

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 95 – 100 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

95

ISSN 2278-3091

Abstract: A serial communication interface based on FPGA (Field
Programmable Gate Array) has been designed in this paper, used for
data communication with other equipment. the realization of this
serial communication function under the condition of without any
increasing in hardware resources. It accords with hardware
equipment standardization principle. The design is adopted the
Xilinx Company’s Virtex-4 series FPGA chip, simulation results
indicate that it satisfies protocol requirements.

Keywords-FPGA; Serial Communication; Parallel to Serial
Conversion

1. INTRODUCTION

As the key processing equipment of comprehensive as
processing system, mission management computer
implements comprehensive control and management of the
system, data processing, information processing, data
decoding and so on, it needs to crosslink with many
equipment’s and the types of communication interface are
various. Generally standard interface as RS232, RS422,
RS485, ARINC429, simulation and on-off, can satisfy the
requirements, but there are some equipment which has
special requirements. In order to guarantee normal
correspond, private communication interface design is
needed module guarantees the stability and the reliability of
the system in largely an reduces the design personnel repeat
work and effectively improves the work efficiency. But the
design requirements of mission management computer are
diverse, how possible on the base of without any increasing in
existing module kinds to satisfy increasingly rich design
requirements is currently hardware design personnel need to
consider problems. The FPGA (Field Programmable Gate
Array) has the characteristics of the reconstruction, the
rapidity, design flexibility and the high –density of logical
resources [1]; we make full use of the programmable
resources of FPGA on a great extent to module function
expansion and to meet increasingly complex requirements
[2] The implement mode of private Communication interface
based on FPGA is presented in this paper; under the
condition of without any increasing in original module
hardware resources, it has realized module function
expansion, shortened the development cycle, and satisfied
the module standardization requirements

II. THE GENERAL STRUCTURE OF DESIGN
(A). Communication Protocol: The Mission management of
computer sends control information and high-speed
Information to aviation administer transponder by CLK,
STB and DI signal, CLK denotes data sending clock, DI

 FIG1: Protocol Structure

Denotes data (including control and state data), STB denotes
data sending finish symbol [4]. Figur1 and Figure 2
respectively shows the signal formats of CLK, STB and DI.
Figure 2 shows the interval in figur1. T200he cycle of CLK is
13us, duty-cycle is3/10, the 32 bits of data is sent in bytes
every time, it has32us interval between bytes, 4 bytes have
been sent 8us later, STB is effective finished.

(B).General Frame:

 This interface control logic is located on data processing
module, FPGA communicates with PowerPC processor by
internal bus [5]. Figure 3 shows the integral design diagram
of this interface logic. FPGA adopts the Xilinx
Company’sVirtex-4 series, the input signal includes
33.33MHz clock, data/address multiplexing bus and write
enabling signals. The output signal is CLK, STB, DI which
are the signal the protocol requires. The interface logic
mainly includes three function modules
The data buffer unit: The data buffer unit is the functional
unit that is mainly responsible for the storage control of
parallel data; at the same time it receives upper software

A Low Complexity Serial Communication Interface
Design Based On FPGA

 Ch.Ramakoti Reddy1 , SK.Nagul meera2, A.Naresh3
 1Asst professor dept. of ECE, mriet, India, rkr293@gmail.com

 2Asst professor dept. of ECE, mriet, India, nagulmeera987@gmail.com
 3Asst professor dept. of ECE, mriet, India, nari.432@gmail.com

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 95 – 100 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

96

ISSN 2278-3091

order; if there are sending requirements, it sends the parallel
data in buffer to parallel to serial conversion unit to process.

 FIG2: Clock Signal Analysis

The clock generating unit: The clock generating unit is the
functional unit that is mainly responsible for generating 3/10
duty-cycle clock signal according to protocol requirements;
input is the interval bus clock signal which PowerPC output;
frequency is 33.33MHz; at the same time it provides
sampling basic clock for parallel to serial conversion unit and
generates sending finish signal STB.
The parallel to serial conversion unit: The parallel to serial
conversion unit is the functional unit that is mainly
responsible for the conversion of parallel data is to serial
data; the data is output on the CLK clock edge according to
protocol requirements After the module are electrified, firstly
the data which will be sent is wrote in data buffer unit; then
the module receives upper software order to send data; the
data buffer unit sends the data to parallel to serial conversion
unit to data transform and produces serial DI data; After
waiting serial data ready, clock generating unit produces
CLK signal according to protocol requirements and produces
STB signal after data sending has been finished for 8us, this
data sending has been finished

