
 International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 553– 558 (2014)
 Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

553

ISSN 2278-3091

Comparative analysis of Google File System and Hadoop
Distributed File System

R.Vijayakumari, R.Kirankumar, K.Gangadhara Rao
Dept. of Computer Science, Krishna University, Machilipatnam, India, vijayakumari28@gmail.com

Dept. of Computer Science, Krishna University, Machilipatnam, India, kirankreddi@gmail.com
Dept. of Computer Science and Engg., Acharya Nagarjuna University, Guntur, India, kancherla123@gmail.com

Abstract – Cloud computing is a new technology which
comes from distributed computing, parallel computing, grid
computing and other computing technologies. In cloud
computing, the data storage and computing are not in the
local computer and server but in the amount of computers
distributed in the internet. Several distributed file systems
are used over the cloud because the cloud itself includes
large numbers of commodity-grade servers, harnessed to
deliver highly scalable and on-demand services.
The main objective of this paper is to discuss about two
distributed file systems Google File System (GFS) and
Hadoop Distributed File System (HDFS) and compare them
by making various use of parameters. Mapreduce is a
functional programming model introduced by Google and is
used by both GFS and HDFS. Parameters such as Design
Goals, Processes, Fie management, Scalability, Protection,
Security, cache management replication etc. are taken for
comparison.

Keywords: Cloud computing, Google file system, Hadoop
distributed file system, Mapreduce.

INTRODUCTION

Cloud computing is a specialized distributed computing
paradigm; it differs from traditional ones in that 1) it is
massively scalable, 2) can be encapsulated as an abstract
entity that delivers different levels of services to
customers outside the Cloud, 3) it is driven by economies
of scale [1], and 4) the services can be dynamically
configured (via virtualization or other approaches) and
delivered on demand.
 Google File System [2] is a proprietary
distributed file system developed by Google and specially
designed to provide efficient, reliable access to data using
large clusters of commodity servers. Files are divided into
chunks of 64 megabytes, and are usually appended to or
read and only extremely rarely overwritten or shrunk.
Compared with traditional file systems, GFS is designed
and optimized to run on data centers to provide extremely
high data throughputs, low latency and survive individual
server failures. Inspired by GFS, the open source Hadoop
Distributed File System (HDFS)[3] stores large files
across multiple machines. It achieves reliability by

replicating the data across multiple servers. Similarly to
GFS, data is stored on multiple geo-diverse nodes. The
file system is built from a cluster of data nodes, each of
which serves blocks of data over the network using a
block protocol specific to HDFS. In order to perform the
certain operations in GFS and HDFS a programming
model is required. GFS has its own programming model
called Mapreduce. It is an open-source programming
model developed by Google Inc. Apache adopted the
ideas of Google Mapreduce and developed Hadoop
Mapreduce.
 In this paper comparison is made in terms of the
features of two distributed file systems: Google File
System (GFS) and Hadoop Distributed File System [4]
which is an open-source implementation of Google file
system [5].

GOOGLE FILE SYSTEM (GFS)

 The Google file system is implemented to meet
the rapidly growing demands of Google’s data processing
needs. Google faces the requirements to manage large
amounts of data – including but not being limited to the
crawled web content to be processed by the indexing
system. Relying on large numbers of comparable small
servers [6], GFS is designed as a distributed file system to
be run on clusters up to thousands of machines. In order
ease the development of applications based on GFS, the
file system provides a programming interface aimed at
abstracting from these distribution and management
aspects. Running on commodity hardware, GFS is not
only challenged by managing distribution, it also has to
cope with the increased danger of hardware faults.
Consequently, one of the assumptions made in the design
of GFS is to consider disk faults, machine faults as well as
network faults as being the norm rather than the
exception. Ensuring safety of data as well as being able to
scale up to thousands of computers while managing
multiple terabytes of data can thus be considered the key
challenges faced by GFS. Having distilled the aims and
non-aims of a prospective file system in detail, Google

 International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 553– 558 (2014)
 Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

