
International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.3, Pages : 18-21 (2013)
Special Issue of ICCSIE 2013 - Held during 24 May, 2013 Bangalore, India

18

ISSN 2278-3091

Abstract : Space sharing and time sharing have been

traditionally used for scheduling in multiprocessor systems. At
medium to heavy loads, time sharing policies perform well.
However, at these loads, space sharing policies lead to wastage of
resources and premature queuing of jobs, but perform well at low
loads. In this paper, we investigate the previous work done in hybrid
approaches to schedule in multiprocessor systems which is called
hierarchical scheduling. Hierarchical scheduling policies
eliminates the short comings of space sharing and time sharing
while retaining the advantage of both the policies. We also propose
an adaptive hierarchical scheduling policy for scheduling parallel
jobs in heterogeneous multicluster systems.

Key words : Heirarchical Scheduling, multiprocessors, resource
allocation, space and time sharing,.

INTRODUCTION
Cluster management packages help in load distribution

among nodes in a cluster efficiently. Load distribution
policies are classified into three types: static, adaptive and
dynamic policies.

 In static policy, processor once assigned, are held by a job
until completion. This allocation is done at the time the job
enters the system. The major advantage of the static policies
is their ease of implementation and simplicity but its
drawbacks are that it cannot consider changes in system
state; therefore there is limited scope for improvement.

 Adaptive policies on the other hand allocate the
processors to the job depending on the system and workload
conditions. Adaptive policy uses a combination of two
policies; a receiver-initiated policy and a sender-initiated
policy. At high loads, a receiver initiated policy might be
used and at low to moderate system load, the load sharing
policy is switched to sender-initiated.

 The final category of dynamic policies, use the current
system state information in making scheduling decisions.
There is a lot of scope for performance improvements as
compared to improvements obtained by the static policies,
since these policies consider dynamic system changes. There
are two types of dynamic policies: receiver initiated and
sender initiated. In receiver initiated policies, the nodes
which have low load search for the nodes with heavy load so
that work can be transferred. Whereas in sender initiated
policies, the heavily loaded nodes tries to transfer the
workload to lightly loaded nodes.

Load sharing policy usually have two main components

i.e. location policy and transfer policy. The work of transfer
policy is to decide whether arrived job should be processed
locally or at remote node. On the other hand the location
policy determines the node to which job should be sent for
remote execution. Most of the transfer policies make use of
some load index threshold to check whether node is heavily
loaded or lightly loaded. There are two kinds of location
policies that can be used by load sharing policies. It can be
either centralized policy or distributed policy.

In distributed policy, the load information of the system is
distributed across the nodes in the system. In this policy, to
locate a target node, a particular node would have to gather
the load information from other nodes. Whereas in a
centralized policy, a single node collects the state
information and all other nodes consult this single node for
determining a target node according to the system load.
There are advantages and disadvantages associated with both
policies. The major advantage of centralized policy is that it
provides almost perfect load sharing. This is because the
coordinator node has the overall system state information to
make load distribution decisions. This policy lacks in fault
tolerance and also has potential for performance bottleneck.

On the other hand distributed policy is fault tolerant and
does not cause performance bottleneck as compared to
centralized policy. But the main issue which can cause
performance degradation is that whenever there is change in
load or the system state information changes then it is
transferred to all the nodes in the system. But this overhead
can be decreased by sampling only a few randomly selected
nodes. One more advantage of distributed policy is that it can
be easily scalable to large system sizes.

To resolve above mentioned disadvantages, hierarchical
scheduling policies were introduced which combines the
merits of distributed and centralized policies while reducing
the disadvantages of these policies. Moreover hierarchical
scheduling policy eliminates the disadvantages of time
sharing and space sharing policies while retaining their
advantages.

In section 3, the work done in hierarchical load sharing
policies has been investigated. In section 4 we proposed an
improved adaptive hierarchical scheduling policy for
scheduling jobs in inter as well as intra cluster systems.
Section 5 concludes the paper.

