
 International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.4, Pages : 66-71 (2014)
 Special Issue of ICCEIT 2014 - Held on September 01, 2014 in The Solitaire Hotel, Bangalore, India

66

ISSN 2278-3091

Overcoming TCP Incast with LTTP in Many to One
Communications

Jeenu Alexander
Department of Computer Science
KMEA Engineering College
Ernakulam , Kerala, India
jeenalex@gmail.com

Joish George
Department of Computer Science
KMEA Engineering College
Ernakulam,Kerala,India

Abstract—The Transmission Control Protocol (TCP) is one of
the core transport layer protocols which ensures reliable data
delivery. In many to one communications there arise a
problem known as TCP Incast which is actually a drop in
throughput. This arises due to the overflow of output buffer of
switch and TCP’s Retransmission Timeout. Earlier solutions
included controlling switch buffer or updating OS/hardware
.In this work we improve the UDP-based transmission with
FEC and CRC. Through ns2 based simulations we can observe
that the newly designed protocol will not degrade the
throughput in many to one communications when the number
of servers are increased. LTTP when compared with DCTCP,
performs better in maintaining overall goodput of the many to
one communications.

IndexTerms—TCP Incast, reliable, bandwidth, goodput

INTRODUCTION
The Transmission Control Protocol (TCP) is one of the core

protocols of the Internet protocol suite (IP), and is so common
that the entire suite is often called TCP/IP.TCP is known for its
reliable data delivery, congestion control and error flow
control. TCP entertains connection oriented communications.
Cloud computing realizes the dream of “computing as a
utility”. People outsource their computing and software
capabilities to cloud providers and pay for the service usage on
demand[1].Cloud data centers run both online services and
back-end computations. Since most distributed computations in
data centers are bandwidth-hungry they propose to increase
network capacity. They thus require congestion free reliable
data transmission.

As for data transmission between servers, TCP is widely

used in today’s data center networks, since it has been proven a
great success in the Internet for both reliable delivery and
congestion control. However, the specific application pattern
and network environment in data centers pose new challenges
to TCP to work smoothly. In such conditions a problem called

TCP Incast arises, this is mainly due to the drop in the overall
throughput of the communication. The actual condition here is
that a client sends requests to multiple servers and wait to get
reply from each of them The client waits indefinitely until it
gets all the requested blocks from the servers to which it had
send requests .The client will never more send requests until it
has attained all the requested ones. [1]TCP Incast causes
goodput collapse for two reasons. Firstly, when servers
simultaneously send response packets back to the client, the
response packets will overflow the output buffer of the switch
which directly connects the client. Secondly, the default value
of TCP’s Retransmission Timeout (RTO) is 200 milliseconds
in most operating systems. It means that once a timeout occurs,
the TCP connections will be idle for quite a long time period
before the servers retransmit the dropped packets, since the
RTT (Round-Trip Time) is only hundreds of microseconds in
data center networks. After the retransmission timer timeouts,
the servers will again simultaneously send the response
packets, which causes switch buffer overflow and
retransmission for a new round, so and so forth.[1]

The goodput degradation in many-to-one communications

will significantly delay the task finish time of distributed
computations, which is further translated to the violation of
SLA. Since the root cause for TCP Incast is the shallow buffer
in switches as well as the mismatch between RTO and
RTT.TCP incast has risen to be a critical problem recently in
data center networks due to its catastrophic goodput collapse.
In incast communication pattern, multiple servers concurrently
transmit data blocks to a single client and any server can not
send another data block until all the servers finish transmitting
the current data block. When the number of server increases,
the goodput of the receiver will become lower than the capacity
of the bottleneck link in one or even two orders of magnitudes.
The incast communication pattern exists in many popular
applications.

 International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.4, Pages : 66-71 (2014)
 Special Issue of ICCEIT 2014 - Held on September 01, 2014 in The Solitaire Hotel, Bangalore, India

67

ISSN 2278-3091

To avoid the performance deterioration of TCP incast, lots
of attempts have been made to find the causes of TCP
incastand the methods to solve it.TCPincast problem attracts
increasing attention since the client suffers drastic goodput
drop when it simultaneously strips data over multiple servers.
Lots of attempts have been made to address the problem
through experiments and simulations, few solutions can solve it
fundamentally at low cost.