554

ISSN 2278-3091

has opted not to use an existing distributed file system.
Instead it decided to develop a new file system. GFS has
been fully customized to suite Google’s needs. This
specialization allows the design of the file system to
abstain from many compromises made by other file
systems. As an example, a file system targeting general
applicability is expected to be able to efficiently manage
files with sizes ranging from very small (i.e. few bytes) to
large (i.e. gigabyte to multi-terabyte). GFS, however,
being targeted at a particular set of usage scenarios, is
optimized for usage of large files only with space
efficiency being of minor importance. Moreover, GFS
files are commonly modified by appending data, whereas
modifications at arbitrary file offsets are rare. The
majority of files can thus, in sharp contrast to other file
systems, be considered as being append-only or even
immutable (write once, read many). Coming along with
being optimized for large files and acting as the basis for
large-volume data processing systems, the design of GFS
has been optimized for large streaming reads and
generally favors throughput over latency. GFS
implements a proprietary interface applications can use.

ARCHITECTURE OF GFS

 A GFS cluster consists of a single master and
multiple chunkservers and is accessed by multiple clients,
as shown in Figure 1. Each of these is typically a
commodity Linux machine running a user-level server
process. It is easy to run both a chunk server and a client
on the same machine, as long as machine resources permit
and the lower reliability caused by running possibly flaky
application code is acceptable. Files are divided into
fixed-size chunks. Each chunk is identified by an
immutable and globally unique 64 bit chunkhandle
assigned by the master at the time of chunk creation.
Chunk servers store on local disks as Linux files and read
or write chunk data specified by a chunk handle and byte
range. For reliability, each chunk is replicated on multiple
servers. By default, we store three replicas, though users
can designate different replication levels for different
regions of the file namespace. The master maintains all
file system metadata. This includes the namespace, access
control information, the mapping from files to chunks,
and the current locations of chunks. It also controls
system-wide activities such as chunklease management,
garbage collection of orphaned chunks, and chunk
migration between chunk servers. The master periodically
communicates with each chunk server in HeartBeat
messages to give it instructions and collect its state. GFS
client code linked into each application implements the
file system API and communicates with the master and

chunk servers to read or write data on behalf of the
application. Clients interact with the master for metadata
operations, but all data-bearing communication goes
directly to the chunk servers. We do not provide the
POSIX API and therefore need not hook into the Linux
vnode layer. Neither the client nor the chunk server
caches file data. Client caches offer little benefit because
most applications stream through huge files or have
working sets too large to be cached. Not having them
simplifies the client and the overall system by eliminating
cache coherence issues. (Clients do cache metadata,
however.) Chunk servers need not cache file data because
chunks are stored as local files and so Linux’s buffer
cache already keeps frequently accessed data in memory.

 Fig 1: GFS Architecture

HADOOP DISTRIBUTED FILE SYSTEM (HDFS)

HDFS is the file system which is used in Hadoop based
distributed file system. The Hadoop is an open-source
distributed computing framework and provided by
Apache. Many network stations use it to create systems
such as Amazon, Facebook. The Hadoop cores are
Mapreduce and HDFS. The mapreduce can make the
decomposition of tasks and integration of results. The
HDFS is a distributed file system and provide the base
support for the storage of file in the storage node. The
mapreduce provides job trackers and task trackers.
Mapreduce is a programming model Google has used
successfully in processing big data sets. A map function
extracts some intelligence from raw data and a reduce
function aggregates according to some guides the data
output by map. Mapreduce needs a distributed file system
and an engine that can distribute, coordinate, monitor and
gather the results. The HDFS is a master and slaver
framework and which contains nodes and name node. The
namenode is a center server and manage the namespace in
the file system. The data node manage the data stored in
it.

 International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 553– 558 (2014)
 Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

555

ISSN 2278-3091

ARCHITECTURE OF HDFS

HDFS stores data on the compute nodes, providing very
high aggregate bandwidth across the cluster. A HDFS
installation consists of single name node as the master
node and a number of data nodes as the slave nodes. The
name node manages the file system namespace and
regulates access to files by clients. The data nodes are
distributed, one data node per machine in the cluster,
which manage data blocks attached to the machines where
they run. The namenode executes the operations on file
system namespace and maps data blocks to data nodes.
The data nodes are responsible for serving read and write
requests from clients and perform block operations upon
instructions from namenode [7]. HDFS distributes data
chunks and replicas across the server for higher
performance, load-balancing and resiliency. With data
distributed across all servers, any server may be
participating in the reading, writing, or computation of a
data-block at any time. HDFS replicates file blocks for
fault tolerance. An application can specify the number of
replicas of a file at the time it is created, and this number
can be changed any time after that.

