
International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 235 – 238 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

235

ISSN 2278-3091

Using Checkpoint For Implementing Fault-
Tolerant On Desktop Grids

 M.Udaya Prakash Reddy1 P.Mangala Tulasi2
 Assistant Professor1 Assistant Professor2

 Department Of Computer Science and Engineering , Department Of Computer Science and Engineering ,
 Malla Reddy Institute Of Engineering and Technology Malla Reddy Institute Of Engineering and Technology
 email- udhayreddi@gmail.com email- tulasipuppala@gmail.com

Abstract:

Grid computing uses massive power of idle cycles of PC's .Desktop grids is nothing using the idle cycles of
desktop PC's for computing large scale applications. There are many fields which requires large scale massive
power such as scientific fields to handle complex and demanding problems. Desktop grids uses widely
distributed grids the probability of occurring fault is more. Desktop Grids are being increasingly used as the
execution platform for a variety of applications that can be structured as Bag-of-Tasks (BoT)[1].
In this paper we proposes a fault tolerant fair scheduler for bag of tasks application on desktop grid, which
ensures error free transmission of data and performing tasks by using resources and also fair sharing of
resources. Fault tolerant is implemented on desktop grid by using check point.

Keywords - Scheduler, Grid Information System, checkpoint

 INTRODUCTION

Almost every college, office and every member have
computers. In fact modern world is incomplete
without Computers. Desktop Grids are
computational grids formed by using resources of
idle desktop machines. Most of the computers in
offices and personal computers are used only for
certain time and are idle for most of the time and
also they are not using the whole storage of the
system .Grid computing combines all the machines
that are idle and form as Virtual Group and uses the
group for computing large-scale applications. There
are two types of desktop grids one is local and other
is individual computers . Local computers are the
group of computers in an organization and
educational institutes . Second is the individual
computers which are used by citizens . This offers the
opportunity to resolve the increasing need for
computational resources. As most desktop systems
are idle for significant periods of time, it should be
possible to harvest their idle CPU cycles or other
unused resources and apply them towards projects in
need of such resources. Apart from providing huge
computational power and storage capacity desktop
grids also have several challenges in using this
volatile and shared platform effectively. The
usefulness of desktop grid computing is not limited to
major high throughput public computing projects.
Many institutions, ranging from academics to
enterprises, hold vast number of desktop machines

and could benefit from exploiting the idle cycles of
their local machines[2] . Important examples of
desktop grids are SETI@home and PrimeGrid,
Almere Grid, Condor based grids[4],
the WISDOM project is using grid computing to
speed the search for a cure for malaria, a disease that
effects millions of people all over the developed
world, MammoGrid is building a grid for hospitals to
share and analyse mammograms in an effort to
improve breast cancer treatment.

Desktop grids faces many challenges and the most
important challenges are platform is volatile, since
users may reclaim their computer at any time, which
makes centralized schedulers inappropriate. Second,
desktop grids are likely to be shared among several
users, thus we must be particularly careful to ensure a
fair sharing of the resources. Fair sharing of resources
means there should be balanced share of resource no
resource should get more load and no resource should
get less instead there should be balanced sharing to
the resources. The solution to the fair sharing of
resources is already give by fair decentralized
scheduler[1]. The main aim of our model is provide
fault tolerant by using check points. Fault tolerance is
an important property in Grid computing as the
dependability of individual Grid resources may not
be able to be guaranteed; also as resources are used
outside of organizational boundaries, it becomes
increasingly difficult to guarantee that a resource
being used is not malicious in some way[3].

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 235 – 238 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

236

ISSN 2278-3091

 PROBLEM DESCRIPTION

In this section, we formally define the problem we
target. Our goal is to design a fault-tolerant for fair
scheduler on desktop grid. Our main objective while
scheduling tasks of concurrent applications is to
ensure fairness among users. There is more chance of
occurring of resources failures in grid computing
because grids are in distributed environment. Desktop
Grids is forming Virtual Group by using many
computers around world and using computer power
and storage so at any time their is a chance of
reclaiming the computer at any time from the virtual
Group.In the desktop grids it is more because even
and individual computer also comes under this
category.