LITERATURE SURVEY
 In this section we will review the work done in
hierarchical scheduling policies. Our choice of the research

An Improved Adaptive Hierarchical Scheduling Policy for
Processor Allocation in Heterogeneous Multicluster Systems

Gursimranjeet Kaur1, Amit Chhabra2, Harpreet Kaur3

1Deptt. Of Computer Science & Engineering, Guru Nanak Dev University, Amritsar, India, rabia.gem@gmail.com
2 Deptt. Of Computer Science & Engineering, Guru Nanak Dev University, Amritsar, India, chhabra_amit78@yahoo.com
3Deptt. Of Computer Science & Engineering, Guru Nanak Dev University, Amritsar, India, harpreetaneja23@gmail.com

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.3, Pages : 18-21 (2013)
Special Issue of ICCSIE 2013 - Held during 24 May, 2013 Bangalore, India

19

ISSN 2278-3091

has been motivated by principles and techniques that can
have strong influences on the performance of the distributed
memory multicomputer systems.
 Firstly we would like to define the appropriate terms in the
following section so as to avoid any misinterpretation.

Relevant Definitions

 Adaptive Scheduling: In adaptive scheduling the
decision of allocating job to a processor is made at
scheduling time.

 Partition Reach: It is the number of processors which
are reachable a cluster or node in the hierarchy.

 Partition Size: It is total number of processors in a
given partition.

 Space Sharing: It is a scheduling technique in which
processors are partitioned and jobs are scheduled on
particular partitions till its completion.

 Time Sharing: It is a scheduling technique in which
multiple jobs share a set of processors without any
exclusion.

 System Utilization: It is the measure of percentage of
time any processor in the system was busy.

 Response time: It is the time elapsed from the
moment a job was submitted to the system till its
completion.

 Execution Time: The time a job was being actually
executed on a processor.

Previous Work
Sivarama P. Dandamudi and Philip S. P. Cheng in [1]

proposed a task queue organization that combines the best
features of centralized and distributed organizations. This
task queue organization uses a hierarchy of queues, thus is
named as hierarchical task queue organization. They also
suggested that a carefully designed hierarchical organization
leads to performance that is comparable to centralized
organization. On the other hand it also eradicates the
contention problem associated with ready queue. They also
did analysis which determined and give guidance for
designing hierarchical organization.

In [2] Thyagaraj Thanalapati and Sivarama Dandamudi
proposed the Hierarchical Scheduling Policy (HSP) for
scheduling in distributed memory multicomputer systems.
They compared the HSP with a pure space- and time-sharing
policy and observed the workloads at many high performance
computing centers. Under many realistic considerations the
detailed simulation results indicated a high performance of
hierarchical scheduling policy over a range of workloads.
There are various reasons for it:
1. Hierarchical Task Queue provides a way for removing
contention from any one queue.

2. Hierarchical Task Queue, together with Hierarchical
Scheduling Policy, gives a solution for getting over the
problem of fragmentation typically originating with pure
space-sharing policies.

3. Hierarchical Scheduling Policy allows for partial
allocation of processors (that is it does time-sharing within
an adaptively allocated partition)
The collective effect of all these characteristics is lead to
observations of high utilization, lower response times and
high degree of robustness.

In [3] Luyang Dong,Bin Gong, Yan Ma and Yi Hu
proposed a hierarchical scheduling policy for large scale
rendering. They implemented load balancing between
resource dispatching and task selection to obtain desiring
quality of services for rendering. They put forward a load
balancing algorithm in which task execution and
performance evaluation coincide depending upon dynamic
feedback. The results present good improvement in terms of
completion time as compared to non-strategy approach.

In [4] Sivarama P. Dandamudi and Thanalapati K.
Thyagaraj have proved that the hierarchical scheduling
policy outperforms the space sharing policy by a great
margin. Also, it gives far better performance as compared to
time sharing policy except at low system loads. As observed
that for all practical cases, large parallel systems are unlikely
to operate at low system loads, therefore the hierarchical
scheduling policy provides significant performance
improvements over the traditional policies.

 In their implementation, the authors made an assumption
that the processors are treated as a "pool of processors" in the
system. For instance, the space sharing policy allocates four
processors to the partition if there are four idle processors in
the system and the partition size is four, no matter where
these processors are residing in the system. If the system is
completely bus-based, then only, this kind of allocation is
fair. Large-scale distributed multicomputers are inclined to
make use of hierarchical interconnection networks. In these
kinds of systems, it is essential to assign nodes on a
cluster-by-cluster basis. Their hierarchical scheduling policy
executes processor allocations in this way. When these
restrictions are applied on time sharing and space sharing,
their performance outcomes will be much worse. Their
hierarchical Scheduling policy has also been shown to give
better performance in shared-memory NUMA systems.