TCP incast has risen to be a critical problem recently in

data center networks due to its catastrophic goodput collapse.
In incast communication pattern, multiple servers concurrently
transmit data blocks to a single client and any server can not
send another data block until all the servers finish transmitting
the current data block. When the number of server increases,
the goodput of the receiver will become lower than the capacity
of the bottleneck link in one or even two orders of magnitudes.
The incast communication pattern exists in many popular
applications. To avoid the performance deterioration of TCP
incast, lots of attempts have been made to find the causes of
TCP incast and the methods to solve it. TCP incast problem
attracts increasing attention since the client suffers drastic
goodput drop when it simultaneously strips data over multiple
servers. Lots of attempts have been made to address the
problem through experiments and simulations. However, to the
best of our knowledge, few solutions can solve it
fundamentally at low cost.

We propose a new transport protocol to support many-to-

one communications in data centers, which is called LTTP
(LT-code based Transport Protocol). Since TCP’s timeout is
the root cause of low link utilization and goodput deterioration
in TCP Incast, LTTP improves UDP-based LT (Luby
Transform) code [12] for reliable delivery, which depends on
FEC (Forward Error Correction) [13] with data redundancy.
Since UDP cannot fairly share bandwidth with other protocols
(such as TCP),TFRC (TCP Friendly Rate Control) [14] is also
applied to adjust the data sending rates at servers for
congestion control.

The intuition behind LTTP’s design is that the rate-based

congestion control scheme of TFRC ensures that the sender can
still send data at an appropriate rate even in face of congestion,
instead of stopping sending data for a relatively long time. In
addition, LT code can restore the original data without
requesting for retransmission as long as the number of packet
losses/errors falls into a reasonable range. Each of the two
schemes is used to overcome the other’s limitations: TFRC
maintains reasonable bandwidth utilization, while UDP based
LT code ensures reliable data delivery[1].

Using ns2 simulations, we can show that LTTP can

maintain high goodput for many to one communications in
different topologies, no matter what the number of servers is.
Our improvement on the decoding algorithm of LT code
effectively improves the goodput of LTTP, and controls the
bandwidth overhead of LT-code.

MOTIVATION
In this work, we mainly concentrate on achieving a reliable

UDP-based protocol though we know that UDP is
unreliable.Through the designing of such a system we get a
goodput guaranteed in many to one communications also in
case where number of servers are increased.

The TCP Incast problem [1] which is actually a drop in the

overall goodput or a goodput collapse is overcome in the
design to support any increase in number of servers.However,
because many-to-one communication is common in both
online services and back-end computations, LTTP shows its
great promise, especially when the number of servers is
large.Thus as per the proposed system a throughput oriented
reliable protocol for many to one communications is to be
obtained.

PRIORWORKS
In past years there have been many solutions to the TCP

Incast problem mainly ICTCP and DCTCP ,others are FQCN
[9] and AF-QCN [10].In ICTCP,TCP incast is studied in detail
by focusing on the relationship among TCP throughput, round
trip time (RTT) and receive window. The idea was to design
an ICTCP (Incast congestion Control for TCP) scheme at the
receiver side. In particular, the method adjusts TCP receive
window proactively before packet drops occur. The
implementation and experiments in the testbed demonstrated
that zero timeout and high goodput for TCP incast was
achieved. The implementation and evaluation of ICTCP, was
to improve TCP performance for TCP incast in data center
networks. Main focus was on receiver based congestion
control algorithm to prevent packet loss. ICTCP adaptively
adjusts TCP receive window based on the ratio of difference
of achieved and expected per connection throughputs over
expected ones, as well as the last-hop available bandwidth to
the receiver. A light-weighted, high performance Window
NDIS filter driver was made to implement ICTCP. Compared
with directly implementing ICTCP as part of the TCP stack,
the driver implementation can directly support virtual
machines, which prevail in data centers. ICTCP was effective
to avoid congestion by achieving almost zero timeout for TCP
incast, and it provides high performance and fairness among
competing flows.