 ARCHITECTURE

Figure 1:Architecture of Scheduler and GIS

 Figure 2: GIS architecture

Algorithm 1 Resource Failure Detection Algorithm
used by GIS.

repeat
send the messages to all checkpoints up to resource
from GIS
if a checkpoint does not respond sending
acknowledge back then
remove it from the list
update GIS entities about the failure
end if
wait for Time GIS seconds
until simulation is over

Algorithm 2 Resource Failure Detection Algorithm
used by Scheduler .

repeat
push the messages to all resources which are
running jobs
if a resource does not respond by sending
acknowledge then
Scheduler ask the GIS for a list of resources
choose one of them
resubmit the jobs
end if
wait for T seconds
until all my jobs have been successfully executed.

GIS: maintains an up-to-date list of available
resources. GIS collects the information from all the
checkpoints of all the resources and maintains an up-
to-date list.
 According to Algorithm 1 :
Message will be send to all the checkpoints to all the
resources and if message is not send back from the
then remove the resource from the resource
information maintained in the GIS. Contact a GIS

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 235 – 238 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

237

ISSN 2278-3091

entity for a list of available resources in order to
know where to run their jobs. The functionality of
this entity can be summarized in Algorithm 2. For
enabling an efficient pushing mechanism, User
Datagram Protocol (UDP) is used by these entities.
This is due to the fact that UDP requires a less
significant network latency in comparison with a
Transmission Control Protocol (TCP), although UDP
does not provide retransmission of lost packets. The
sequential steps are shown in a box with a number
inside. Here is list of steps showing the working of
the model .First, R1,R2,R3 and R4 resources register
to GIS (step 1). Then, GIS creates a list of available
resources. In order to keep that list up-to-date, GIS
push the messages to the resources periodically (step
2). When User wants to run a job, he/she contacts
scheduler and scheduler contacts GIS in order to get
a list of available resources (step 3). Upon receiving
the scheduler's request, GIS returns its list. In that
moment, scheduler will choose R1 for example,
based on the features of the resource and the job
scheduling. When User has chosen the resource,
he/she submits the job to R1 and starts a regular
pushing mechanism.
In the event of a failure affecting R1, GIS is able to
detect this problem due to the pushing mechanism in
place (step 4). Hence, GIS removes the failed
resource from the list. During a routine push, GIS
discovers that R1 has failed. As a result, scheduler
ask GIS for a list of resources (step 5). When R1
recovers, it registers itself again to GIS (step 6). With
this approach, GIS is able to maintain an up-to-date
list of available resources. If the failure only affects
some of the machines in a resource, what happens
next depends on the allocation policy of this resource.
If the resource runs a space-shared allocation policy,
the jobs that are currently running on the failed
machines will be terminated and sent back to users.
However, when the resource runs a time-shared
(round-robin) allocation policy, no jobs will be failed,
as their execution will continue in the remaining
machines of the resource. For both allocation
policies, the remaining machines are responsible for
responding to pushing requests from users and GIS.
Moreover, they are required to inform the GIS about
such failure. This way, the GIS can have accurate
information on the current status of the resource.

USING GridSim FOR RESOURCE FAILURES

GridSim:
GridSim allows modeling and simulation of entities
in parallel and distributed computing systems such as
users, applications, resources, and resource

brokers/schedulers for design and evaluation of
scheduling algorithms.
Overview of GridSim functionalities:
Incorporates failures of Grid resources during
runtime. New allocation policy can be made and
integrated into the GridSim Toolkit, by extending
from Alloc class. Has the infrastructure or framework
to support advance reservation of a grid system.
Incorporates a functionality that reads workload
traces taken from supercomputers for simulating a
realistic grid environment. Incorporates an auction
model into GridSim. Incorporates a datagrid
extension into GridSim. Incorporates a network
extension into GridSim. Now, resources and other
entities can be linked in a network topology.
Incorporates a background network traffic
functionality based on a probabilistic distribution.
This is useful for simulating over a public network
where the network is congested. Incorporates
multiple regional GridInformationService(GIS)
entities connected in a network topology. Hence, you
can simulate an experiment with multiple Virtual
Organizations (VOs).Adds ant build file to compile
GridSim source files[10].