 Fig 2: HDFS Architecture

The name node makes all decisions concerning block
replication. For a large cluster, it may not be practical to
connect all nodes in a flat topology. The common practice
is to spread the nodes across multiple racks. Nodes of a
rack share a switch, and rack switches are connected by
one or more core switches. Communication between two
nodes in different racks has to go through multiple
switches. In most cases, network bandwidth between

nodes in the same rack is greater than network bandwidth
between nodes in different racks.

MAPREDUCE

The primary role of Mapreduce is to provide an
infrastructure that allows development and execution of
large-scale data processing jobs. As such, Mapreduce
aims at efficiently exploiting the processing capacity
provided by computing clusters while at the same time
offering a programming model that simplifies the
development of such distributed applications. Moreover
and similar to the requirements of GFS, Mapreduce is
designed to be resilient to failures such as machine
crashes. Google uses mapreduce to process data sets upto
multiple terabytes in size for purposes such as indexing
web content. To achieve the goals mentioned, Mapreduce
has been inspired by the idea of higher order functions, in
particular the functions map (also referred to as fold) and
reduce. These functions are an integral part of functional
programming languages such as Lisp. The primary benefit
the functional programming paradigm and these functions
in particular promise is to allow the creation of a system
that incorporates automatic parallelization of tasks. One
of the assumptions made by mapreduce is that all data to
be processed can be expressed in the form of key/value
pairs and lists of such pairs. Both keys and values are
encoded as strings. Based on these assumptions, the key
idea of Msapreduce is to implement the application
exclusively by writing appropriate map and reduce
functions. Provided these functions, the infrastructure not
only transparently provides for all necessary
communication between cluster nodes, it also
automatically distributes and load-balances the processing
among the machines. Map is a function written by the
user that takes a key/value pair as input and yields a list of
key/value pairs as result. A canonical use case for map is
thus to digest raw data and generate (potentially very
large quantities of) unaggregated intermediate results.
Reduce is the second function implemented by the user. It
takes a key and a list of values as input and generates a
list of values as result. The primary role of reduce is thus
to aggregate data.

 International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 553– 558 (2014)
 Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

556

ISSN 2278-3091

COMPARATIVE ANALYSIS OF GFS AND HDFS

properties GFS HDFS

Design Goals  The main goal of GFS is to support large
files

 Built based on the assumption that
terabyte data sets will be distributed
across thousands of disks attached to
commodity compute nodes.

 Used for data intensive computing [8].

 Store data reliably, even when failures
occur within chunk servers, master, or
network partitions.

 GFS is designed more for batch
processing rather than interactive use by
users.

 One of the main goals of HDFS is to
support large files.

 Built based on the assumption that
terabyte data sets will be distributed
across thousands of disks attached to
commodity compute nodes.

 Used for data intensive computing [8].

 Store data reliably, even when failures
occur within name nodes, data nodes, or
network partitions.

 HDFS is designed more for batch
processing rather than interactive use by
users.

Processes  Master and chunk server  Name node and Data node

File Management  Files are organized hierarchically in
directories and identified by path names.

 GFS is exclusively for Google only.

 HDFS supports a traditional hierarchical
file organization

 HDFS also supports third-party file
systems such as CloudStore and Amazon
Simple Storage Service [9].

Scalability  Cluster based architecture

 The file system consists of hundreds or
even thousands of storage machines built
from inexpensive commodity parts.

 The largest cluster have over 1000
storage nodes, over 300 TB of disk
storage, and are heavily accessed by
hundreds of clients on distinct machines
on a continuous basis.

 Cluster based architecture

 Hadoop currently runs on clusters with
thousands of nodes.

