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Abstract— Signature based malware detection 
systems have been a much used response to the 
pervasive problem of malware. Identification of 
malware variants is essential to a detection system 
and is made possible by identifying invariant 
characteristics in related samples. To classify the 
packed and polymorphic malware, this paper 
proposes a novel system, named malwise, for 
malware classification using a fast application level 
emulator to reverse the code packing transformation, 
and two flowgraph matching algorithms to perform 
classification. An exact flowgraph matching 
algorithm is employed that uses string based 
signatures, and is able to detect malware with near 
real-time performance. Additionally, a more effective 
approximate flow graph matching algorithm is 
proposed that uses the decompilation technique of 
structuring to generate string based signatures 
amenable to the string edit distance. We use real and 
synthetic malware to demonstrate the effectiveness 
and efficiency of Malwise. Using more than 15,000 
real malware, collected from honeypots, the 
effectiveness is validated by showing that there is an 
88% probability that new malware is detected as a 
variant of existing malware. The efficiency is 
demonstrated from a smaller sample set of malware 
where 86% of the samples can be classified in under 
1.3 seconds. 
Index Terms— Computer security, malware, control 
flow, structural classification, structured control flow, 
unpacking. 
 
1 INTRODUCTION 
Malware, short for malicious software, means a 
variety of forms of hostile, intrusive or annoying 
software or program    code. Malware is a pervasive 
problem in distributed computer and network 
systems. According to the Symantec Internet Threat 
Report [1],499,811 new malware samples were 
received in the second half of 2007. F-Secure 
additionally reported, “As much malware [was] 
produced in 2007 as in the previous20 years 
altogether“ [2]. Detection of malware is important to  
 

a secure distributed computing environment. The 
predominant technique used in commercial anti 
malware  systems to detect an instance of malware is 
through the use of malware signatures. Malware 
signatures attempt to capture invariant characteristics 
or patterns in the malware that uniquely identifies it. 
The patterns used to construct a signature have 
traditionally derived from strings of the malware’s 
machine code and raw file contents [3, 4]. String 
based signatures have remained popular in 
commercial systems due to their high efficiency, but 
can be ineffective in detecting malware variants. 
Malware variants often have distinct byte level 
representations while in principal belong to the same 
family of malware. The byte level content is different 
because small changes to the malware source code 
can result in significantly different compiled object 
code. In this paper we describe malware variants with 
the umbrella term of polymorphism. Polymorphism 
describes related malware sharing a common history 
of code. Code sharing among variants can be derived 
from autonomously self mutating malware, or 
manually copied by the malware creator to reuse 
previously authored code. 
1.1 Existing Approaches and Motivation 
Static analysis incorporating n-grams [5, 6], edit 
distances [7], API call sequences [8], and control 
flow [9-11] have been proposed to detect malware 
and their polymorphic variants. However, they are 
either ineffective or inefficient in classifying packed 
and polymorphic malware. A malware's control flow 
information provides a characteristic that is 
identifiable across strains of malware variants. 
Approximate matching of flowgraph based 
characteristics can be used in order to identify a 
greater number of malware variants. Detection of 
variants is possible even when more significant 
changes to the malware source code are introduced. 
Control flow has proven effective [9, 11, 12], and fast 
algorithms have been proposed to identify exact 
isomorphic whole program control flow graphs [13] 
and related information [14], yet approximate 
matching of program structure has shown to be 
expensive in runtime costs [15]. Poor performance in 
execution speed has resulted in the absence of 
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approximate matching in end host malware detection. 
To hinder the static analysis necessary for control 
flow analysis, the malware's real content is frequently 
hidden using a code transformation known as packing 
[16]. Packing is not solely used by malware. Packing 
is also used in software protection schemes and file 
compression for legitimate software, yet the majority 
of malware also uses the code packing 
transformation. In one month during 2007, 79% of 
identified malware was packed [17]. Additionally, 
almost 50% of new malware in 2006 were repacked 
versions of existing malware [18].This article has 
been accepted for publication in a future issue of this 
journal, but has not been fully edited. Content may 
change prior to final publication. 
 
