
International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 68 – 72 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

68

ISSN 2278-3091

 Efficient Attribute Selection to stand out in the market
Mr.Murlidher Mourya*, Mr. J.phani prasad**

* Computer Science, Vardhaman College of Engineering,India,murli_cool9@yahoo.com
**Computer Science, Vardhaman College of Engineering,India,phanimtechcse@gmail.com

Abstract:-Mining of frequent item sets is one of the most
fundamental problems in data mining applications. My
proposed algorithm which guides the seller to select the best
attributes of a new product to be inserted in the database so
that it stands out in the existing competitive products, due to
budget constraints there is a limit, say m, on the number of
attribute that can be selected for the entry into the database.
Although the problems are NPcomplete.The Approximation
algorithm are based on greedy heuristics. DCIP algorithm
uses data-set condensing and intersection pruning to find the
maximal frequent item set. The condensing process is
performed by deleting items in infrequent 1-itemset and
merging duplicate transactions repeatedly; the pruning
process is performed by generating intersections of
transactions and deleting unneeded subsets recursively. This
algorithm differs from all classical maximal frequent item
set discovering algorithms; experiments show that this
algorithm is valid with moderate efficiency; it is also easy to
code for use in KDD applications.

Keywords: Association rules, Data mining, Mining
frequent item sets, intersection pruning, and data-set
condensing

I.INTRODUCTION:

In recent years there has been development of ranking functions
and efficient top-k retrieval algorithms which help the users in
mining Frequent items set which plays a major role in many
data mining applications .examples include: users wishing to
search databases and catalogs of products such as homes, cars,
cameras, or articles such as news and job ads. Users browsing
these databases typically execute search queries via public
front-end interfaces to these databases. Typical queries may
specify sets of keywords in case of text databases or the desired
values of certain attributes in case of structured relational
databases. The query answering system answers `such queries
by either returning all data objects that satisfy the query
conditions, or may rank and return the top-k data objects, or
return the results that are on the query’s skyline. If ranking is
employed, the ranking may either be simplistic—e.g., objects
are ranked by an attribute such as Price; or more
sophisticated—e.g., objects may be ranked by the degree of
“relevance” to the query.

Attributes selection:

 There are two types of users of these databases. Buyers of
products who search such database trying to locate objects of
interest ,while the latter type of user are sellers of products who
insert new objects into these databases in the hope that they
will be easily discovered by the buyers i.e it must stands out in
the existing competitive products. To understand it a little
better consider the following scenario: If a real estate seller
wants to give an add on the news paper about sale of flats, He
has to choose the best features of the flats, that are the most of
the customers are interested. If he has given an add with some

features (or attributes), and if no customer is interested on those
features, then the add may not add value to his advertisement .If
he has a system, that can suggest top k attributes (or features) of
the product, then he can give a very good add, and that add will
be referred by more number of customers. General problem also
arises in domains beyond e-commerce applications. For
example, in the design of a new product, a manufacturer may be
interested in selecting the 10 best features from a large wish-list
of possible features—e.g., a homebuilder can find out that
adding a swimming pool really increases visibility of a new
home in a certain neighborhood. The problem here is selecting
the proper and the best attributes of the flats, to give a good
advertisement that is more number of customers are interested.
To define our problem more formally, we need to develop a few
abstractions. Let D be the database of products already being
advertised in the marketplace (i.e., the “competition”). Let Q be
the set of search queries that have been executed against this
database in the recent past—thus Q is the “workload” or “query
log.” The query log is our primary model of what past potential
buyers have been interested in. For a new product that needs to
be inserted into this database, we assume that the seller has a
complete “ideal” description of the product. But due to budget
constraints, there is a limit, say m, on the number of
attributes/keywords that can be selected for entry into the
database. Our problem can now be defined as follows.

 II. PROBLEM FRAMEWORK

 Given a database D, a query log Q, a new tuple t, and an
integer m, determine the best (i.e., top-m) attributes of t to
retain such that if the shortened version of t is inserted into the
database, the number of queries of Q that retrieve t is
maximized.

