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Abstract:-Mining of frequent item sets is one of the most 
fundamental problems in data mining applications. My 
proposed algorithm which guides the seller to select the best 
attributes of a new product to be inserted in the database so 
that it stands out in the existing competitive products, due to 
budget constraints there is a limit, say m, on the number of 
attribute that can be selected for the entry into the database. 
Although the problems are NPcomplete.The Approximation 
algorithm are based on greedy heuristics. DCIP algorithm 
uses data-set condensing and intersection pruning to find the 
maximal frequent item set. The condensing process is 
performed by deleting items in infrequent 1-itemset and 
merging duplicate transactions repeatedly; the pruning 
process is performed by generating intersections of 
transactions and deleting unneeded subsets recursively. This 
algorithm differs from all classical maximal frequent item 
set discovering algorithms; experiments show that this 
algorithm is valid with moderate efficiency; it is also easy to 
code for use in KDD applications. 
 
Keywords: Association rules, Data mining, Mining 
frequent item sets, intersection pruning, and data-set 
condensing 

I.INTRODUCTION: 
 
In recent years there has been development of ranking functions 
and efficient top-k retrieval algorithms which help the users in 
mining Frequent items set which plays a major role in many 
data mining applications .examples include: users wishing to 
search databases and catalogs of products such as homes, cars, 
cameras, or articles such as news and job ads. Users browsing 
these databases typically execute search queries via public 
front-end interfaces to these databases. Typical queries may 
specify sets of keywords in case of text databases or the desired 
values of certain attributes in case of structured relational 
databases. The query answering system answers `such queries 
by either returning all data objects that satisfy the query 
conditions, or may rank and return the top-k data objects, or 
return the results that are on the query’s skyline. If ranking is 
employed, the ranking may either be simplistic—e.g., objects 
are ranked by an attribute such as Price; or more 
sophisticated—e.g., objects may be ranked by the degree of 
“relevance” to the query. 
 
Attributes selection: 
 
 There are two types of users of these databases. Buyers of 
products who search such database trying to locate objects of 
interest ,while the latter type of user are sellers of products who 
insert new objects into these databases in the hope that they 
will be easily discovered by the buyers i.e it must stands out in 
the existing competitive products. To understand it a little 
better consider the following scenario: If a real estate seller 
wants to give an add on the news paper about sale of flats, He 
has to choose the best features of the flats, that are the most of 
the customers are interested. If he has given an add with some 

features (or attributes), and if no customer is interested on those 
features, then the add may not add value to his advertisement .If 
he has a system, that can suggest top k attributes (or features) of 
the product, then he can give a very good add, and that add will 
be referred by more number of customers. General problem also 
arises in domains beyond e-commerce applications. For 
example, in the design of a new product, a manufacturer may be 
interested in selecting the 10 best features from a large wish-list 
of possible features—e.g., a homebuilder can find out that 
adding a swimming pool really increases visibility of a new 
home in a certain neighborhood. The problem here is selecting 
the proper and the best attributes of the flats, to give a good 
advertisement that is more number of customers are interested. 
To define our problem more formally, we need to develop a few 
abstractions. Let D be the database of products already being 
advertised in the marketplace (i.e., the “competition”). Let Q be 
the set of search queries that have been executed against this 
database in the recent past—thus Q is the “workload” or “query 
log.” The query log is our primary model of what past potential 
buyers have been interested in. For a new product that needs to 
be inserted into this database, we assume that the seller has a 
complete “ideal” description of the product. But due to budget 
constraints, there is a limit, say m, on the number of 
attributes/keywords that can be selected for entry into the 
database. Our problem can now be defined as follows. 
 
           II. PROBLEM FRAMEWORK 
 
 Given a database D, a query log Q, a new tuple t, and an 
integer m, determine the best (i.e., top-m) attributes of t to 
retain such that if the shortened version of t is inserted into the 
database, the number of queries of Q that retrieve t is 
maximized. 
 
PRELIMINARIES 
 
First we provide some useful definitions 
Let car attribute set A={AC, four door, turbo, power door, 
remote keyless entry, anti lock brakes, auto trans, GPS system, 
power breaks,side bags} are represented as 
{I1,I2,I3,I4.I5,I6,I7,I8,I9,I10} respectively. 
 