 FIG3: General principle diagram

 The parallel to serial conversion unit: The parallel to serial
conversion unit is the functional unit that is mainly
responsible for the conversion of parallel data is to serial
data; the data is output on the CLK clock edge according to
protocol requirements After the module are electrified, firstly
the data which will be sent is wrote in data buffer unit; then
the module receives upper software order to send data; the
data buffer unit sends the data to parallel to serial conversion
unit to data transform and produces serial DI data; After
waiting serial data ready, clock generating unit produces
CLK signal according to protocol requirements and produces
STB signal after data sending has been finished for 8us, this
data sending has been finished

III. THE REALIZATION OF THE MODULES

In this section it is shown the realization of three functional
units—a data buffer unit, a clock generating unit and a
parallel to serial conversion unit.

A. The Data Buffer Unit

The data buffer unit is the functional unit that is responsible
for the storage of the parallel data in internal bus through
FPGA built-in “distributed double-port RAM “resource to
achieve [6]; the principle diagram is shown in Figure 4. This
module’s input signal includes write enabling (WR_EN),
read enabling (RD_EN), write clock (WR_CLK), and read
clock (RD_CLK), write address (WR_ADDR), read address
(RD_ADDR) and write data (WR_DATA), Output port uses
synchronized output RD_sDATA. After the power is reset, if
WR_EN is effective, then data is wrote to WR_ADDR
corresponding data unit under the action of the WR_CLK
clock edge; if WR_EN is ineffective, then write port is closed.
When RD_EN is effective, the data in RD_ADDR address
space is read under the action of the RD_CLK clock edge as
the initial data in the parallel to serial conversion unit.

 FIG4: the principle diagram of the data buffer unit

B. The Clock Generating Unit

The clock generating unit is the key part of the logic. From
Figure 1 we can see that this module need to generate the
various of time intervals, such as 3us, 10us, 94us, 32us,8us,
28us and so on. But the greatest common denominator of
these data is 1, so we need to produce the clock whose cycle is

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 95 – 100 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

97

ISSN 2278-3091

1us as the basic clock of all time intervals, at the same time
we need to produce the clock signal which has special cycle
according to the protocol requirements. Figure3 shows the
realization idea of the input clock‘s cycle. Firstly we produce
99.99MHz high frequency clock according to the 33.33MHz
input clock’s three frequency doubling. 100 frequency
decomposition later, 1 MHz basic clock is generated. And
then we use 1MHz clock to sample, after the output control
signal is effective, the counters generate the cycle which is
126us, CLK1 and CLK2 whose duty-cycles are respectively
94/32and120/6,then the counters generate CLK3 and CLK4
whose duty cycles are3/10 through CLK1 and CLK2, Figure
6 shows their time sequence. Finally CLK signal and CLK5
clock of protocol requirements are generated by door control;
CLK5 is used for parallel to serial conversion sampling. The
realization of STB signal is similar to it. After output control
is effective,26us is used to data preparation,
94us×4+32us×3=472us is used to data sending, 8us time
interval later, STB is effective, that is 26+472+8=506us later
STB is effective. After this is kept 28us, STB is ineffective;
the next effective output control is waited. Figure 5. the
realization of clock generating unit formula of 1MHzbasic
clock is 33.33MHz � 3/100=0.9999MHz 1MHz.Frequency
doubling is implemented by Virtex-4 integrated DCM
(Digital Clock Manager), DCM provides powerful digital
clock management function, including de skew ,frequency
doubling, frequency decomposition, phase-shift and so on. In
the case of speed priority and low frequency model, input
clock may accept the range of 32MHz~150MHz, output clock
may reach3 2MHz~210MHzThe input clock of this design is
33.33MHz, and the output clock is 99.99MHz, these satisfy
the requirements. And the remaining clock signals are
implemented by synchronous counter, 1MHz clock is used
for sampling signal, these ensure the signal quality. Figure 6
shows the time sequence, these satisfy the protocol to clock
requirements. Figure 6 shows the used clock frequency range
of DCM.

 FIG5: The Realization of Clock Generating Unit

C. The Parallel to Serial Conversion Unit

The parallel to serial conversion Unit mainly implements the
conversion of parallel data to serialdata.Virtex-4provides
plenty of parallel to serial conversion resources, so it can
implement 2 frequency doubling to 8 frequency doubling
parallel to serial conversion [7], and this is suitable for
high-speed continuous conversion situation. This module
conversion rate is quite low, and the quantity of data is small.
Adopting the combination of data buffer and shift register
realize the conversion of parallel data to serial data. This
method is simple and suitable for low-speed and little data
situation, and it can transplant to implement the control of
serial interface AD/DA.

