zarqa University, Jordan *E-mail:ahmad_qerm@zu.edu.jo

 ISSN 2278-3091

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.3, Pages : 01 - 05 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKROYAL on Kitchener Road, Singapore

2

the currently running transactions. Thus, it is better to abort
the currently running transactions rather than the
validating transaction. CCRB-SL method uses the partial
backward validation and the forward validation for the
concurrency control of mobile transactions. In CCRB-SL
method, all transactions at the mobile clients including
read-only transactions and update transactions must
perform partial backward validations by accessing the Ucast
Cycle. In wireless broadcast environments, the Ucast
consists of the set of data items that was updated during the
previous subcycle with its new values. If a transaction fails
the partial backward validation, it will be aborted and
restarted. The partial backward validation is performed
against the committed update transactions at the server
during the previous broadcast cycle. At the server, the
forward validation of a validating update transaction is
carried out against currently running transactions. The
validating update transaction at the server is either a server
transaction or a mobile update transaction submitted by the
mobile clients. Forward validation is suitable for wireless
broadcast environments with the following two reasons.
First, a validating mobile transaction should not be aborted
and restarted as much as possible when its validation is
performed at the server. This is because the abortion and
restart of the validating mobile transaction would consume
a large amount of the computing resources of the
corresponding mobile client. With forward validation, the
server can avoid selecting the validating mobile transaction
for abort if there is any conflict. Second, a mobile client
only has to send a small amount of information to the
server for the forward validation of mobile transaction. The
write data set of the validating transaction is enough for the
forward validation process. As read-only mobile
transactions do not have any write data set, they can be
locally committed without sending any validation requests
to the server. Therefore, using forward validation helps
reducing the uplink bandwidth usage for mobile clients. To
improve the response time of mobile transactions, CCRB-
SL uses data prefetching technique [8] where mobile client
keeps a consistent data items accessed in its cache while it
is executing in order to reuse the unchanged data if its force
to be restart. Data perfecting improves the response time of
the mobile transaction by reducing the access time for the
required data items. This is because the mobile transaction
can retrieve the required data items directly from its cache
rather than waiting for them to appear on the broadcast
channel. Since CCRB-SL utilizes the cache for data
prefetching, it is necessary to maintain the consistency
between server data and the client's cached data. CCRB-SL
make use of Ucast data cycle to maintain the consistency as
we will explain later. CCRB-SL method uses a random
back-off technique at subcycle level to allow more
conflicting transactions to be committed in one broadcast
cycle.

 To prevent the repetitive aborts and restarts, a random
back-off technique has been introduced in [7]. In this
technique, a server provides the update contention degree
on the data item x to the mobile clients and the mobile

clients use that information to execute the random back-off
technique. With such random back-off technique, restarting
schedules of the mobile update transactions are distributed
as shown in Fig. 1b instead of repetitive aborts resulting in
more consumption of uplink and downlink bandwidths of
mobile clients as well as their battery powers Fig. 1 (a).
Unfortunately, still there is only one mobile update
transaction is allowed to commit during one broadcast
cycle.

Fig. 1: Random back-off at broadcast cycle level [9]

Fig. 1 (a) illustrates this problem by using five mobile
update transactions, T1; T2; T3; T4 and T5 where they are
competing to update data item x during the broadcast cycle
Ci_3. T1; T2; T3; T4 and T5 may be locally aborted due to
the overlapping of the read set of one transaction and the
write set of the other. Assume that the mobile transactions
have a high access invariance and the mobile clients for T1;
T2, . . ., T5 prefetches the necessary data items into their
caches. As a result, restarting transactions can read all
required data in one broadcast cycle. Though many factors
can cause some delay, let’s assume every restarting
transactions read all data in one broadcast cycle by
accessing the prefetched data items in the caches. Since
only one mobile update transaction is allowed to commit
during one broadcast cycle, T1 commits at broadcast cycle
Ci_2, and the others (i.e., T2; T3; T4; T5) are aborted and
restarted. At the next broadcast cycle Ci_1; T2 commit and
the other 3 transactions has to abort and restart again. After
five broadcast cycles, all 5 transactions are finally
committed resulting in 10 restarts of 4 transactions. This
continuous aborting problem gets more serious as their
access patterns get more skewed. That is, it consumes more
uplink and downlink bandwidths of mobile clients as well
as their battery powers.
In Fig. 1b, the server detects an update conflict on data item
x by five mobile update transactions during the broadcast
cycle Ci_3. At the beginning of Ci_2, the server allows for
T1 to commit at broadcast cycle Ci_2, and the others (i.e.,
T2; T3; T4; T5) are aborted and restarted. Then, at the
beginning of broadcast cycle Ci_2, the server sends 3 as the
contention degree on the data item x to each mobile clients
with the aborted transactions T2; T3; T4, or T5. Each
mobile client generates its random back-off time number w
between 0 and 3. Each mobile client restarts its transactions
after passing w broadcast cycles. For example, in Fig. 1(b),
T4 generates a random back-off time number of 1. It waits
for a single broadcast cycle, and restarts at Ci_1, and