DCTCP, a TCP-like protocol for data center networks was

designed. DCTCP leverages Explicit Congestion Notification
(ECN) in the network to provide multi-bit feedback to the end
hosts.ECN allows end-to-end notification of network
congestion without dropping packets. ECN is an optional
feature that is only used when both endpoints support it and
are willing to use it. It is only effective when supported by the
underlying network.DCTCP delivers the same or better
throughput than TCP, while using much lesser buffer space.
Unlike TCP, DCTCP also provides high burst tolerance and
low latency for short flows. A new variant of TCP, called Data
Center TCP (DCTCP) was designed. The work was motivated

 International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.4, Pages : 66-71 (2014)
 Special Issue of ICCEIT 2014 - Held on September 01, 2014 in The Solitaire Hotel, Bangalore, India

68

ISSN 2278-3091

by detailed traffic measurements from a thousands of server
data center cluster, runningproduction soft real time
applications. Several performance impairments were noticed,
and linked these to the behavior of the commodity switches
used in the cluster. It was found that to meet the needs of the
observed diverse mix of short and long flows, switch buffer
occupancies need to be persistently low, while maintaining
high throughput for the long flows. DCTCP met these needs.
DCTCP relies on Explicit Congestion Notification (ECN), a
feature now available on commodity switches. DCTCP
succeeds through use of the multi-bit feedback derived from
the series of ECN marks, allowing it to react early to
congestion.

Quantized Congestion Notification (QCN) was been

developed for IEEE 802.1Qau to provide congestion control at
the Ethernet Layer or Layer 2 in data center networks (DCNs)
by the IEEE Data Center Bridging Task Group. One drawback
of QCN is the rate unfairness of different flows when sharing
one bottleneck link. In FQCN, an enhanced QCN congestion
notification algorithm, called fair QCN (FQCN), to improve
rate allocation fairness of multiple flows sharing one
bottleneck link in DCNs was proposed. FQCN identifies
congestion culprits through joint queue and per flow
monitoring, feedbacks individual congestion information to
each culprit through multi-casting, and ensures convergence to
statistical fairness. The stability and fairness of FQCN via
Lyapunov functions was measured and the performance of
FQCN was evaluated through simulations in terms of the
queue length stability, link throughput and rate allocations to
traffic flows with different traffic dynamics under three
network topologies. Simulation results confirmed the rate
allocation unfairness of QCN, and validate that FQCN
maintains the queue length stability, successfully allocates the
fair share rate to each traffic source sharing the link capacity,
and enhances TCP throughput performance in the TCP Incast
setting.

The QCN(Quantized Congestion Notification) algorithm

was designed to be stable, responsive, and simple to
implement. However, it does not provide weighted fairness,
where the weights can be set by the operator on a per-flow or
per-class basis. Such a feature can be very useful in multi-
tenanted Cloud Computing and Data Center environments.
AFQCN addresses this issue. Specifically, we develop an
algorithm, called AF-QCN (for Approximately Fair QCN),
which ensures a faster convergence to fairness than QCN,
maintains this fairness at fine-grained time scales, and
provides programmable weighted fair bandwidth shares to
flows/flow-classes. It combines the QCN algorithm ,and the
AFD algorithm. AF-QCN requires no modifications to a QCN
source (Reaction Point) and introduces a very light-weight
addition to a QCN capable switch (Congestion Point). The
results obtained through simulations show that AF-QCN
retains the good congestion management performance of QCN
while achieving rapid and programmable (approximate)
weighted fairness.

AF-QCN, an algorithm that adds a programmable

bandwidth partitioning component based on AFD to the QCN
Congestion Point mechanism. No changes are needed at a
QCN Reaction Point.AF-QCN achieves weighted fairness at
the granularity of a few milliseconds. This enables Data
Center operators to provide programmable differential
bandwidth allocation for flows or flow classes, a feature very
useful in multi-tenanted Cloud Computing and Data Center
environments. The results obtained via simulations and a
hardware implementation showthat AF-QCN retains the good
properties of QCN (stability ,responsiveness, and simplicity),
while achieving rapid and programmable bandwidth
partitioning.

SYSTEM MODEL

Every ns2 based project starts with the normal wireless or

wired procedure. Here we design a wired many to one
communication. A simulation environment of 10-11 nodes
which are wired is created.T he system starts with designing a
network topology of the described kind as depicted in Figure1.

Fig 1: TCP Incastsetup[1]

The nodes are created and the duplex connections are made

between the nodes. The corresponding agents are attached and
the flows id’s are also given.The complete framework of LTTP
to support many-to-one communication in data centers includes
two parts, i.e., the data channel from each server to the client,
and the control channel between the client and each server. In
the data channel, we improve LT code for reliable data
transport, and adopt TFRC for controlling the traffic sending
rate at servers. The control channel is employed by the client to
issue data requests to servers and send terminating signals to
the servers as soon as the requested da ta have been restored.