 FIG 6: clock generating unit waveforms

 IV. EMULATION RESULT:

After the design has been completed, we carry on the
emulation to the function. The parallel input data is in
turn"11111111", "00001111", "01010101", and
“10101010".Figure 7 shows the waveform diagram. From
this waveform diagram, we can see that this program has
realized the extraction of effective data bits to input data, and
carried on serial output according to certain baud rate. Data
transmission is steady; data output satisfy the protocol

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 95 – 100 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

98

ISSN 2278-3091

requirements; the specific function and capability have been
validated in system-test.

 Figure 7. Emulation result

SRAM-based Devices:

As seen of SRAM configuration in Chapter 1, the majority of
FPGAs are based on the use cells, which means that they can
be configured over and over again. The main advantages of
this programming technology are that new design ideas can
be quickly implemented and tested, while evolving standards
and protocols can be accommodated relatively easily.
Furthermore, when the system is first powered up, the FPGA
can initially be programmed to perform one function such as
a self-test or board/system test, and it can then be
reprogrammed to perform its main task. Another big
advantage of the SRAM-based approach is that these devices
are at the forefront of technology. FPGA vendors can
leverage the fact that many other companies specializing in
memory devices expend tremendous resources on research
and development (R & D) in this area. Furthermore, the
SRAM cells are created using exactly the same CMOS
technologies as the rest of the device, so no special processing
steps are required in order to create these components.
Unfortunately, there’s no such thing as a free lunch. One
downside of SRAM based devices is that they have to be
reconfigured every time the system is powered up. This either
requires the use of a special external memory device (which
has an associated cost and consumes real estate on the board)
or of an on-board microprocessor

Security Issues:

Another consideration with regard to SRAM-based devices is
that it can be difficult to protect your intellectual property, or
IP, in the form of your design. This is because the
configuration file used to program the device is stored in
Some form of external memory.
On the bright side, some of today’s SRAM-based FPGAs
support the concept of bit stream encryption. In this case, the
final configuration data is encrypted before being stored in
the external memory device. The encryption key itself is
loaded into a special SRAM-based register in the FPGA via

its JTAG port .In conjunction with some associated logic,
this key allows the incoming encrypted configuration bit
stream to be decrypted as it’s being loaded into the device.
The command/process of loading an encrypted bit stream
automatically disables the FPGA’s read-back capability. This
means that you will typically use unencrypted configuration
data during development (where you need to use read-back)
and then start to use encrypted data when you move into
production. (You can load an unencrypted bit stream at any
time, so you can easily load a test configuration and then
reload the encrypted version.)

FPGA Logic Block Fundamentals and Trade-Offs:

The purpose of a logic block in an FPGA is to provide the
basic computation and storage elements used in digital logic
systems. As used in the original gate arrays, the most simple
and un-specific way of providing this capability is to use a
transistor as the basic logic element, and build gates and
storage elements from it. This approach was indeed
attempted in a commercial FPGA from the now-defunct
company Cross point .This kind of very fine-grained logic
block, however, requires the use of large amounts of
programmable interconnect to create any typical logic
function. It will result in an FPGA that is bound to suffer
from area-inefficiency (because programmable routing is
expensive in terms of area), low performance (each routing
“hop” is slow), and high power consumption (because of the
higher capacitance of programmable interconnect that must
be charged and discharged). At the other extreme, a logic
block could be an entire processor. This approach exists in
the commercial space, although processors are mixed with
some more fine grained logic blocks in a device . Such a logic
block on its own would not have the performance gains that
come from customizable hardware. In addition, if such a
block was used to implement a 2-input AND gate, it would be
incredibly inefficient, which illustrates the danger of using
logic blocks that are too coarse-grained. In between these
extremes is a spectrum of logic block choices ranging from
fine to coarse-grain logic blocks. FPGA architects over the
last two decades have selected basic logic blocks made of
transistors, NAND gates, an interconnection of multiplexers
lookup tables, and PAL-style wide-input gates. These choices
were originally driven by intuitive insights on the part of
architects, typically with very little data or analysis, with a
few exceptions. In addition to a basic logic block, many
modern FPGAs contain a heterogeneous mixture of different
blocks, some of which can only be used for very specific
functions, such as dedicated memory blocks or multipliers.
These structures are very efficient at implementing specific
functions, yet go to waste if unused. A central issue in FPGA
architecture design is the selection of specific, hard circuits
for inclusion in an FPGA.
In general, we are interested in knowing the effect of an
FPGA’s architecture on the area-efficiency, speed, and power
of a set of application circuits implemented in the FPGA. The
set of applications represent the “target market” of the
FPGA. Ideally, this set would include all digital hardware
applications if just a single FPGA architecture could serve all
possible markets, maximizing its advantage as a single

