
International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.3, Pages : 13-17 (2013)
Special Issue of ICCSIE 2013 - Held during 24 May, 2013 Bangalore, India

13

ISSN 2278-3091

Abstract : In systems consisting of multiple clusters of

processors, the processors can differ in the computing speed and
number of processors both within and among the clusters. In this
paper, we propose a scheduling technique that schedules moldable
jobs in such a heterogeneous system. A unit called, Basic Processor
Unit (BPU) is used to measure the computing speed of processors.
The scheduling process integrates the techniques of job selection,
site selection and processor selection into single algorithm with the
objectives of improving mean response time and utilization in a
heterogeneous multicluster system

Key words : Moldable, Multi-cluster, Resource Heterogeneity.

INTRODUCTION
A collection of computing resources (often formed from

inexpensive Commodity-Off-The-Shelf (COTS) computers)
that are interconnected through a network switch is called
cluster. The geographically co-located clusters can be
connected via an interconnection network to form a larger
computational resource known as a multi-cluster.
Multi-cluster systems added more computational power to
the system because the jobs can be distributed among the
available clusters. Though multi-clusters added such
flexibility to the system but they also increased the
complexity of effectively managing both computing and
networking resources. Hence there is a need of job scheduling
at multi-cluster level.

In order to make effective use of the multi-clusters,
intelligent scheduling algorithms must be designed and
implemented that not only caters to the specific needs of its
users, but also seeks to optimize overall system performance.
For effectively managing the resources of the multi-cluster
system, the job scheduling algorithms must address three
issues: (i) nature of job, (ii) feasibility, (iii) heterogeneity.

The jobs can be categorized into three types depending
upon the nature of jobs, namely, rigid, moldable, and
malleable. A rigid job is one that requires a fixed number of
processors. In moldable jobs, the number of processors can
vary and are adapted only at the start of the execution. The
number of processors for both rigid and moldable jobs cannot

be changed during runtime. If the number of processors
assigned to the job can be changed during their runtime, the
job is termed as malleable. The work here is aimed at
moldable jobs.

The local users join the multi-cluster only if there is a
performance improvement for all the participating sites.
Performance can be measured in the terms of job response
time or average waiting time. A scheduling algorithm is said
to be feasible if no participating sites’ average response time
for their jobs get worse after joining the multicluster system
(rather it should improve).

Another important factor in context of job scheduling in a
multicluster system is resource heterogeneity. In a real world,
the multicluster normally consists of clusters which can
differ in the computing speed and the number of processors at
each site as well as among the clusters. Heterogeneity puts a
challenge on designing efficient scheduling algorithms. This
paper proposes a scheduling policy based on the moldable
property of parallel jobs for heterogeneous multicluster
system.

RELATED WORK
Parallel job scheduling has been an active field of research

for a long time. Substantial amount of work has been done on
various platforms viz. shared memory systems, distributed
memory multiprocessors, clusters, multi-clusters and grid.

Extensive work has been done on single cluster system.
Most of the research has been done in scheduling techniques,
scheduler evaluation, workload modelling and fairness.
Dandamudi et al. [4] proposed a two level space-sharing
policy for heterogeneous cluster systems. The policy is based
on the concept of Basic Processor Units (BPUs) to compute
the partition size.

Also, substantial amount of work has been done on job
scheduling in a multi-cluster system. Many scheduling
techniques have been developed and their performance has
been evaluated.

Bucur [3] used Distributed ASCI Supercomputer (DAS)
(multi-cluster) system in her research and studied the
performance of co-allocation. Co-allocation is a technique in
which a parallel job is broken into components and each
component can be processed in a different cluster. For

A Hybrid Algorithm For Moldable Jobs Scheduling in
Heterogeneous Multi-Cluster System

Navroop Kaur1, Amit Chhabra2, Nancy3, Bhuvnesh Kumar4

 Department of Computer Science and Engineering
Guru Nanak Dev University, Amritsar (Punjab), India.