In [5] Sivarama P. Dandamudi and K. C. Michael Lo have
put forward a hierarchical load sharing policy that retains the
advantages of centralized and distributed policies while
minimizing the drawbacks associated with these policies.
They have compared the performance of hierarchical load
sharing policy to the distributed sender-initiated and
receiver-initiated policies and centralized single coordinator
policy. They also presented that the hierarchical load sharing
policy yield significant performance improvements over the
receiver-initiated and sender-initiated policies; it provides
scalability and fault-tolerance near to that of a distributed
policy while its performance is comparable to that of the
centralized policy. They have not considered the impact of
system and workload heterogeneity in their paper. System
heterogeneity means that there are non-homogeneous nodes
(nodes with different processing speeds) in the system and
the workload heterogeneity means that job characteristics are
non-homogeneous.

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.3, Pages : 18-21 (2013)
Special Issue of ICCSIE 2013 - Held during 24 May, 2013 Bangalore, India

20

ISSN 2278-3091

In [6] Sivarama P. Dandamudi and Michael Kwok Cheong
Lo have put forward a new global hierarchical load sharing
policy that reduces the drawbacks of the distributed and
centralized policies while holding on to their advantages.
They have taken into consideration a scenario where the
bottleneck problem does not exist in the centralized policy, so
that they can compare the performance of single coordinator
policy with that of hierarchical policy. It has been confirmed
by results that their proposed hierarchical load sharing policy
provides better performance than the adaptive and
distributed policies and shows performance very near to that
of the centralized policy for various system and workload
parameters taken into consideration in their study. They have
also compared the performance of these policies in
heterogeneous systems and the outcome of this proves that
the hierarchical policy gives the best performance as
compared to other policies mentioned above.

In [7] Michael Lo and Sivarama P. Dandamudi have done
the comparison of the performance of two distributed policies
and the centralized single coordinator policy with
hierarchical load sharing policy. They have assumed that the
scenario they are considering is the one with the centralized
policy which does not have bottleneck problem, so that they
can observe how close the single coordinator policy performs
in comparison to the hierarchical policy. They have proved
that the hierarchical policy provides good performance in the
absence of contention i.e. it performs very similar to the
single coordinator policy.

PROPOSED METHODOLGY

System Framework

In this section, we define the framework of our proposed
scheduling policy. It is based on hierarchical organization.
We assume that there are N number of nodes or workstations
that can be clubbed to make clusters as shown in Fig 1.
Workstations in clusters may differ in processing speeds
(Basic Processing Units) i.e. they don’t have same
architecture. The Hierarchical Task Schedulers are
organized logically in the form of cluster tree (tree of
schedulers which is D-levels deep). The root node is the main
scheduler (MS) and leaf nodes are the processors having
their own local schedulers (LS). There are layers of
schedulers in between main scheduler and leaf schedulers
and these are called intermediate schedulers (IS). The
number of children of any node is referred to as its branching
factor B. We assume that branching factor is same for all the
nodes in our system.
 A node is in one of these states: sender, receiver or neutral
state. A node is sender in case it has some task which is not
assigned yet while a node is a receiver if it has initiated self
scheduling. A node which is neither a sender nor a receiver is
in neutral state.

Improved Adaptive Hierarchal Scheduling Policy
 Our proposed policy is Improved Adaptive Hierarchical
Scheduling Policy. In this policy the work will be transferred
down the hierarchy on demand. We assume the system to be
a shared heterogeneous system in which the workstations
within a cluster (intra-cluster) also differ in Basic processing

Units (BPUs). The closest approach to our work is that of J.H.
Abawajy (2009). However there are several differences
between his and our work:

 He is concerned with the shared heterogeneous
cluster system in which nodes within a cluster are
homogeneous, but we are considering heterogeneity
within cluster too. As clusters are assumed to be
scalable and while adding new nodes its convenient
if heterogeneity is allowed within cluster.

 In addition we are considering breaking of job into a
task depending upon a nodes branching factor,
whereas he didn’t consider branching factor in
making any such decision. He just assumed that job
will be broken down to task when it will reach last
level of intermediate schedulers.

 Moreover we are considering scheduling jobs with
CPU resource only, whereas he considered I/O
resource scheduling too.

Proposed Approach

Jobs are submitted at the root node (Main Scheduler). MS
queues the jobs in the wait queue until they are transferred to
lower level schedulers on demand. When a request for task is
received by the root node, then it transfers some of its jobs
down to a particular scheduler depending upon the branching
factor. If number of jobs present at the root node are greater
than or equally to the branching factor then jobs are
transferred without breaking into tasks otherwise task
transfer takes place.