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 95 – 100 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

99

ISSN 2278-3091

standard device. Modern commercial practice requires the
use of several architectural families to serve different market
segments. It is a common practice in FPGA architecture
research to employ an empirical approach to study and
explore different architectures. Here, application circuits are
synthesized into different architectures through a CAD flow
that is able to vary the architectural elements.

 V. FUTURE FPGA DEVELOPMENTS

Super-fast I/O:

FPGA chips typically sport one or more of these transceiver
blocks, each of which has multiple channels. Each channel
can carry 2.5 Gbps of real data; So four channels have to be
combined to achieve 10 Gbps. Furthermore, an external
device has to be employed to convert an incoming optical
signal into the four channels of electrical data that are passed
to the FPGA. Conversely, this device will accept four
channels of electrical data from the FPGA and convert them
into a single outgoing optical signal. Some FPGAs today can
accept and generate these 10 Gbps optical signals internally.

Super-fast Confi guration:

The vast majority of today’s FPGAs are configured using a
serial bit-stream or a parallel stream only 8 bits wide. This
severely limits the way in which 192 FPGAs: Instant Access
these devices can be used in reconfigurable computing-type
applications. Quite some time ago (somewhere around the
mid-1990s), a team at Pilkington Microelectronics (PMEL)
in the United Kingdom came up with a novel FPGA
architecture in which the device’s primary I/O pins were also
used to load the configuration data. This provided a super
wide bus (256 or more pins/bits) that could program the
device in a jiffy. As an example of where this sort of
architecture might be applicable, consider the fact that there
is a wide variety of compressor/decompressor (CODEC)
algorithms that can be used to compress and decompress
audio and data. If you have a system that needs to decompress
different files that were compressed using different
algorithms, then you are going to need to support a variety of
different CODECs. Assuming that you wished to perform
this decompression in hardware using an FPGA, then with
traditional devices you would either have to implement each
CODEC in its own device or as a separate area in a larger
device. You wouldn’t wish to reprogram the FPGA to
perform the different algorithms on the fly because this
would take from 1 to 2.5 seconds with a large component,
which is too long for an end user to wait. By comparison, in
the case of the PMEL architecture, the reconfiguration data
could be appended to the front of the file to be processed .The
idea was that the configuration data would flood through the
wide bus, program the device in a fraction of a second, and be
immediately followed by the main audio or video data file to
be decompressed. If the next file to be processed required a
different CODEC, then the appropriate configuration file
could be used to reprogram the device. This concept was
applicable to a wide variety of applications. Unfortunately,

the original incarnation of this technology fell by the
wayside, but it’s not beyond the bounds of possibility that
something like this could reappear in the not-so-distant
future.

More Hard IP:

In the case of technology nodes of 90 nm and below, it’s
possible to squeeze so many transistors onto a chip that we
are almost certainly going to see an increased amount of hard
IP blocks for such things as communications functions,
special-purpose processing functions, microprocessor
peripherals, and the like. Traditional digital FPGA vendors
have a burning desire to grab as many of the functions on a
circuit board as possible and to suck these functions into their
devices. In the short term, this might mean that FPGAs start
to include hard IP blocks with analog content such as
analog-to-digital (A/D) and digital to- analog (D/A)
converters. Such blocks would be programmable with regard
to such things as the number of quanta (width) and the
dynamic range of the analog signals they support. They
might also include amplification and some Filtering and
signal conditioning functions. Furthermore, over the years a
number of companies have promoted different, flavors of
field-programmable analog arrays (FPAAs). Thus, there is
more than a chance that predominantly digital FPGAs Will
start to include areas of truly programmable analog
functionality similar to that provided in pure FPAA devices.