 2 IEEE TRANSACTIONS ON COMPUTERS 
Unpacking is a necessary component to perform 
static analysis and to reveal the hidden characteristics 
of  alware. In the problem scope of unpacking, it can 
be seen that  any instances of malware utilize 
identical or similar packers. Many of these packers 
are also public, and malware often employs the u se 
of these public packers. Many instances of malware 
also employ modified versions of public packers. 
Being able to automatically unpack malware in any 
of these scenarios, in addition to unpacking novel 
samples, provides benefit in revealing the malware’s 
real content – a necessary component for static 
analysis and accurate classification. Automated 
unpacking relies on typical behavior seen in the 
majority of packed malware – hidden code is 
dynamically generated and then executed. The hidden 
code is naturally revealed in the process image during 
normal execution. Monitoring execution for the 
dynamic generation and execution of the malware’s 
hidden code can be achieved through emulation [19]. 
Emulation provides a safe and isolated environment 
for malware analysis. Malware detection has been 
investigated extensively, however shortcomings still 
exist. For modern malware classification approaches, 
a system must be developed that is not only effective 
against polymorphic and packed malware, but that is 
also efficient. Unless efficient systems are developed, 
commercial Antivirus will be unable to implement 
the solutions developed by researchers. We believe 
combining effectiveness with real-time efficiency is 
an area of research which has been largely ignored. 
For example, the malware classification investigated 
in [5, 6,9-11] has no analysis or evaluation of system 
efficiency. We address that issue with our 
implementation and evaluation of Malwise.In this 
paper we present an effective and efficient system 
that employs dynamic and static analysis to 
automatically unpack and classify a malware instance 

as a variant, based on similarities of control flow 
graphs. 
 
2 RELATED WORKS 
2.1 Automated Unpacking 
Automated unpacking employing whole system 
emulation 
was proposed in Renovo [19] and Pandora's Bochs 
[20]. Whole system emulation has been demonstrated 
to provide effective results against unknown malware 
samples, yet is not completely resistant to novel 
attacks [21].Renovo and Pandora’s Bochs both detect 
execution of dynamically generated code to 
determine when unpacking is complete and the 
hidden code is revealed. An alternative algorithm for 
detecting when unpacking is complete was proposed 
u sing execution histograms in Hump -and-dump [22] 
. The Hump-and-dump was proposed as potentially 
desirable for integration into an emulator. 
Polyunpack [16] proposed a combination of static 
and dynamic analysis to dynamically detect code at 
runtime which cannot be identified during an initial 
static analysis. The main distinction separating our 
work from previously proposed automated unpackers 
is our use of application level emulation and an 
aggressive strategy to determine that unpacking is 
complete. The advantage of application level 
emulation over whole system emulation is 
significantly greater performance. Application level 
emulation for automated unpacking has had 
commercial interest [23] but has realized few 
academic publications evaluating its effectiveness 
and performance. Dynamic Binary Instrumentation 
was proposed as an alternative to using an 
instrumented emulator [24] employed  by Renovo 
and Pandora’s Bochs. Omni pack [25]and Saffron 
[24] proposed automated unpacking using native 
execution and hardware based memory protection 
features.  
 
This results in high performance in  comparison to 
emulation based unpacking. The disadvantage of 
unpacking using native execution is evident on E-
Mail gateways because a virtual machine or emulator 
is required to execute the malware. A virtual machine 
approach to unpacking, using x86 hardware 
extensions, was proposed in Ether [26]. The use of 
such a virtual machine and equally to a whole system 
emulator is the requirement to install a license for 
each guest operating system. This restricts desktop 
adoption which typically has a single license. Virtual 
machines are also inhibited by slow start-up times, 
which again are problematic for desktop use. The u 
se of a virtual machine also prevents the system being 
cross platform, as the guest and host CPUs must be 
the same. 
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2.2 The Difference between Malwise and Previous 
Work 
Our research differs from previous flowgraph 
classification 
research by using a novel approximate control flow 
graph matching algorithm employing structuring. We 
are the first to use the approach of structuring and 
decompilation to generate malware signatures. This 
allows us to use string based techniques to tackle 
otherwise infeasible graph problems. We use an exact 
matching algorithm which performs in near real-time 
while still being able to identify approximate matches 
at a whole program level. The novel set similarity 
search we perform enables the real-time classification 
of malware from a large data base.No prior related 
research has performed in real-time.. 
 