 

Table 1: Database 
 

 

CAR 
ID I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

1 0 1 0 1 0 0 0 1 0 1 
2 0 1 1 0 0 1 0 0 0 1 
3 1 0 0 1 1 0 1 1 1 0 
4 1 1 0 1 1 1 0 0 1 0 
5 1 1 0 0 0 1 0 0 0 1 
6 0 1 0 1 1 0 0 1 0 1 
7 0 0 1 1 0 0 0 1 0 0 
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Boolean database 
 
Let D = {t1 . . . tN} be a collection of Boolean tuples over the 
attribute set A = {a1 . . . aM}, where each tuple t is a bit-vector 
where a 0 implies the absence of a feature and a 1 implies the 
presence of a feature. A tuple t may also be considered as a 
subset of A, where an attribute belongs to t if its value in the 
bit-vector is 1. 
 
 
 
 
 
   Table 2: Query Log Q 
 
T 
ID 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

001 1 1 0 1 1 0 1 0 0 0 
002 1 1 0 0 1 1 1 0 0 0 
003 0 0 1 0 1 0 1 0 0 1 
004 0 0 1 0 0 0 0 1 0 1 
005 1 1 1 1 0 0 1 0 0 0 
006 0 1 1 0 0 0 1 1 0 0 
007 0 0 1 0 0 1 0 0 1 0 
008 1 0 1 0 1 0 0 0 1 0 
009 1 1 0 0 0 1 0 0 0 0 
010 0 0 1 1 0 0 0 1 1 0 
 

 

Table 3: New Tuple T to be inserted 

Car 
ID 

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 

8 1 1 1 1 0 1 1 0 0 0 

                         
 
Tuple domination. 
 
 Let t1 and t2 be two tuples such that for all attributes for which 
tuple t1 has value 1, tuple t2 also has value 1. In this case, we 
say that t2 dominates t1. 
 
Tuple compression. 
 
 Let t be a tuple and let t’ be a subset of t with m attributes. 
Thus, t’ represents a compressed representation of t. 
equivalently, in the bit-vector representation of t, we retain only 
m 1s and convert the rest to 0s. Query log. Let Q = {q1 . . . qS} 
be collection of queries where each query q defines a subset of 
attributes. The following running example will be used 
throughout the paper to illustrate various concepts 
 
Conjunctive Boolean - Query Log (CB-QL): Given a query log 
Q with Conjunctive Boolean Retrieval semantics, a new tuple t, 
and an integer m, computes a compressed tuple t′ having m 
attributes such that the number of queries that retrieve t′ is 
maximized. Intuitively, for buyers interested in browsing 
products of interest, we wish to ensure that the compressed 
version of the new product is visible to as many buyers as 
possible. 
 

 
Selecting the threshold value: 
 
There are two alternate approaches to setting the threshold. One 
approach is essentially a heuristic, where we set the threshold to 
a reasonable fixed value dictated by the practicalities of the 
application. Threshold enforces that attributes should be 
selected such that the compressed tuple is satisfied by a certain 
minimum number of queries. For example, a threshold of 1 
percent means that we are not interested in results that satisfy 
less than 1 percent of the queries in the query log. 
 
 

III. RELATED WORK 
 
A large corpus of work has tackled the problem of ranking the 
results of a query. In the documents world, the most popular 
techniques are count based ranking functions, like BM25, as 
well as link-structure-based techniques like Page Rank if such 
links are present (e.g., the Web). In the database world, 
automatic ranking techniques for the results of structured 
queries have been proposed. Also there has been recent work on 
ordering the displayed attributes of query results. 

 Both of these tuple and attribute ranking techniques 
are inapplicable to our problem. The former inputs a database 
and a query, and outputs a list of database tuples according to a 
ranking function, and the latter inputs the list of database results 
and selects a set of attributes that “explain” these results. In 
contrast, our problem inputs a database, a query log, and a new 
tuple, and computes a set of attributes that will rank the tuple 
high for as many queries in the query log as possible. 