Embedding FPGA Cores in ASIC Fabric:

The cost of developing a modern ASIC at the 90-nm
technology node is horrendous. This problem is compounded
by the fact that, once you’ve completed a design and built the
chip, your algorithms and functions are effectively “frozen in
silicon. ” This means that if you have to make any changes in
the future, you’re going to have to regenerate the design,
create a new set of photo-masks (costing around $1million),
and build a completely new chip. To address these issues,
some users are interested in creating ASICs with FPGA cores
embedded into the fabric. Apart from anything else, this
means that you can use the same design for multiple end
applications without having to create new mask sets. I also
think that we are going to see increased deployment of
structured ASICs and that these will lend themselves to
sporting embedded FPGA cores because their design styles
and tools will exhibit a lot of commonality.FPGA
area-efficiency is a key metric because the size of the FPGA
die dictates a significant portion of its cost, particularly for
devices with a large logic capacity. (For smaller devices, I/O
and packaging also become significant in the cost of the
devices.

 VI. CONCLUSION

With the enhancement of the comprehensive mission
management system integration rate, the equipment with
which mission management computer needs to cross-link are
more and more. In this paper the design method of the private

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 95 – 100 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

100

ISSN 2278-3091

serial interface based on FPGA is shown, it has realized the
new function, shortened the development cycle, reduced
manpower investment and adhered to the principle of the
module standardization in the case of without increasing
original module kind. This design method is worth
promoting in future design.

REFERENCES

[1] A. Aggarwal and D. Lewis, “Routing architectures for
hierarchical field programmable gate arrays,” in IEEE International
Conference on Computer Design, pp. 475–478, October 1994.

[2] E. Ahmed, The Effect of Logic Block Granularity on
Deep-Submicron FPGA Performance and Density. Master’s thesis,
University of Toronto, Department of Electrical and Computer
Engineering, 2001.

[3] E. Ahmed and J. Rose, “The effect of LUT and cluster size on
deep-submicron FPGA performance and density,” in Proceedings of
the 2000 ACM/SIGDA Eighth International Symposium on Field
Programmable Gate Arrays, pp. 3–12, ACM Press, 2000.

[4] E. Ahmed and J. Rose, “The effect of LUT and cluster size on
deep-submicron FPGA performance and density,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
12, no. 3, pp. 288–298, March 2004.

[5] J. Anderson and F. Najm, “A novel low-power FPGA routing
switch,” in Proceedings of the IEEE Custom Integrated Circuits
Conference, pp. 719–722,October 2004.

[6] H. B. Bakaglu, Circuits, Interconnection, and Packaging for
VLSI. Reading, MA: Addison Wesley, 1990.

[7] R. Baumann, “Soft errors in advanced computer systems,” IEEE
Design and Test of Computers, vol. 22, no. 3, pp. 258–266, 2005.

[8] M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S.
Hemmer, “Embedded floating-point units in FPGAs,” in FPGA’06:
Proceedings of the International Symposium on Field
Programmable Gate Arrays, pp. 12–20, USA, New York, NY: ACM
Press, 2006.

[9] V. Betz and J. Rose, “Improving FPGA performance via the use
of architecture families,” in 3rd ACM Intl. Symposium on
Field-Programmable Gate Arrays, pp. 10–16, 1995.

[10] V. Betz and J. Rose, “How much logic should go in an FPGA
logic block?,”IEEE Design and Test of Computers, vol. 15, no. 1,
pp. 10–15, January–March1998.

[11] V. Betz and J. Rose, “Circuit design, transistor sizing and wire
layout of FPGA interconnect,” in Proceedings of the IEEE Custom
Integrated Circuits Conference, pp. 171–174, 1999.

[12] V. Betz and J. Rose, “FPGA routing architecture: Segmentation
and buffering to optimize speed and density,” in Proceeding:
ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, pp. 140–149, February 1999.

[13] C. Bolchini, D. Quarta, and M. D. Santambrogio, “SEU
mitigation for SRAM based FPGAs through dynamic partial
reconfiguration,” in GLSVLSI ’07: Proceedings of the 17th Great
Lakes Symposium on VLSI, pp. 55–60, USA, New York, NY: ACM
Press, 2007.

[14] K. A. Bowman, S. G. Duvall, and J. D. Meindl, “Impact of
die-to-die and within-die parameter fluctuations on the maximum
clock frequency distribution for giga scale integration,”

 AUTHORS:

CH.RAMA KOTI REDDY, received M.tech degree from JNTU
Ananthapuram, presently working as an assistant professor in malla
reddy institute of engineering and technology Hyderabad

SK.NAGULMEERA, received M.tech degree from JNTU
Hyderabad, presently working as an assistant professor in malla
reddy institute of engineering and technology Hyderabad.

A.NARESH, received M.tech degree from HU Chennai, presently
working as an assistant professor in malla reddy institute of
engineering and technology Hyderabad.