 ISSN 2278-3091

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.3, Pages : 01 - 05 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKROYAL on Kitchener Road, Singapore

3

commit at Ci. This technique can effectively reduce the
repetitive aborts and restarts of mobile update transactions.

RANDOM BACKOFF AT SUB CYCLE LEVEL
Random back off is best known in the context of the Ethernet
access-control framework. In the context of mobile
transaction in wireless broadcasting environment, it is a
technique used to alleviate repeated transaction conflicts on a
same data item thereby saving scarce uplink bandwidth. It
can also be used even in read-only mobile transactions to
defer an access prior to actual conflict and thereafter elide the
conflict entirely. There seems to be a general consensus that
back off is useful as it's wildly used in different context for the
same reason (i.e. conflict avoidance) a little works on
back-off technique in the context of broadcasting
environment have been done. In this section, we motivate our
work by evaluating random-back off in this context; we study
three simple contention scenarios, high, moderate and low
for different broadcast cycle length. In this workload there
are different transactions lengths, long transactions aborted
by short transactions may help to increase the validity of the
data within the broadcast cycle allowing more read only
transaction to be locally committed. With prefetching
technique long transactions need to be restarted on the data
items being in conflict with previously commited
transactions which may provide early in the next sub cycle
resulting in more concurrency for both read only and update
transactions.

Fig.2. Average Number of broadcast cycle till the update transaction gets
committed.

For transaction that detected the conflict just loses the
conflicted data items and restarted locally. At sub-cycle level,
those data items may appear directly in the same broadcast
cycle which means that there is no need for both read-only
and update transaction to be delayed to the next broadcast
cycle. Further more; back-off just prior to a commit at
broadcast cycle level cannot evade write-write conflicts
between backed-off transaction and the newer one since by
the commit point both transactions have already performed
their respective updates. In this situation, one of them has to
restarted and back-off again. If the broadcast cycle is large
enough, random back off technique at the cycle level become
substantially inefficient as the transaction need to span a
multiple large broadcast cycle in order to get their update
being reflected and available to other transactions.

Random-back-off at sub cycle level helps avoid both convoy
and starvation problems. Fig.2. shows the performance plots.
Y-axis plots average number of broadcast cycle till the
Update transaction gets committed. Each bar in the plot
represents number of sub cycle in the main broadcast cycle.
Performance results show that the overhead of broadcast
cycle decomposition can be kept low while providing a
considerable increase in concurrency. Besides increasing the
concurrency of client transactions, decomposition of
broadcast cycle provides clients with the possibility of
accessing multiple server states in a single broadcast cycle.
Furthermore, decomposition always supports the up to date
data items for client transactions where ever it's come in the
broadcast period.
This study is important because in broadcast data model
maximizing data currency (minimizing staleness) and
decreasing transaction's aborts are of equal importance as
providing consistent data items to transactions. Integrating
back off into concurrency protocols at sub cycle level is not
straightforward. Its require the main broadcast cycle to be
lengthen which can be coped over by using a proper indexing
method. In the next section we will explain how such
decomposition could be achieved.