3 PROBLEM DEFINITIONS AND OUR 
APPROACH 
The problem of malware classification and variant 
detection is defined in this Section. The problem 
summary is to use instance based learning and 
perform a similarity search over a malware database. 
Additionally defined in this Section is an overview of 
our approach to design the Malwise system. 

3.1 Problem Definition 
A malware classification system is assumed to have 
advance access to a set of known malware. This is for 
construction of an initial malware database. The 
database is 
constructed by identifying invariant characteristics in 
each malware and generating an associated signature 
to be stored in the database. After database 
initialization, normal use of the system commences. 
The system has as input a previously unknown binary 
that is to be classified as being malicious or non 
malicious. The input binary and the initial malware 
binaries may have additionally undergone a code 
packing transformation to hinder static analysis. The 
classifier calculates similarities between the input 
binary and each malware in the database. The 
similarity is measured as a real number between 0 
and 1 – 0 indicating not at all similar and 1 indicating 
an identical or very similar match. This similarity is a 
based on the similarity between malware 
characteristics in the database. If the similarity 
exceeds a given threshold for any malware in the 
database, then the input binary is deemed a variant of 
that malware, and therefore malicious.  
 

 
 
3.2 Our Approach 
 
Our approach employs both dynamic and static 
analysis to classify malware. Entropy analysis 
initially determines if the binary has undergone a 
code packing transformation. If packed, dynamic 
analysis employing application level emulation 
reveals the hidden code using entropy analysis to 
detect when unpacking is complete. Static analysis 
then identifies characteristics, building signatures for 

control flow graphs in each procedure..Two 
approaches are employed to generate and compare 
Flow graph signatures. The system design is 
presented in figure 1.Two flow graph matching 
methods are used to achieve the goal of either 
effectiveness or efficiency. A brief introduction is 
provided here.  
Exact Matching: An ordering of the nodes in the 
control flow graph is used to generate a string based 
signature invariant of the flowgraph. String equality  
between graph invariants is used to estimate 
isomorphic graphs. Approximate Matching: The 
control flow graph is structured in this approach. 
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Structuring is the process of decompiling 
unstructured control flow into higher level, 
Source code like constructs including structured  
Conditions and  iteration. Each signature representing 
the structured control flow is represented as a string. 
These signatures are then used for querying the 
database of known malware using an approximate 
dictionary search.  
 
4 SYSTEM DESIGN AND IMPLEMENTATION 
4.1 Identifying Packed Binaries Using 
Entropy Analysis 
Malwise performs an initial analysis on the input 
binary to determine if it has undergone a code 
packing  transformation. Entropy analysis [34], is 
used to identify packed binaries. The entropy of a 
block of data  escribes the amount of information it 
contains. It is calculated as follows: 

 
 
where p(i) is the probability of the ith unit of 
information 
in event x’s sequence of N symbols. For malware 
packing analysis, the unit of in formation is a byte 
value, N is 256,and an event is a block of data from 
the malware. Compressed and encrypted data have 
relatively high entropy. Program code and data have 
much lower entropy. Packed data is typically 
characterized as being encrypted or compressed, 

therefore high entropy in the malware can indicate 
packing. 
4.2 Application Level Emulation 
Automated unpacking requires malware execution to 
be simulated so that the malware may reveal its 
hidden code. The hidden code once revealed is then 
extracted from the process image. 
 
4.3 Entropy Analysis to Detect Completion of 
Hidden Code Extraction 
Detection of the original entry point (OEP) during 
emulation identifies the point at which the hidden 
code is revealed and execution of the original 
unpacked code begins to take place. Detecting the 
execution of dynamic code generation by tracking 
memory writes was used as an estimation of the 
original entry point in Renovo [19]. 
In this approach the emulator executes the malware, 
and a shadow memory is maintained to track newly 
written memory. If any newly written memory is 
executed, then the hidden code in the packed binary 
being will now be revealed. 
4.4 Static Analysis 
The static analysis component of Malwise proceeds 
once it receives an unpacked binary. The analysis is 
used to extract characteristics from the input binary 
that can be used for classification. The characteristic 
for each procedure in the input binary is obtained 
through transforming its control flow into compact 
representation that is am enable to string matching. 
This transformation, or signature generation.