 E.g. Face book has 2 major clusters:
 - A 1100-machine cluster with 8800
cores and about 12PB raw storage.
 - A 300-machine cluster with 2400
cores and about 3PB raw storage.
 - Each (commodity) node has 8 cores
and 12 TB of storage.

 EBay uses 532 nodes cluster (8*532
cores, 5.3PB)

 Yahoo uses more than 100,000 CPUs in
>40,000 computers running Hadoop
 - biggest cluster: 4500 nodes(2*4cpu
boxes w 4*1TB disk & 16GB RAM)[10]

 K.Talattinis et.al concluded in their work
that Hadoop is really efficient while
running in a fully distributed mode,
however in order to achieve optimal
results and get advantage of Hadoop
scalability, it is necessary to use large
clusters of computers[11]

Protection  Google have their own file system called
GFS. With GFS, files are split up and
stored in multiple pieces on multiple
machines.

 The HDFS implements a permission
model for files and directories that shares
much of the POSIX model.

 File or directory has separate permissions

 International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 553– 558 (2014)
 Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

557

ISSN 2278-3091

 Filenames are random (they do not
match content type or owner). There are
hundreds of thousands of files on a single
disk, and all the data is obfuscated so that
it is not human readable. The algorithms
uses for obfuscation changes all the time
[12].

for the user that is the owner, for other
users that are members of the group, and
for all other users [13].

Security  Google has dozens of datacenters for
redundancy. These datacenters are in
undisclosed locations and most are
unmarked for protection.

 Access is allowed to authorized
employees and vendors only. Some of
the protections in place include: 24/7
guard coverage, Electronic key access,
Access logs, Closed circuit televisions,
Alarms linked to guard stations, Internal
and external patrols, Dual utility power
feeds and Backup power UPS and
generators [12].

 HDFS security is based on the POSIX
model of users and groups.

 Currently is security is limited to simple
file permissions.

 The identity of a client process is just
whatever the host operating system says
it is.

 Network authentication protocols like
Kerberos for user authentication and
encryption of data transfers are yet not
supported [14].

Database Files  Bigtable is the database used by GFS.
Bigtable is a proprietary distributed
database of Google Inc.

 HBase[15] provides Bigtable (Google)
[16]-like capabilities on top of Hadoop
Core.

File Serving  A file in GFS is comprised of fixed sized
chunks. The size of chunk is 64MB.
Parts of a file can be stored on different
nodes in a cluster satisfying the concepts
load balancing and storage management.

 HDFS is divided into large blocks for
storage and access, typically 64MB in
size. Portions of the file can be stored on
different cluster nodes, balancing storage
resources and demand [17].

Cache Management  Clients do cache metadata.

 Neither the sever nor the client caches
the file data.

 Chunks are stored as local files in a
Linux system. So, Linux buffer cache
already keeps frequently accessed data in
memory. Therefore chunk servers need
not cache file data.

 HDFS uses distributed cache

 It is a facility provided by Mapreduce
framework to cache application-specific,
large, read-only files (text, archives, jars
and so on)

 Private (belonging to one user) and
Public (belonging to all the user of the
same node) Distributed Cache Files [18].

Cache Consistency  Append-once-read-many model is
adapted by Google. It avoids the locking
mechanism of files for writing in
distributed environment is avoided.

 Client can append the data to the existing
file.

 HDFS’s write-once-read-many model
that relaxes concurrency control
requirements, simplifies data coherency,
and enables high throughput access [9].

 Client can only append to existing files
(yet not supported)

Communication  TCP connections are used for
communication. Pipelining is used for
data transfer over TCP connections.

 RPC based protocol on top of TCP/IP

Replication Strategy  Chunk replicas are spread across the
racks. Master automatically replicates the
chunks.

 A user can specify the number of replicas
to be maintained.

 The master re-replicates a chunk replica
as soon as the number of available

 Automatic replication system.

 Rack based system. By default two
copies of each block are stored by
different Data Nodes in the same rack
and a third copy is stored on a Data Node
in a different rack (for greater reliability)
[17].

 International Journal of Advanced Trends in Computer Science and Engineering, Vol. 3 , No.1, Pages : 553– 558 (2014)
 Special Issue of ICETETS 2014 - Held on 24-25 February, 2014 in Malla Reddy Institute of Engineering and Technology, Secunderabad– 14, AP, India

558

ISSN 2278-3091

replicas falls below a user-specified
number.