BROADCAST CYCLE DECOMPOSITION
As we see in previous section, an efficient way to improve
the performance of broadcast data model is to relax the
requirement that each data item has to be broadcast at least
once in each cycle. We may decompose the main broadcast
cycle into sub cycle which may only contain a subset of data
items in the database. More over, by using sub cycle the
currency of the data may be higher since the delays in
performing the updates are shorter. The broadcast cycle is
divided into multiple sub-cycles of two types alternatively
see Fig.3: read cast called Rcast and update cast called
Ucast in alternative way. The former contains the data
items which were predefined scheduled for the main
broadcast cycle but distributed along many Rcast where as
the Ucast content is dynamics and changed based on the
data being updated by the committed transactions in the
previous sub cycles.

Fig.3: Broadcast Cycle Decomposition

Between any two Rcast cycles, there is a reserved space for
Ucast to accommodate identities for all the data objects
which are updated by transactions in the server after the
first sub-cycle begins. A mobile transaction can validate its
prefetched data consistency autonomously by accessing the

 ISSN 2278-3091

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.3, Pages : 01 - 05 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKROYAL on Kitchener Road, Singapore

4

Ucast cycle. Our goal is to reveal the write set of the
committed transactions as soon as possible. Unfortunately,
this may jumble the original schedule. We can tradeoff the
immediate show up of the updated data items from the
previous sub cycle and delaying all those updates until the
beginning of a next sub cycle which will be accommodated
in front of pre assigned Rcast index. As a result, the
identities of all the data items which are updated by any
transactions are included in the Ucast space after the
current broadcast sub-cycle. The identities of all the extra
data items with no rooms at the current Ucast are included
in the next Ucast based on commit sequence of their
transactions. At the same time, since all information of
latest committed update transactions is dynamically loaded
at the beginning of some Rcast index segment, a mobile
transaction only needs to tune to the channel at specific
periods to retrieve the requested data item and the control
information associated with it.
Data broadcast usually requires a client to be active all the
time in order to monitor the data units that go by. This
leads to unacceptable energy consumption on wireless
mobile equipments, for which power saving is a very
essential issue. To save power in data broadcast models,
indexing schemes are proposed in [9]. The Basic idea of
indexing is to insert pointers for data broadcast in a future
schedule into a broadcast cycle. Consequently, a client
application can go to doze mode after it accesses this
pointer, and only wakes up at the time the requested data
unit is on the air. Several index schemes have been
proposed in [8]. In all indexing schemes, an index tree of
all data in a broadcast cycle is inserted to the schedule.
Pointers to each real data units are located at the leaves of
the index tree while a route to a specific leaf can be found
following the pointer from the tree root. In our work the B-
index contains only information about the starting time of
both Rcast-index and Ucast-index based on the number of
sub cycles and the sizes for each of them; this is easy know
as all Ucast are of equal size to and the Rcast cycles is
previously determined at the beginning of each broadcast
cycle. In addition to the index information provided by
Rcast-index and Ucast-index, Rcast-index contains a
pointer for the next Rcast. the Ucast-Index contains the
actual index of the data items to be broadcasted and each
index is associated with control information to validate its
pre fetched data items such as sub cycle number as well as
the conflicting degree which will be used in back-off
procedure as we will be explain later in this paper. Fig.4
shows the structure of index information for each element in
Ucast-index in addition to the pointer indicating the next
Rcast-index segment as the client may arrive at any time
during the major broadcast cycle.

Fig.4: Information associated with each index in Ucast cycle

CCBR-SL APPROACH
As we see in section 3, the random back-off will be a
promising approach if we applied at the sub cycle level. A
new back-off algorithm with appropriate distribution of
updated data items based on conflicting degree along the
Ucast cycles called CCBR-SL Fig.5 will be introduced.
conflicting degree also important for read-only transaction
that is the transaction need to read the same data item
multiple times equal to the number of updated transactions
so back off work as locking technique although that there is
no need for such read only transactions to communicate
with the server (i.e. self locking).
Each mobile transaction reads all its requested data items
directly by tuning into Rcast cycle, the mobile transaction
may need to check different Ucast cycles in order to collect
their data items. The up coming Ucast-index also needs to
be checked in order to ensure that its previously accessed
data items are consistent. No transaction can be committed
in a certain sub cycle unless its data could be placed on a
certain Ucast cycle. This can increase the probability of
read only transaction to commit as we defer the commit of
conflicting transaction to the next sub cycle if there is no
space to accommodate the updated data items in the next
Ucast, the commit is deferrable to Ucast with available
space to publish the updated data items.