PRELIMINARIES

First we provide some useful definitions
Let car attribute set A={AC, four door, turbo, power door,
remote keyless entry, anti lock brakes, auto trans, GPS system,
power breaks,side bags} are represented as
{I1,I2,I3,I4.I5,I6,I7,I8,I9,I10} respectively.

Table 1: Database

CAR
ID I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

1 0 1 0 1 0 0 0 1 0 1
2 0 1 1 0 0 1 0 0 0 1
3 1 0 0 1 1 0 1 1 1 0
4 1 1 0 1 1 1 0 0 1 0
5 1 1 0 0 0 1 0 0 0 1
6 0 1 0 1 1 0 0 1 0 1
7 0 0 1 1 0 0 0 1 0 0

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 68 – 72 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

69

ISSN 2278-3091

Boolean database

Let D = {t1 . . . tN} be a collection of Boolean tuples over the
attribute set A = {a1 . . . aM}, where each tuple t is a bit-vector
where a 0 implies the absence of a feature and a 1 implies the
presence of a feature. A tuple t may also be considered as a
subset of A, where an attribute belongs to t if its value in the
bit-vector is 1.

 Table 2: Query Log Q

T
ID

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

001 1 1 0 1 1 0 1 0 0 0
002 1 1 0 0 1 1 1 0 0 0
003 0 0 1 0 1 0 1 0 0 1
004 0 0 1 0 0 0 0 1 0 1
005 1 1 1 1 0 0 1 0 0 0
006 0 1 1 0 0 0 1 1 0 0
007 0 0 1 0 0 1 0 0 1 0
008 1 0 1 0 1 0 0 0 1 0
009 1 1 0 0 0 1 0 0 0 0
010 0 0 1 1 0 0 0 1 1 0

Table 3: New Tuple T to be inserted

Car
ID

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

8 1 1 1 1 0 1 1 0 0 0

Tuple domination.

 Let t1 and t2 be two tuples such that for all attributes for which
tuple t1 has value 1, tuple t2 also has value 1. In this case, we
say that t2 dominates t1.

Tuple compression.

 Let t be a tuple and let t’ be a subset of t with m attributes.
Thus, t’ represents a compressed representation of t.
equivalently, in the bit-vector representation of t, we retain only
m 1s and convert the rest to 0s. Query log. Let Q = {q1 . . . qS}
be collection of queries where each query q defines a subset of
attributes. The following running example will be used
throughout the paper to illustrate various concepts

Conjunctive Boolean - Query Log (CB-QL): Given a query log
Q with Conjunctive Boolean Retrieval semantics, a new tuple t,
and an integer m, computes a compressed tuple t′ having m
attributes such that the number of queries that retrieve t′ is
maximized. Intuitively, for buyers interested in browsing
products of interest, we wish to ensure that the compressed
version of the new product is visible to as many buyers as
possible.

Selecting the threshold value:

There are two alternate approaches to setting the threshold. One
approach is essentially a heuristic, where we set the threshold to
a reasonable fixed value dictated by the practicalities of the
application. Threshold enforces that attributes should be
selected such that the compressed tuple is satisfied by a certain
minimum number of queries. For example, a threshold of 1
percent means that we are not interested in results that satisfy
less than 1 percent of the queries in the query log.

III. RELATED WORK

A large corpus of work has tackled the problem of ranking the
results of a query. In the documents world, the most popular
techniques are count based ranking functions, like BM25, as
well as link-structure-based techniques like Page Rank if such
links are present (e.g., the Web). In the database world,
automatic ranking techniques for the results of structured
queries have been proposed. Also there has been recent work on
ordering the displayed attributes of query results.

 Both of these tuple and attribute ranking techniques
are inapplicable to our problem. The former inputs a database
and a query, and outputs a list of database tuples according to a
ranking function, and the latter inputs the list of database results
and selects a set of attributes that “explain” these results. In
contrast, our problem inputs a database, a query log, and a new
tuple, and computes a set of attributes that will rank the tuple
high for as many queries in the query log as possible.

Although the problem of choosing attribute is related
to the area of feature selection, our work differs from the work
on feature selection because our goal is very specific—to enable
a new tuple to be highly visible to the database users and not to
reduce the cost of building a mining model such as classification
or clustering.