The servers also use the control channel to send decoding

parameters to the client. The decoding parameters include the
original data size and block size, which are used by the client
to execute the decoding process. For the control channel
messages, the data size is small enough to be put into a single
packet. Hence, it is unnecessary to employ coding for
transmission. Instead, we establish a TCP connection for each

 International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.4, Pages : 66-71 (2014)
 Special Issue of ICCEIT 2014 - Held on September 01, 2014 in The Solitaire Hotel, Bangalore, India

69

ISSN 2278-3091

client-server pair to deliver the control channel messages
reliably.[1] The workflow in LTTP is described as follows.
First, the client establishes control channels (TCP connections)
to all the servers. Second, the client sends requests to all the
servers simultaneously through the control channel, asking the
servers to start sending the data. Third, once receiving the
request, the servers use control channel to send the decoding
parameters back to the client. Meanwhile, each server starts to
employ LT code to produce and send encoding packets
continually.

 TFRC is used by both servers and the client to control the

sending rate. Finally, as soon as the original data is
successfully restored, the client sends a terminating signal
through control channel back to the corresponding server,
which informs the server to stop encoding.

When all senders adopt digital fountain based protocols

and act as selfish players to inject data in network as fast as
they can, a Nash equilibrium can be reached eventually. At this
equilibrium state, the throughput of each flow is similar to that
when all the senders use TCP. However, in typical many-to-
one communication pattern when TCP Incast occurs, the
transferred data volume is very small, and it is of high
probability that the Nash equilibrium cannot be reached before
all the data have been transferred. So we still have to spend
extra efforts to deal with congestion control in LTTP.

In our implementation, the upper applications on both the

server side and the client side are responsible for making
decisions that when to send data and which channel to be used.
For example, when the application on the server side receives a
request, it calls the interface of LTTP to send decoding
parameters back to the client through control channel. Next, the
server starts the encoding process to generate encoding data
and calls the interface of LTTP to transport the encoding data
to the client side through data channel. The application on the
client side calls the interface of LTTP to receive encoding data
and restore the original data. Once the original data is
successfully restored, the application invokes the LTTP to send
the terminating signal to the server through the control channel.

The complete framework of LTTP to support many-to-one

communication in data centers includes two parts, i.e., the data
channel from each server to the client, and the control channel
between the client and each server. In the data channel, we
improve LT code for reliable data transport, and adopt TFRC
for controlling the traffic sending rate at servers. The control
channel is employed by the client to issue data requests to
servers and send terminating signals to the servers as soon as
the requested data have been restored. The servers also use the
control channel to send decoding parameters to the client. The
decoding parameters include the original data size and block
size, which are used by the client to execute the decoding
process .

 For the control channel messages, the data size is small
enough to be put into a single packet. Hence, it is unnecessary

to employ coding for transmission. Instead, we establish a TCP
connection for each client-server pair to deliver the control
channel messages reliably.

Fig 2: Workflow of the protocol [1]

The working of the simulation is similar to the UDP

simulation but the number of packets reaching the destination
is much more than normal UDP. This simulation includes an
error correction method FEC(forward error correction).The
evaluation and comparisons can be made and can be inferred
that the throughput and end to end delay is much enhanced in
the developed scenario.

The UDP protocol when used along with a forward error

correcting code increased the overall output obtained but the
packet loss happening is high .So we employ the cyclic
redundancy check to control errors and packet loss. The cyclic
redundancy check, or CRC, is a technique for detecting errors
in digital data, but not for making corrections when errors are
detected. It is used primarily in data transmission. In the CRC
method, a certain number of check bits, often called a
checksum, are appended to the message being transmitted.

The receiver can determine whether or not the check bits

agree with the data, to ascertain with a certain degree of
probability whether or not an error occurred in transmission.
The technique is also sometimes applied to data storage
devices, such as a disk drive. In this situation each block on the
disk would have check bits, and the hardware might
automatically initiate a reread of the block when an error is
detected, or it might report the error to software. The material
that follows speaks in terms of a “sender” and a “receiver” of a
“message,” but it should be understood that it applies to storage
writing and reading as well.