Although the problem of choosing attribute is related 
to the area of feature selection, our work differs from the work 
on feature selection because our goal is very specific—to enable 
a new tuple to be highly visible to the database users and not to 
reduce the cost of building a mining model such as classification 
or clustering. 
 
PINCER SEARCH ALGORITHM 
 
Most of the algorithms used for mining maximal frequent 
item sets perform fairly well when the length of the maximal 
frequent item set is small. However, performance degrades 
when the length of the maximal frequent item set is large, 
since in the bottom-up approach, the maximal frequent item 
set is obtained only after traversing all its subsets. 
 
The Pincer-search algorithm (Lin and Kedem, 1998, 2002), 
p r o p o s e s  a new approach for mining maximal frequent 
item sets. It reduces the complexity by combining both top-
down and bottom-up methods for generating maximal item 
sets. The bottom-up search starts from 1-itemset and 
proceeds up to n-item sets as in Apriori while the top-down 
search starts from n- item sets and proceeds up to 1 item set. 
Both bottoms-up and top-down searches identify the maximal 
frequent itemsets by examining its candidates individually.  
Bottom-up search moves one-level up during a single pass 
whereas top-down search moves many levels down during a 
single pass. During the execution, all the item sets are 
classified into 3 categories 

 
Frequent: Item sets whose support is greater than min_sup are 
classified as frequent Infrequent: Item sets whose support is 
less than min_sup are classified as infrequent Unclassified: All 
other Item sets are said to be unclassified. 
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The Pincer algorithm is illustrated for the sample data source 
given in Table 4. The same data source will be used later for 
illustrating the proposed algorithm. An example of pincer 
search is shown in figure 1. 
Pincer algorithm uses the following two properties to classify 
the unclassified item sets Property 1: If an item set is 
infrequent, all its supersets must be infrequent and they need 
not be examined further Property 2: If an item set is 
frequent, all its subsets must be frequent and they ne e d  not 
be examined further 

 
     Table 4: Sample data source 
 

 
 
 
 
 
 
 
 
 
 

 
 
abcdefghij MFCS{abcdefghij} MFS{} 

                                
                                                           

                   abcde  MFCS{abcde} MFS{} 
 
    
    abcd           acde              MFCS{abcd,acde} MFS{}                           

 
                                                                                       
MFS{abcd,ae
} 

                                                   
        (subset)  acd            ade MFCS{abcd,ae}  
   
 
 
 
 
ab ac ad ae bc bd cd be ce de 
 
 
 
a  b c d e f g h  i j 

 
Figure 1: Pincer search 
 

IV. PROPOSED TECHNIQUE: DCIP ALGORITHM 
 

The first step of DCIP algorithm is to reduce the 
length of itemsets and the volume of data-set. According 
to Lemma 1, any maximal frequent itemset is also a 
maximal frequent itemset corresponding to one 
transaction in D, so find all maximal frequent itemsets 
correspond to every transaction through intersection 
pruning, merge them into one set (denoted as FS 

hereinafter), then delete all infrequent maximal itemset in 
FS, and the remaining set is maximal frequent itemset. 
The two main processes are described as follows.  

 
A. Condensing the Data-set  

This process first sorts the data-set with descending 
order according to the length of its itemsets, then moves 
those high-dimensional transactions whose support are 
bigger than minimal support threshold to a frequent 
itemset, and deletes all subsets of those transactions to 
condense the data-set. These steps are as follows:  

Step 1: Scan the data-set, finding all frequent 1-
itemset; 

 
Step 2: Scan the data-set, deleting all items infrequent 

1-itemset from all transactions; then add up identical 
transactions (i.e., if transaction T1=T2, let support(T1) = 
support(T1) + support(T2), and delete T2 from data-sets). 
Sorting the data-set descendingly according to the length 
of itemsets to form a new data-set which we denote as C; 
Step 3: Process every transaction Ti in C whose support 
are bigger than minimal support threshold: move  
Ti to FS and delete all Tj (Tj ⊂Ti, >i); 

Step 4: Delete non-MFI from FS; 
Step 5: End. 