PINCER SEARCH ALGORITHM

Most of the algorithms used for mining maximal frequent
item sets perform fairly well when the length of the maximal
frequent item set is small. However, performance degrades
when the length of the maximal frequent item set is large,
since in the bottom-up approach, the maximal frequent item
set is obtained only after traversing all its subsets.

The Pincer-search algorithm (Lin and Kedem, 1998, 2002),
p r o p o s e s a new approach for mining maximal frequent
item sets. It reduces the complexity by combining both top-
down and bottom-up methods for generating maximal item
sets. The bottom-up search starts from 1-itemset and
proceeds up to n-item sets as in Apriori while the top-down
search starts from n- item sets and proceeds up to 1 item set.
Both bottoms-up and top-down searches identify the maximal
frequent itemsets by examining its candidates individually.
Bottom-up search moves one-level up during a single pass
whereas top-down search moves many levels down during a
single pass. During the execution, all the item sets are
classified into 3 categories

Frequent: Item sets whose support is greater than min_sup are
classified as frequent Infrequent: Item sets whose support is
less than min_sup are classified as infrequent Unclassified: All
other Item sets are said to be unclassified.

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 68 – 72 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

70

ISSN 2278-3091

The Pincer algorithm is illustrated for the sample data source
given in Table 4. The same data source will be used later for
illustrating the proposed algorithm. An example of pincer
search is shown in figure 1.
Pincer algorithm uses the following two properties to classify
the unclassified item sets Property 1: If an item set is
infrequent, all its supersets must be infrequent and they need
not be examined further Property 2: If an item set is
frequent, all its subsets must be frequent and they ne e d not
be examined further

 Table 4: Sample data source

abcdefghij MFCS{abcdefghij} MFS{}

 abcde MFCS{abcde} MFS{}

 abcd acde MFCS{abcd,acde} MFS{}

MFS{abcd,ae
}

 (subset) acd ade MFCS{abcd,ae}

ab ac ad ae bc bd cd be ce de

a b c d e f g h i j

Figure 1: Pincer search

IV. PROPOSED TECHNIQUE: DCIP ALGORITHM

The first step of DCIP algorithm is to reduce the
length of itemsets and the volume of data-set. According
to Lemma 1, any maximal frequent itemset is also a
maximal frequent itemset corresponding to one
transaction in D, so find all maximal frequent itemsets
correspond to every transaction through intersection
pruning, merge them into one set (denoted as FS

hereinafter), then delete all infrequent maximal itemset in
FS, and the remaining set is maximal frequent itemset.
The two main processes are described as follows.

A. Condensing the Data-set

This process first sorts the data-set with descending
order according to the length of its itemsets, then moves
those high-dimensional transactions whose support are
bigger than minimal support threshold to a frequent
itemset, and deletes all subsets of those transactions to
condense the data-set. These steps are as follows:

Step 1: Scan the data-set, finding all frequent 1-
itemset;

Step 2: Scan the data-set, deleting all items infrequent

1-itemset from all transactions; then add up identical
transactions (i.e., if transaction T1=T2, let support(T1) =
support(T1) + support(T2), and delete T2 from data-sets).
Sorting the data-set descendingly according to the length
of itemsets to form a new data-set which we denote as C;
Step 3: Process every transaction Ti in C whose support
are bigger than minimal support threshold: move
Ti to FS and delete all Tj (Tj ⊂Ti, >i);

Step 4: Delete non-MFI from FS;
Step 5: End.

B. Intersection Pruning

Any maximal frequent itemset is also the maximal
frequent itemset corresponding to a certain transaction in
D; merge all maximal frequent itemset corresponding to
every transaction into one set (which we denote as FS),
then delete all non-frequent maximal itemsets in FS, and
the remaining set is the maximal frequent itemset. These
steps are as follows:

Assume we have a data-set denoted as D, and the
minimal support threshold is S.

Step 1: Condense data-set D using the method
described in 3.1; if |D|<S, terminate the processing for the
current data-set;

Step 2: Find intersection of T1 and Ti(1<i≤n); merge
all intersections into a new data-set D1; establish the
vertical data format of D; delete transaction Ti (Ti ⊂T1);
if |D1| ≥ S, then go to step 1 to perform another
intersection pruning circle for D1;

Step 3: Use the vertical data format of D to find the
intersection of Tj and Ti (j=2, 3, 4, ..., m<n; j<i≤n),
merge all intersections into a new data-set D1, go to step
1 to perform another intersection pruning circle for D1;
when the volume of the remaining data-set is less than S,
stop finding intersections of Tj and Ti, terminate the
process for current data-set.