When a processor is idle i.e. its local scheduler does not
have any task then it arise a request for task to its parent
scheduler (IS). In case its parent also lacks in task it further
requests its parent for a positive number of task transfer. This
is followed recursively until request is satisfied or request
reaches main scheduler.

Now when jobs/tasks reaches lowest level scheduler which
will be last level intermediate cluster then tasks cannot be
allotted equally because of different processing speeds of
workstations within a cluster. Thus task allocation decision
will be made according to the BPUs of a node. Nodes having
higher number of BPUs will get more tasks than as compared
to nodes with lesser number of BPUs.
So the job (say J) is broken down into task and allotted as:

Task transferred to P1 = [(BPU of P1) ∕ (Total No. of BPUs
within cluster)] * J

Algorithm

We have a queue for storing unscheduled tasks (i.e.
QUEUE (job)) and a queue for storing pending requests for
task transfer (QUEUE (RTT). If level (root) returns true then
it means node is the main scheduler and in case level(leaf)
returns true then node is a local scheduler.

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.3, Pages : 18-21 (2013)
Special Issue of ICCSIE 2013 - Held during 24 May, 2013 Bangalore, India

21

ISSN 2278-3091

Algorithm 1. Improved Adaptive Hierarchical Scheduling.
1: if state(neutral)==true then
2: if level(root)==true then
3: if (QUEUE(job)== null) then
4: Put the request in wait queue
5: else
6: if No of jobs >= BF then
7: Perform job transfer
8: else
9: Perform task transfer
10: end if
11: end if (level(root)==true) ∩ (level(leaf)==true) then
12: if (QUEUE(job)== null) then
13: if (QUEUE(RTT)== null) then
14: Send job/task transfer request to parent node
15: end if
16: Put the request in wait queue
17: else
18: Perform Job/Task transfer depending upon BPUs
19: end if
20: else
21: Send job/task transfer request to parent node
22: end if
23: end if

CONCLUSION
In this paper we discussed some techniques that are used

in processor allocation to a parallel job. Then we pointed out
the advantages and disadvantages associated with these
technique thus declaring hierarchical scheduling policy
(which combines the advantages of both space sharing and
time sharing while eliminating their drawbacks), as a better
policy than pure time shared and pure space shared policies.
We also did the survey of the work done in hierarchical

scheduling policies implemented in multiprocessor systems.
So far, only inter cluster heterogeneity is considered in
hierarchical scheduling policies. We extended this work by
proposing an improved adaptive scheduling policy which
takes into account inter as well as intra heterogeneity in
clusters.

REFERENCES

[1] Sivarama P. Dandamudi and Philip S. P. Cheng, “A Hierarchical Task

Queue Organization for Shared-Memory Multiprocessor Systems”, IEEE
Transactions on parallel and distributed systems, VOL. 6, NO. 1,
JANUARY 1995.

[2] Thyagaraj Thanalapati and Sivarama Dandamudi, “An Efficient
Adaptive Scheduling Scheme for Distributed Memory Multicomputers”,
IEEE Transactions on parallel and distributed systems, VOL. 12,
ISSUE 7, JULY 2001.

[3] Luyang Dong,Bin Gong, Yan Ma and Yi Hu, “A Hierarchical Scheduling
Policy for Large-scale Rendering”, Chinagrid Conference (ChinaGrid),
2011 Sixth Annual, 22-23 Aug. 2011.

[4] Sivarama P. Dandamudi and Thanalapati K. Thyagaraj, “A Hierarchical
Processor Scheduling Policy for Distributed-Memory Multicomputer
Systems”, in Proc. Fourth International Conference on high
performance computing, 18-21 Dec 1997.

[5] Sivarama P. Dandamudi and K. C. Michael Lo, “A hierarchical Load
sharing policy for distributed system”, in Proc. of the 5th international
Workshop on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems, MASCOTS. IEEE Computer
Society,1997.

[6] Sivarama P. Dandamudi and Michael Kwok Cheong Lo, “A
Comparative Study of Adaptive and Hierarchical Load Sharing Policies
for Distributed Systems”, in Proc. Computers and Their Applications,
1998, pp.136-141.

[7] Michael Lo and Sivarama P. Dandamudi, “Performance of Hierarchical
Load Sharing in Heterogeneous Distributed Systems”, in Proc. Int. Conf.
Parallel and Distributed Computing Systems, Dijon, France, 1996.