Email: 1navonline@yahoo.co.in
2chabbra_amit78@yahoo.com

3nancy.k1307034@yahoo.co.in
4bhunesh.gsp@gmail.com

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.3, Pages : 13-17 (2013)
Special Issue of ICCSIE 2013 - Held during 24 May, 2013 Bangalore, India

14

ISSN 2278-3091

example, suppose that a job is waiting in a cluster’s ready
queue. This job may require more nodes than are presently
available on its particular cluster, but collectively there may
be enough available nodes elsewhere in the multi-cluster to
accommodate the job. Co-allocation allows jobs to be mapped
across cluster boundaries. In doing so, resource
fragmentation is reduced and system utilization is increased.

Bucur and Epema [2] studied the effect of system
configurations on performance of co-allocation. Their
observations show that in addition to the scheduling
techniques, architectural and placement considerations also
improve the performance of co-allocation.

Fig 1: Scheduling without co-allocation

Fig 2: Scheduling with co-allocation

Jones [11] used the multi-cluster system at Clemson
University in his research. He observed that inter-cluster
communication pose challenges for co-allocation. But with
good techniques such as in [6] and [11] the effect of
communication can be minimized

John Ngubiri [12][13] evaluated the performance of
co-allocation in multi-cluster system and observed that (i)
co-allocation is viable if the execution time penalty caused is
low; (ii) due to possible heterogeneous communication
pattern, co-allocation may not be as viable.

The work by Bucur et al. is focused in scheduling rigid jobs
in a multi-cluster system. Huang [10], in his work, used
moldable property of parallel jobs for scheduling in a grid.
Multi-cluster systems may be looked at as a small version of
the conventional grid. Multi-clusters are smaller in size than
a grid and the clusters in multi-cluster systems are connected
by a more reliable and dedicated backbone other than the
Internet in the conventional grid. So the techniques of grid
can be easily applied on multi-cluster systems.

England and Weissman [5] analyzed the costs and benefits
of load sharing of parallel jobs in both homogeneous and

heterogeneous grids. The heterogeneous grid differs only in
capacity and workload characteristics and not in the
computing speeds at different sites. Huang and Chang [8]
showed that the best site selection policy for such a
heterogeneous grid is best-fit. In this policy a particular site
is chosen on which a job will leave the least number of free
processors if it is allocated to that site.

Later, Huang [9][10] studied the load sharing policies in a
heterogeneous grid in which nodes on different sites may
have different computing speeds but the nodes on same site
have same speed. In this paper, Huang developed adaptive
processor allocation policies based on the moldable property
of parallel jobs for heterogeneous computational grids.

This paper is focused on the heterogeneous multi-cluster
system that not only differs in the computing speed at
different sites but also in the computing speed and number of
processors at the same site.

PROPOSED POLICY

Multi-Cluster Model
In the model, the multi-cluster system consists of several

independent clusters (sites). Each participating site is a
heterogeneous parallel computer. Each site is heterogeneous
in the sense that the number of processors as well as the
computing speed of each processor may vary. The nodes
(processors) are linked together using fast interconnection
network that do not favour any communication pattern [7].
This means a parallel job can be allocated on any subset of
nodes in a site. The parallel computer system uses
space-sharing and run the jobs in an exclusive fashion. The
system deals with an on-line scheduling problem without any
knowledge of future job submissions.

Fig 3: Multi-cluster System

The processors in the system are rated in terms of Basic
Processor Unit (BPU) [4] to take the processor heterogeneity
into consideration. The physical processor with the lowest
processing capacity in the system is considered to represent 1
BPU. The ratings of other processors are expressed in terms
of BPUs. The system also maintains a table (called site_table
in the pseudo code). This table contains every site arranged in

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.3, Pages : 13-17 (2013)
Special Issue of ICCSIE 2013 - Held during 24 May, 2013 Bangalore, India

15

ISSN 2278-3091

the decreasing order of its computing speed. The computing
speed is calculated by taking the average number of
unallocated BPUs at each site. The table is updated after
every job allocation and job completion.