Step 4: End;
Note: Data-set condensing can be performed at the

beginning of the intersection pruning process, as well as
in the process of step 3.

TID ITEMS
T1 a,d,e,g,j
T2 a,b
T3 a,b,c,e,h
T4 a,b,c,d
T5 a,b,c,d,f,i
T6 a,b,c
T7 a,b,c,d,f,i
T8 a,b,c,e
T9 j

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 68 – 72 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

71

ISSN 2278-3091

C. Instance Analysis
The following example shows how to discover MFI

using DCIP for transaction database D (Table I) with
minimum support threshold as 4 (i.e., minsup=4).

 TABLE I.
TRANSACTION DATA-SET D

TID Items

001 I1,I2,I4,I5,I7

002 I1,I2,I5,I6,I7

003 I0,I3,I5,I7

004 I0,I3,I8

005 I1,I2,I3,I4,I7

006 I2,I3,I7,I8

007 I3,I6,I9

008 I1,I3,I5,I9

009 I1,I2,I6

010 I3,I4,I8,I9

Step 1: Condense transaction data-set D using the
method in 3.1, the result is shown in Table II;

TABLE II.
RESULT OF CONDENSED D

TID items Count del

1 I1,I2,I5,I7 2

2 I1,I2,I3,I7 1

3 I3,I5,I7 1

4 I2,I3,I7 1 1

5 I1,I3,I5 1

6 I1,I2 1 1

Attribute Count is the count of corresponding
transactions; attribute del indicate whether the
corresponding transaction can be ignored in later
processing, for example, after step 2, T6 can be ignored.

Step 2: Find intersections of T1 and Ti (i=2, 3... 7),
merge all intersections into data-set D1, as shown in
Table III:

TABLE III.
INTERSECTION DATA-SET FOR T1 IN TABLE II

TABLE IV.

INTERSECTION DATA-SET FOR T1 IN TABLE III
TID items Count del

1 I2,I7 1(+2+1)

2 I1,I2 1(+2+1)

Because T3 and T5 are subset of T1 in Table III, delete
T3 and T5;

Step 5: Condense the data-set in Table IV, produce
frequent itemset {{I2, I7}:4, {I1, I2}:4}; Table IV is now
empty after condensing;

Step 6: Back to Table III, T3 and T5 has been deleted,
we only need to find the intersection of T2 and T4; but
the length of T2 and T4 are both 2, no need to find
intersection of them.

Step 7: Back to Table II, because T6 has been deleted,
we only need to find the intersections of T2 and Ti (i=3, 4,
5); merge all intersections into a new data-set D1, as
shown in Table V.

Because T4 ⊂ T2 in Table II, it should be deleted.
Step 8: Condense the data-set in Table V; after

 Condensing the result is empty;
Step 9: The original data- set D has 10 transactions;

Table II shows that 30% (3 transactions) of them has been
processed; condense again the remaining data-set in Table
II, and the result is empty. The process ends.

Step 10: Merge all resulting frequent item sets, and
delete all non-frequent maximal item sets, the final result
of MFI is {{I2, I7}: 4, {I1, I2}: 4}.

The steps above use 14 times of intersection
calculations for MFI; compared with other Apriori-like
algorithms, its simplicity and efficiency is explicit.

Note: Because the volume of the example data-set D is
small (only 10), the above process does not include the
utilizing of vertical data format; the reason of introducing
vertical data format is to reduce the number of times of
finding the intersections.

TID items Count del

1 I1,I2,I7 1(+2)

2 I5,I7 1(+2)

3 I2,I7 1(+2) 1

4 I1,I5 1(+2)

5 I1,I2 1(+2) 1

Establish vertical data format for D; because in Table
II, T6 ⊂ T1, T6.del=1 (see Table II) . The (+2) for
attribute Count in table III is the count of T1 in Table II.