Along with GridSim classes we are using many new
classes for implementing resource failures.
UserFailure: as its name suggests, this class
implements the behavior of the users of our grid
environment. Its functionality can be summarized as
follows: (1)creation of jobs; (2) submission of jobs to
resources; (3)push the resources used to run its jobs;
(4) on the failure of a job, choose another resource
and re-submit the failed job to it; (5) receive
successful jobs.

ResourceFailure: based on Grid-
Sim's GridResource class, this class interacts with
RegionalGISWithFailure to set machines as failed or
working. It also interacts with classes implementing
AllocPolicyWithFailure to set jobs as failed.

AllocWithFailure: it is an interface class,
which provides some functions to deal with resource
failures. Each allocation policy implementing this
interface will have a different behaviour with regard
to the failures.

AvailabilityInfo: This class is used to implement
the pushing mechanism. The user and GIS send
objects of this class to resources, which in turn send
them back, as mentioned previously. When a
resource still has some working machines left, it will
send these objects back with no delay. However,
when all machines are out of order, the resource
sends these objects back with some delay with a

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 235 – 238 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

238

ISSN 2278-3091

special tag. This is done to simulate a situation,
where if a resource does not reply to the given push
before a specified time out, then it is interpreted as
not available. This method is used to overcome the
same problem in GridSim, i.e. waiting for events that
never arrive.
Resource failure statistics
Virtual Group Resources Failed

Resources
V1 100 5
V2 20 1
V3 60 30
V4 23 23

Job failures

 CONCLUSION AND FUTURE WORK
Grid computing is the hot topic now-a-days which is
used in many fields such as scientific, global
warming etc. GridSim is the simulation tool used for
simulation. By using Gridsim we model failure
detection and handling the failures by using
checkpoints. Failure model is implemented by using
Gridsim, by this model researchers can be able to
develop more realistic Grid models.In this paper we
handled exception handling by using Grid sim.

As for future work, we are planning to use the
improved simulation tool to carry out research aimed
at providing more security and QoS in Grids.

References
[1]: Javier Celaya, Loris Marchal ” A Fair
Decentralized Scheduler for Bag-of-tasks
Applications on Desktop Grids"
[2]: Derrick Kondo and Filipe Araujo"Characterizing
Result Errors in Internet Desktop Grids".
[3]: Domingues, P.Sch. of Technol. & Manage.,
Polytech. Inst. of Leiria, Portugal.Silva, J.G. ; Silva,
L.Sharing Checkpoints to Improve Turnaround Time
in Desktop Grid Computing
[4]Universiteit Antwerpen
[5] Paul Townend and Jie Xu"Fault Tolerance within
a Grid Environment"Department of Computer
ScienceUniversity of Durham, DH1 3LE, United
Kingdomp.m.townend@dur.ac.uk jie.xu@dur.ac.uk
[6] Agust´_n Caminero and Anthony Sulistio

 "Extending GridSim with an Architecture for Failure
Detection" Department of Computing Systems
2Dept. of Computer Sc. & Software Eng.
The University of Castilla La Mancha, Spain The
University of Melbourne, Australia
fagustin, blanca, carmeng@dsi.uclm.es fanthony,
rajg@csse.unimelb.edu.au 2007
[7] N. Hayashibara, A. Cherif, and T. Katayama.
"Failure detectors for large-scale distributed systems"
In Proc. of the 21th Symp. on Reliable Distributed
Systems, (SRDS), Japan, 2002.
[8] Nikolaos D. Doulamis"Fair Scheduling
Algorithms in Grids"IEEE TRANSACTIONS ON
PARALLEL AND DISTRIBUTED SYSTEMS,
NOV 2007
[9] Fangpeng Dong and Selim G. Akl "Scheduling
Algorithms for Grid Computing: State of the Art and
Open Problems"January 2006.
[10] http://www.cloudbus.org/gridsim/

 Jobs Failed Jobs
1 200 52
2 89 8
3 100 65
4 10 10