 An application can specify the number of
replicas of a file that should be
maintained by HDFS [9].

 Replication pipelining in case of write
operations.

Available Implementation  GFS is a proprietary distributed file
system developed by Google for its own
use.

 Yahoo, Facebook, IBM etc. are based on
HDFS.

CONCLUSION
Google File System is a proprietary distributed file
system and is exclusive for Google Inc. Mapreduce is
the programming frame work used by Google.
Hadoop Distributed File System and Mapreduce are
the components of Hadoop project owned by Apache.

Hadoop Mapreduce is based on the idea of the
Google Mapreduce. In this paper the comparison
between these two file systems is made by selecting
few parameters.

REFERENCES

1. J. Silvestre. “Economies and Diseconomies
of Scale”, The New Palgrave: A dictionary
of Economics, v.2, pp. 80-84, 1987.

2. Ghemawat S, Gobioff H, Leung S-T (2003)
The Google file system, In : Proc of SOSP,
October 2003

3. Hadoop Distributed File System,
hadoop.apache.org/hdfs

4. D. Borthakur. HDFS Architecture Guide.
[Online]. Available:
hadoop.apache.org/docs/hdfs/current/hdfs_d
esign.html

5. S.Ghemawat, H.Gibioff, and S. Leung.
(Oct.2003). The Google File System. SOSp
’03 ACM. [Online] Available:
http://Research.google.com/archive/gfs.html

6. Information Week, Google Revealed: The
IT Strategy that Makes It Work, 08/28/2006
(retrieved 02/01/2008)

7. F.Wang, J.Qiu, J.Yang, B.Dong, X.H.Li,
and Y.Li, “Hadoop high availability through
metadata replication”, in Proc. The first
international workshop on Cloud data
management, 2009, pp. 37-44

8. R.T.Kouzes, G.A. Anderson, S.T.Elbert,
I.Gorton, and D.K.Gracio, “The changing
paradigm of data-intensive computing”,
IEEE Computer Society, vol. 42, no. 1, pp.
26-34, Jan.2009

9. J.Hanson. (Feb 2011). An Introduction to
Hadoop Distributed File System. [Online].
Available:
http://www.ibm.com/developerworks/web/li
brary/wa-introhdfs

10. Hadoop Wiki. [Online]. Available:
http://wiki.apache.org/hadoop/PoweredBy

11. K.Talattinis, A.Sidiropoulou, K.Chaalkias,
and G.Stephanides, “Parallel collection of
live data using hadoop”, in Proc. 14th IEEE
Panhellenic Conference on Informatics, pp.
66-71, 2010

12. http://info.groveis.com/blog/bid/178992/On-
Site-vs-Google-Cloud-Security-How-do-
they-comapare

13. M.Satyanarayanan and M.Spasojevic, “AFS
and the web: competitors or collaborators?”
in Proc. Of the Seventh ACM SIGOOPS
European Workshop, pp. 1-6, 1996

14. HDFS user guide. [Online]. Available:
http://hadoop.apache.org/common/docs/curr
ent/hdfs_user_guide.html

15. HBase Big Table – like structured storage
for Hadoop HDFS. [Online]. Available:
http://wiki.apache.org/hadoop/Hbase

16. F.Chang, J.Dean, S.Ghemawat, W.C.Hsieh,
D.A.W.M.Burrows, T.Chandra, A.Fikes,
and R.E.Gruber, “Bigtable: A distributed
storage system for structured data”, in Proc.
Of the 7th conference on usenix symposium
on operating systems design and
implementation – vol. 7, 2006, pp. 1-14.

17. J.Shafer, S.Rixner, and A.L.Cox, “the
Hadoop distributed file system: balancing
portability and performance”, IEEE
International Symposium on Performance
Analysis of Systems & Software (ISP ASS),
pp. 122-133, 2010

18. MapReduce tutorial. [Online]. Available:
http://hadoop.apache.org/common/docs/r0.2
0.2/mapred_tutorial.html