Step 3: Condense the data-sets in Table III; as this
example, the result remains no change.

Step 4: Find intersections of T1 and Ti (i=2, 3, 4, 5) in
Table III respectively, merge them into a new data-set D1,
as shown in Table IV.

TABLE V.
INTERSECTION DATA-SET FOR T2 IN TABLE 2

TID items Count del

1 I3,I7 1(+1)

2 I2,I3,I7 1(+1)

3 I1,I3 1(+1)

International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 68 – 72 (2014)
Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

72

ISSN 2278-3091

V. PERFORMANCE STUDY

If the length of the longest transaction item set is L, the
depth of recursive calling of the algorithm itself is less
than L-2. The number of calculations for intersections is
negatively correlated with support, number of deleted
transactions, and number of duplicated transactions. This
algorithm can also be implemented parallels for each
transaction's maximal frequent itemset to get more
efficiency. It is valid for both long and short frequent
pattern mining applications; for vast volume of data-set,
its usability retains because of the time & space cost
increases not very drastically.

Another advantage of DCIP algorithm is its easy
implementation. It is coded and tested using PowerBuilder
script language on a microcomputer with Pentium
IV/1.80GHz CPU, 512M memory running Windows XP
operation system. Testing dataset is extracted from a
supermarket's sales record.3000, 5000, 10000 and 20000
transactions are tested respectively with each record
having 2-10 categories of commodity (the average number
of categories is 6). Figure 1 shows the running time for
different volume of datasets with minimum support
threshold of 5%, 20% and 50%respectively. The bigger
minimum support threshold, the lesser time needed for
MFI.

Figure 1. Performance test for multiple data-set & supports

VI. CONCLUSION
DCIP provides a new and efficient algorithm for

discovering MFI; it condenses data-set by deleting
items in infrequent 1-itemsets and merging duplicate
transactions repeatedly, and utilizes the intersections of
(1-s)*|D|+1 transactions with other transaction item
sets to perform pruning; along with the discovering
process, with the increasing of the number of deleted
transactions, the number of times needed for
calculating intersections will decrease rapidly. It's time
& space cost increases not drastically when data-set
volume increases, so its usability retains for MFI
applications for high volume data-sets.

The DCIP algorithm can be further optimized in
various aspects, such as keep a record of all resulting
intersections to avoid duplicated generation of
identical intersections to further improve the efficiency

of this algorithm.
While the problems considered in this paper are novel and

important to the area of ad hoc data exploration and retrieval,
we observe that our specific problem definition does have
limitations. After all, a query log is only an approximate
surrogate of real user preferences, and moreover, in some
applications neither the database, nor the query log may be
available for analysis; thus, we have to make assumptions about
the nature of the competition as well as about the user
preferences. Finally, in all these problems,

VII. REFERENCES

[1]D. Burdick, M. Calimlim, and J. Gehrke, (2001)“MAFIA: A
Maximal Frequent Item Set Algorithm for Transactional
Databases,” Proc. Int’l Conf. Data Eng. (ICDE), 2001.
[2]M.R. Garey and D.S. Johnson (1979), “Computers and
Intractability: A Guide to the Theory of NP-Completeness”.
[3]W.H. Freeman, K. Gouda and M.J. Zaki, (2001) “Efficiently
Mining Maximal Frequent Itemsets,” Proc. Int’l Conf. Data
Mining (ICDM),
[4]J. Han, J. Pei, and Y. Yin, (2000) “Mining Frequent Patterns
without Candidate Generation,” Proc. SIGMOD Conf., pp. 1-
12,.
J. Han, J. Wang, Y. Lu, and P. Tzvetkov, (2002) “Mining Top-k
Frequent Closed Patterns without Minimum Support,” Proc.
Int’l Conf. Data Mining (ICDM),.
[5]M.D. Morse, J.M. Patel, and H.V. Jagadish, (2007)
“Efficient Skyline Computation over Low-Cardinality
Domains,” Proc. Int’l Conf.Very Large Data Bases (VLDB),.
[6]M. Miah, G. Das, V. Hristidis, and H. Mannila, (2008)
“Standing Out in a Crowd: Selecting Attributes for Maximum
Visibility,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 356-365,
2008.