Scheduling Process
When a moldable job is submitted to the system, it is first

handled by local scheduler. If local site do not have enough
processing capacity, it sends the job to global scheduler. At
global scheduler, the scheduling is done in three phases: (i)
Job Selection, (ii) Site Selection, and (iii) Processor
Selection.
Algorithm Schedule_a_job

For each parallel job Ji to be scheduled do
Perform Job Selection using FCFS algorithm

Let xi be the number of BPUs needed by Ji

Perform Site Selection using site_select algorithm

For the selected site Sj do

 Processor Selection using
processor_select(Sj , Ji , xi) algorithm

End for

Reconstruct site_table using build_table algorithm

End for
For each job leaving the system do

Reconstruct site_table using build_table
End for

Fig 3: Schedule_a_job Algorithm

Algorithm site_select

 Read the first row of the table site_table

 Let Sj be the site in the first row of the table

 return(Sj)

Fig 4: Site_Select Algorithm

Algorithm processor_select(Sj , Ji , xi)

Partition the processors at Sj such that the partition size(in
terms of BPUs) >= xi

For all such partitions do

Choose a partition with partition size having least
difference from xi

If two or more partitions have the same size

Choose the partition with fewest
processors

End if

End for

Fig 5: processor_select Algorithm
Algorithm Build_table

//Let nj represent the number of unallocated BPUs at site Sj

For each job Ji leaving the system do

For the site Sj on which Ji was running using xi
BPUs do

nj = nj + xi

End for

For each job Ji allocated xi BPUs at site Sj do

nj = nj - xi

End for

Recalculate the average number of BPUs at Sj

Arrange the entries in the site_table in non-increasing
order of the average BPUs.

Fig 6: Build_table Algorithm

When a job is submitted to the local site, it is directed to the
global scheduler and is added to the end of the queue at global
scheduler. Job Selection policy selects the job from the queue
to be sent for scheduling. Initially, we assume that the
selection is done using the fairest policy i.e. First Come First
Serve (FCFS) Policy.

During the second phase, the site is to be selected on which
the job must be run. The fastest-first policy is assumed for
site-selection. According to this policy, the site with fastest
computing power is selected for computation. The computing
power is calculated in terms of average unallocated BPUs at
each site. Thus, the first site in the table site_table is selected
for execution of the current job. If no single site has enough
computing power then job is coallocated.

When the job and the site has been selected, the next step is to
select the appropriate processors at the selected site. The
processors are partitioned at the selected site in such a way
that the partition size (in terms of BPUs) is nearly equal to the
demanded computing power (in terms of BPUs). This
corresponds to best-fit policy. If two or more partitions have
same size then choose the partition with fewest number of
processors (fastest-first policy). Thus, the processor selection
uses best-fit with fastest-first policy.

PERFORMANCE EVALUATION
The performance of an algorithm depends on the nature of
jobs arriving and on the policy used to schedule an algorithm.
Various parameters are used to evaluate the performance
using various workloads.

Workload Characteristics
Jobs can arrive in a system in various fashions. To simulate
the job arrivals various job arrival distributions can be used.
The various job arrival distributions are exponential
distribution, poisson distribution and hyperexponential
distribution.
While simulating our algorithm, we are using hyper
exponential distributions for both job arrival time and service
times. The simulation is to be done using various workloads
depending upon different Arrival Rate, Cofficient of
Variation (CV) of Inter-Arrival times and Coefficient of
Variation of Service times and service rates.

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.3, Pages : 13-17 (2013)
Special Issue of ICCSIE 2013 - Held during 24 May, 2013 Bangalore, India

16

ISSN 2278-3091

Performance Parameters
The performance of algorithms is usually measured using
performance evaluation parameters such as mean response
time, average utilization, average waiting time, etc.
In our simulation, we use two main parameters viz. mean
response time and mean waiting time of the arriving jobs.

Performance Comparison
This section present the simulation results of the
experiments.

Fig 7: Performance Sensitivity of Mean Response Time and Mean Waiting
Time to Service Rate

Fig 8: Performance Sensitivity of Mean Response Time and Mean Waiting
Time to Arrival Rate

Fig 9: Performance Sensitivity of Mean Response Time and Mean Waiting
Time to Arrival CV

The results show the performance sensitivity of various
performance evaluation parameters towards job arrival
process and job service times.

The results show that the mean response time is very
sensitive to the variation of service rate and coefficient of
variation of inter-service times. The mean response time
reduces with the increase in service rate and service CV.
While the waiting time depends on the policy used for
scheduling more than the arrival and service rates. The
simulation results show that the mean waiting time of the
incoming jobs is very low. This will further increase the
service rate of the incoming jobs.
The proposed policy suggests that a job can be allocated
variable number of BPUs for its execution. The number of
BPUs to be allocated to the job is calculated at run time and
thus, making this policy highly suitable for moldable jobs in a
multicluster system.