  
B. Intersection Pruning 
  

Any maximal frequent itemset is also the maximal 
frequent itemset corresponding to a certain transaction in 
D; merge all maximal frequent itemset corresponding to 
every transaction into one set (which we denote as FS), 
then delete all non-frequent maximal itemsets in FS, and 
the remaining set is the maximal frequent itemset. These 
steps are as follows:  

Assume we have a data-set denoted as D, and the 
minimal support threshold is S. 

Step 1: Condense data-set D using the method 
described in 3.1; if |D|<S, terminate the processing for the 
current data-set; 

Step 2: Find intersection of T1 and Ti(1<i≤n); merge 
all intersections into a new data-set D1; establish the 
vertical data format of D; delete transaction Ti (Ti ⊂T1); 
if |D1| ≥ S, then   go to step 1 to perform another 
intersection pruning circle for D1;  

Step 3: Use the vertical data format of D to find the 
intersection of Tj and Ti (j=2, 3, 4, ..., m<n; j<i≤n), 
merge all intersections into a new data-set D1, go to step 
1 to perform another intersection pruning circle for D1; 
when the volume of the remaining data-set is less than S, 
stop finding intersections of Tj and Ti, terminate the 
process for current data-set.  

Step 4: End;  
Note: Data-set condensing can be performed at the 

beginning of the intersection pruning process, as well as 
in the process of step 3. 

 

TID ITEMS 
T1 a,d,e,g,j 
T2 a,b 
T3 a,b,c,e,h 
T4 a,b,c,d 
T5 a,b,c,d,f,i 
T6 a,b,c 
T7 a,b,c,d,f,i 
T8 a,b,c,e 
T9 j 
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C. Instance Analysis  
The following example shows how to discover MFI 

using DCIP for transaction database D (Table I) with 
minimum support threshold as 4 (i.e., minsup=4). 
 

 TABLE I. 
TRANSACTION DATA-SET D 

  

TID Items 
  

001 I1,I2,I4,I5,I7 
  

002 I1,I2,I5,I6,I7 
  

003 I0,I3,I5,I7 
  

004 I0,I3,I8 
  

005 I1,I2,I3,I4,I7 
  

006 I2,I3,I7,I8 
  

007 I3,I6,I9 
  

008 I1,I3,I5,I9 
  

009 I1,I2,I6 
  

010 I3,I4,I8,I9 
   

Step 1: Condense transaction data-set D using the 
method in 3.1, the result is shown in Table II; 
 
 

TABLE II.  
RESULT OF CONDENSED D  

TID items Count del 
    

1 I1,I2,I5,I7 2  
    

2 I1,I2,I3,I7 1  
    

3 I3,I5,I7 1  
    

4 I2,I3,I7 1 1 
    

5 I1,I3,I5 1  
    

6 I1,I2 1 1 
     

Attribute Count is the count of corresponding 
transactions; attribute del indicate whether the 
corresponding transaction can be ignored in later 
processing, for example, after step 2, T6 can be ignored.  

Step 2: Find intersections of T1 and Ti (i=2, 3... 7), 
merge all intersections into data-set D1, as shown in 
Table III: 
 

TABLE III.  
INTERSECTION DATA-SET FOR T1 IN TABLE II 

 
TABLE IV.  

INTERSECTION DATA-SET FOR T1 IN TABLE III  
TID items Count del 

    

1 I2,I7 1(+2+1)  
    

2 I1,I2 1(+2+1)  
    

Because T3 and T5 are subset of T1 in Table III, delete 
T3 and T5; 

Step 5: Condense the data-set in Table IV, produce 
frequent itemset {{I2, I7}:4, {I1, I2}:4}; Table IV is now 
empty after condensing;  

Step 6: Back to Table III, T3 and T5 has been deleted, 
we only need to find the intersection of T2 and T4; but 
the length of T2 and T4 are both 2, no need to find 
intersection of them.  

Step 7: Back to Table II, because T6 has been deleted, 
we only need to find the intersections of T2 and Ti (i=3, 4, 
5); merge all intersections into a new data-set D1, as 
shown in Table V. 
 