 International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.4, Pages : 66-71 (2014)
 Special Issue of ICCEIT 2014 - Held on September 01, 2014 in The Solitaire Hotel, Bangalore, India

70

ISSN 2278-3091

 The Cyclic Redundancy Check is the most powerful of the
redundancy checking techniques , the CRC is based on binary
division. In CRC a sequence of redundant bits, called the CRC
or the CRC remainder is appended to the end of a data stream.
The resulting data becomes exactly divisible by a second,
predetermined binary number. At its destination, the incoming
data is divided by the same number. It protects the data with a
checksum or cyclic redundancy check.[14].

EVALUATION RESULTS

By using ns2 simulations we evaluate the performance of the
developed protocol.The client is connected to many servers
through a single switch.The client sends requests to multiple
servers.The parameters used in the project are throughput
calculation ,the end to end delay and the packet drops are also
calculated.

 Table1 shows the different parameters that are being
compared when different protocols are taken into account. The
protocol which uses Forward Error Correction has more packet
loss than compared with the Cyclic redundancy check. The
throughput acquired by using LTTP with CRC is considerably
high.

Protocol Throughput
End to

end
delay

Packet
drop

TCP 677.2 KB 38.211

ms 156

UDP 3018 KB 31.68 ms 11228
LTTP with

FEC 3043.8 KB 34.3186
ms 30130

LTTP with
CRC 3052 KB 37.9703

ms 23502

Table 1 . Comparison Table

The graph has been plotted for the packet loss happening
against time. The packet drop in LTTP using the CRC method.
The x-axis shows the passage of time and the y-axis shows the
number of packet dropped at each period of time

Fig 3 . Graph plotted to compare the protocols

CONCLUSION

Throughput collapse is a severe problem faced in data centers
in many to one communications. In this paper the LTTP
protocol is developed additionally employing CRC and FEC
[14].Through ns2 based simulations the average throughput is
increased by overcoming the problem of TCP Incast. The
packet loss at the same time can be observed.

REFERENCES

[1]Changlin Jiang, Dan Li, Member, IEEE, and

MingweiXu, Member, IEEE, “LTTP: An LT-code based
Transport Protocol for Many-to-One Communication in Data
Centers”.2014

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P.
Patel, B. Prabhakar,S. Sengupta, and M. Sridharan, “Data
center TCP (DCTCP),” in Proceedings of the ACM
SIGCOMM 2010, New York, NY, USA, 2010,pp. 63–74.

[3] S. Ghemawat, H. Gobioff, and S.-T.Leung, “The google
file system,”in Proceedings of SOSP ’03, New York, NY,
USA, 2003, pp. 29–43.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” in Proceedings
of the ACM SIGCOMM 2008, New York, NY, USA, 2008,
pp. 63–74.

[5] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C.
Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a
scalable and flexible data center network,” in Proceedings of
the ACM SIGCOMM 2009, New

York, NY, USA, 2009, pp. 51–62.
[6] D. Nagle, D. Serenyi, and A. Matthews, “The panasas

ActiveScale storage cluster: Delivering scalable high

 International Journal of Advanced Trends in Computer Science and Engineering, Vol.3 , No.4, Pages : 66-71 (2014)
 Special Issue of ICCEIT 2014 - Held on September 01, 2014 in The Solitaire Hotel, Bangalore, India

71

ISSN 2278-3091

bandwidth storage,” in Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, Washington, DC, USA, 2004,
pp. 53–62.

[7] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D.
G. Andersen, G. R. Ganger, G. A. Gibson, and B. Mueller,
“Safe and effective

fine-grained TCP retransmissions for datacenter
communication,” in Proceedings of SIGCOMM ’09, 2009, pp.
303–314.

[8] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: incast
congestion control for TCP in data center networks,” in
Proceedings of the Co-NEXT ’10, New York, NY, USA, 2010.

[9] Z. Yan and N. Ansari, “On mitigating tcpincast in data
center networks,”in Proceedings of the IEEE INFOCOM 2011,
Apr. 2011, pp. 51–55.

[10] A. Kabbani, M. Alizadeh, M. Yasuda, R. Pan, and B.
Prabhakar, “Afqcn: Approximate fairness with quantized
congestion notification for multi-tenanted data centers,” in
IEEE 18th Annual Symposium on High Performance
Interconnects (HOTI), 2010, pp. 58–65.
[11] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP incast throughput collapse in datacenter
networks,” in Proceedings of the WREN ’09, New York, NY,
USA, 2009, pp. 73–82