     
The structuring algorithm implemented in Malwise is 
a modified algorithm of that proposed in the DCC d 
ecompiler [38]. If the algorithm cannot structure the 
control flow graph then an unstructured branch is 
generated.Surprisingly, even when graphs are 
reducible (a measure of how inherently structured the 
graph is), the algorithm generates unstructured 
branches in a small but not insignificant number of 
cases. Further improvements to this algorithm to 
reduce the generation of unstructured branches have 
been proposed [39, 40]. However, these 
improvements were not implemented. 
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The grammar for a resulting signature is d efined in 
Fig.3.Fig. 4 shows an example of the relationship 
between a control flow graph, a high level structured 
graph, and a resulting signature.For approximate 
matching,a greedy assignment is made for the best 
approximate matching string where the similarity 

ratio is above 0.9. An example of assignment is 
shown in Fig. 5.  
4.5 The Set Similarity Search 
To classify the query program as malicious or benign, 
a similarity search is performed to find any similar 
malware in the database. The search can be 
performedexhaustively.                                                                                          

 
4.6 Complexity Analysis 
We assume a search complexity is O(log(N)) for both 
global and local flowgraph databases. The runtime 
complexity of malware classification is on average  
O(Nlog(M)) where M is the number of control flow 
graphs in the database, and N is the number of control 
flow graphs in the input binary. N is proportional to 
the input binary size and not more than several 
hundred in most cases. The worst case can be 
expected to have a runtime  complexity of 
O(Nlog(M) + ANlog(N)), where A is the number of 
similar malware to the input binary. It is desirable 
that the malware database is not populated with a 
significant number of similar malware. In practice, 
this condition is unlikely to be significant. It is 
expected that the average case is processing benign 
samples.  
4.7 Discussion 
The threshold to determine if two programs are 
similar, in either exact flow graph matching or 
approximate flow graph  matching, is empirically 
decided in Malwise. Likewise as is the similarity 
ratio between flow graphs. The actual figures are 
decided by investigating a huge number of real life 
malware samples. This approach is currently adopted 
by most Antivirus systems. It is a desirable feature 
that the malware classification system can adaptively 
select the threshold s. Machine learning based 
approach can be taken to achieve this. As the main 
focus of this research is to develop an effective and 
efficient system to solve the polymorphic malware 
problem, we leave this as 
our future work.  
 
5 EVALUATION 
In this Section we describe the experiments to 
evaluate automated unpacking and flowgraph based 
classification in Malwise. 
 
To verify our system correctly performs hidden code 
extraction ,we tested the prototype against 14 public 
packing tools. These tools perform various 
techniques in the resulting code packing 
transformation including compression, encryption, 
code obfuscation, debugger detection and virtual 
machine detection. The samples chosen to undergo 
the packing transformation were the Microsoft 

Windows XP system binaries hostname.exe and 
calc.exe.hostname.exe is 7680 bytes in size, and 
calc.exe is 114688bytes.The original entry point 
identified by the unpacking system was compared 
against what w as identified as the real OEP. To 
identify the real OEP, the program counter was 
inspected during emulation and the memory at that 
location examined. If the program counter was found 
to have the same entry point as the original binary, 
and the 10 bytes of memory at that location was the 
same as the original binary, then that address was 
designated the real OEP. 
 
 
6 CONCLUSION 
Malware can be classified according to similarity in 
its flowgraphs.This analysis is made more 
challenging by packed malware. In this paper we 
proposed different algorithms to unpack malware 
using application level emulation. We alsoproposed 
performing malware classification using either the 
edit distance between structured control flow graphs, 
or the estimation of isomorphism between control 
flow graphs. We implemented and evaluated these 
approaches in a fully 
functionaly system, named Malwise. The automated 
unpacking was demonstrated to work against a 
promising number of synthetic samples using known 
packing tools, with high speed. To detect the 
completion of unpacking, we proposed and evaluated 
the use of entropy analysis. It was shown that our 
system can effectively identify variants of malware in 
samples of real malware. It was also shown that there 
is a high probability that new malware is a variant of  
existing malware. Finally, it was demonstrated the 
efficiency 
of unpacking and malware classification warrants 
Malwise as suitable for potential applications 
including desktop and Internet gateway and Antivirus 
systems. 
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