Fig .5: DUD algorithm

CONCLUSION

 Earlier show up of such updates is highly improving the
performance. In this paper we propose a decomposition
approach of the main broadcast cycle into sub cycles which
only contain a subset of data items in the database. This
decomposition contains both the allow us to apply a
concurrency protocol with back-off at sub cycle level. At sub
cycle level, it is more powerful for both update and read-only

Input:

UDi = { id1 , id 2 , …, i
nd) be a set of updated data items in Rcasti

Conflict degree (i
jd) = the number of failed to commit transactions

because of i
jd trying to update id at Rcast j.

Ucast NumSc =Ucast cycle number within the major broad cast cycle.
Output: The data broadcast schedule for updated data items over Ucast
in BC

Step1: Sort the data i
jd in UD by conflict degree (i

jd) in descending

order;

Let i
jd represent ith sorted data in descending order of Rcast j.

Step 2: while (UDi & k < total number of Ucast in BC) do
 J=0
 k= (current Ucast NumSc + 1) to remaining Ucast cycles in BC {
 For i= 1 to i<= n, i++ do { //n: the Ucast Size

 J=j+1
 If j>n break; n: size of Ucast exceeded

 Allocate
i
jd in Ucast NumSc =k

} End For i
 K=k+1 }
End while

 ISSN 2278-3091

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.3, Pages : 01 - 05 (2014)
Special Issue of ICIITEM 2014 - Held during May 12-13, 2014 in PARKROYAL on Kitchener Road, Singapore

5

transactions which allow more than one conflicting
transactions to be committed on the same broadcast cycle.
Moreover, by using sub cycle the currency of the data may be
higher since the delays in performing the updates are shorter.
We are working now on developing a simulator to compare
the result with FBOCC protocol. This will be the future work
of this study.

ACKNOWLEDGEMENT
This research is funded by the Deanship of Research and
Graduate Studies in Zarqa University /Jordan"

REFERENCES

[1] Lam, K. Y., Au, M. W., and Chan, E., “Broadcast of consistent data to

read-only transactions from mobile clients,” Proc. of the Second IEEE
Workshop on Mobile Computing Systems and Applications, 1999.

[2] Pitoura, E., “Supporting read-only transactions in wireless broadcasting,”
Proc. of the DEXA98 International Workshop on Mobility in Databases
and Distributed Systems, pp. 428-422, 1998.

[3] Pitoura, E., and Chrysanthis, P. K., “Scalable processing of read-only
transactions in broadcast push,” Proc. Of the 19th IEEE International
Conference on Distributed Computing System, 1999.

[4] Lee, SangKeun, Hwang, Chong-Sun, Kitsuregawa, Masaru,. Efficient,
energy conserving transaction processing in wireless data broadcast. IEEE
Transactions on Knowledge and Data Engineering 18 (9), 1225–1237.
September 2006.

[5] Cho, H. Concurrency control for read-only client transactions in broadcast
disks. IEICE Transactions on Communications E86-B (10), 3114–3122.
2003

[6] Lee, Victor C.S., Lam, Kwok Wa, Kuo, Tei-Wei, Efficient validation of
mobile transactions in wireless environments. Journal of Systems and
Software, 183–193. 2004.

[7] Sunggeun Park, Sungwon Jung; An energy-efficient mobile transaction
processing method using random back-off in wireless broadcast
environments The Journal of Systems and Software vol 82 pp
2012–2022, 2009

[8] Vikas Goel, Ajay Kumar Anil Kumar Ahlawat; A Comparative Study of
Energy Efficient Air Indexing Techniques for Uniform Broadcasting
International Journal of Computer Applications COMNET-2011

[9] Huang, Y., and Lee, Y. H., “Concurrency control protocol for
broadcastbased transaction processing and correctness proof," ISCTA
PDCS 2001,in press, August 2001.

Ahmad Alqerem obtaining a BSc in 1997
from JUST University and a Masters in
computer science from Jordan University
in 2002. PhD in mobile computing at
Loughborough University, UK in 2008.
He is interested in concurrency control for
mobile computing environments,
particularly transaction processing. He
has published several papers in various
areas of computer science. After that he

was appointed a head of internet technology Depts. Zarka
University