Fig 10: Performance Sensitivity of Mean Response Time and Mean Waiting
Time to Service CV

CONCLUSION
We have proposed a new policy for scheduling moldable

jobs in a multi-cluster system. This policy takes into
consideration the resource heterogeneity of a multi-cluster
system. The heterogeneity of the system is considered both
within and among the clusters in terms of computing speed
and number of processors. The performance evaluation of
proposed policy shows that it considerably reduces the mean
waiting time of the incoming jobs. The mean response is also
reduced at higher values of service rates.

REFERENCES
(Periodical style)
[1] K.C. Huang, P.C. Shih, Y.C. Chung,” Effective Processor Allocation for

Moldable Jobs with Application Speedup Model. Smart Innovation”,
Systems and Technologies Volume 21, pp 563-572, 2013.

[2] A.I.D. Bucur, D.H.J. Epema, “An Evaluation of Processor Co-Allocation
for Different System Configurations and Job Structures”, In Proceedings
of the 14th Symposium on Computer Architecture and High
Performance Computing, 195– 203, 2002.

[3] A.I.D. Bucur, “Performance analysis of processor co-allocation in
multicluster systems”, PhD Thesis, Delft University of Technology,
Delft, The Netherlands, 2004.

[4] S.P. Dandamudi, Z. Zhou, “Performance of adaptive space-sharing
policies in dedicated heterogeneous cluster systems”, Centre for Parallel
and Distributed Computing, School of Computer Science, Carleton
University, Ottawa, Ont., Canada K1S 5B6. Future Generation Computer
Systems, 895-906. DOI = 10.1016/j.future, 2004.

[5] D. England, J. B. Weissman, “Costs and Benefits of Load Sharing in the
Computational Grid”, In Job Scheduling Strategies for Parallel
Processing, 160-175, 2005..

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.3, Pages : 13-17 (2013)
Special Issue of ICCSIE 2013 - Held during 24 May, 2013 Bangalore, India

17

ISSN 2278-3091

[6] D.H.J. Epema, O.O. Sonmez, H. Mohamed, “On the Benefit of Processor
Coallocation in Multicluster Grid Systems”, IEEE transactions on
parallel and distributed systems, vol. 21, no. 6 (June 2010), 778-789,
2010.

[7] D. Feitelson, L. Rudolph, “Parallel job scheduling: Issues and
approaches”, In Job Scheduling Strategies for Parallel Processing,
1-18, 1995.

[8] K.-C. Huang, H.-Y. Chang, “An Integrated Processor Allocation and Job
Scheduling Approach to Workload Management on Computing Grid”, In
the Proceedings of the 2006 International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA’06), Las
Vegas, USA, 703-709, 2006.

[9] K.C. Huang, P.C. Shih, Y.C. Chung.” Towards feasible and effective load
sharing in a heterogeneous computational grid”, In the Proceedings of
the second international conference on Advances in grid and pervasive
computing, ed, 229-240, 2007.

[10] K.C. Huang, P.C. Shih, Y.C. Chung, “Adaptive Processor Allocation for
Moldable Jobs in Computational Grid”, At 10th International Journal of
Grid and High Performance Computing, 1(1), (March 2009), 10-21,
2009.

[11] W.L. Jones, “Improving Parallel Job Scheduling Performance In
Multi-Clusters Through Selective Job Co-Allocation”, A P.hd
Dissertation presented to the Graduate School of Clemson University,
December 2005.

[12] J. Ngubiri, V.Mario, “ Using the Greedy Approach to Schedule Jobs in a
Multi-cluster System”, In Proceeding of the International Conference on
Parallel and Distributed Processing Techniques and Applications, 663 –
668, 2006.

[13] J. Ngubiri, V. Mario, “Group-wise Performance Evaluation of Processor
Co-allocation in Multi-cluster Systems”, In Proceedings of the 13th
Workshop on Job Scheduling Strategies for Parallel Processing, 24 –
36, 2007.