Because T4 ⊂ T2 in Table II, it should be deleted. 
Step 8: Condense the data-set in Table V; after  

     Condensing the result is empty;  
Step 9: The original data- set D has 10 transactions; 

Table II shows that 30% (3 transactions) of them has been 
processed; condense again the remaining data-set in Table 
II, and the result is empty. The process ends.  

Step 10: Merge all resulting frequent item sets, and 
delete all non-frequent maximal item sets, the final result 
of MFI is {{I2, I7}: 4, {I1, I2}: 4}.  

The steps above use 14 times of intersection 
calculations for MFI; compared with other Apriori-like 
algorithms, its simplicity and efficiency is explicit.  

Note: Because the volume of the example data-set D is 
small (only 10), the above process does not include the 
utilizing of vertical data format; the reason of introducing 
vertical data format is to reduce the number of times of 
finding the intersections. 

 
TID items Count del 

    

1 I1,I2,I7 1(+2)  
    

2 I5,I7 1(+2)  
    

3 I2,I7 1(+2) 1 
    

4 I1,I5 1(+2)  
    

5 I1,I2 1(+2) 1 
     

Establish vertical data format for D; because in Table 
II, T6 ⊂ T1, T6.del=1 (see Table II) . The (+2) for 
attribute Count in table III is the count of T1 in Table II.  

Step 3: Condense the data-sets in Table III; as this 
example, the result remains no change. 

Step 4: Find intersections of T1 and Ti (i=2, 3, 4, 5) in 
Table III respectively, merge them into a new data-set D1, 
as shown in Table IV. 
 

TABLE V.  
INTERSECTION DATA-SET FOR T2 IN TABLE 2  

TID items Count del 
    

1 I3,I7 1(+1)  
    

2 I2,I3,I7 1(+1)  
    

3 I1,I3 1(+1)  
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V. PERFORMANCE STUDY  

If the length of the longest transaction item set is L, the 
depth of recursive calling of the algorithm itself is less 
than L-2. The number of calculations for intersections is 
negatively correlated with support, number of deleted 
transactions, and number of duplicated transactions. This 
algorithm can also be implemented parallels for each 
transaction's maximal frequent itemset to get more 
efficiency. It is valid for both long and short frequent 
pattern mining applications; for vast volume of data-set, 
its usability retains because of the time & space cost 
increases not very drastically.   

Another advantage of DCIP algorithm is its easy 
implementation. It is coded and tested using PowerBuilder 
script language on a microcomputer with Pentium 
IV/1.80GHz CPU, 512M memory running Windows XP 
operation system. Testing dataset is extracted from a 
supermarket's sales record.3000, 5000, 10000 and 20000 
transactions are tested respectively with each record 
having 2-10 categories of commodity (the average number 
of categories is 6). Figure 1 shows the running time for 
different volume of datasets with minimum support 
threshold of 5%, 20% and 50%respectively. The bigger 
minimum support threshold, the lesser time needed for 
MFI. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Performance test for multiple data-set & supports 
 
 

VI. CONCLUSION  
DCIP provides a new and efficient algorithm for 

discovering MFI; it condenses data-set by deleting 
items in infrequent 1-itemsets and merging duplicate 
transactions repeatedly, and utilizes the intersections of 
(1-s)*|D|+1 transactions with other transaction item 
sets to perform pruning; along with the discovering 
process, with the increasing of the number of deleted 
transactions, the number of times needed for 
calculating intersections will decrease rapidly. It's time 
& space cost increases not drastically when data-set 
volume increases, so its usability retains for MFI 
applications for high volume data-sets.  

The DCIP algorithm can be further optimized in 
various aspects, such as keep a record of all resulting 
intersections to avoid duplicated generation of 
identical intersections to further improve the efficiency 

of this algorithm.  
While the problems considered in this paper are novel and 

important to the area of ad hoc data exploration and retrieval, 
we observe that our specific problem definition does have 
limitations. After all, a query log is only an approximate 
surrogate of real user preferences, and moreover, in some 
applications neither the database, nor the query log may be 
available for analysis; thus, we have to make assumptions about 
the nature of the competition as well as about the user 
preferences. Finally, in all these problems,  
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