
 International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages :54-58 (2013)
 Special Issue of ICCECT 2013 - Held during September 20, 2013, Bangalore, India

54

 ISSN 2278 - 3091

Bloom Vector Join for Sensor Query Processing
G. M. Sridevi, T. V. Rohini, K. Kameswari and M. V. Ramakrishna

mvrama@yahoo.com
Department of ISE, SJB Institute of Technology

Kengeri, Bangalore 560 060

Abstract—Sensors are low-cost devices which sense and

disseminate information about the environment around
them. A set of such nodes which can communicate by radio
transmission form a sensor network, which communicates
with the outside world through a sink node. In view of
their low cost and adhoc nature of deployment, sensor
nodes have computational constraints and limited power
supply. Each node produces a stream of sensor data, all
of which may not be stored or used. The user poses
queries to the sensor network to obtain the necessary
information about the environment. The sensor responds
by transmitting the required data. Transmission is typically
energy consuming operation. The queries may require data
from more than one node, such as join of data produced
at two nodes. This paper deals with the specific problem
of efficient join processing using data from two nodes.
We investigate the use of Bloom vector to perform join
operation on data streams produced at two nodes, so as
to minimize the number of bytes transmitted. We propose
different methods applicable based on the accessibility of
the nodes and provide a cost analysis of the methods.
Our results indicate that the proposed method gives a
significant improvement when compared to the traditional
method for normal values of join selectivity.

Keywords—Bloom Vector, Data Streams

INTRODUCTI ON

Sensors are devices that measure a physical quantity
such as temperature and give a corresponding electri-
cal signal. The sensor nodes communicate by wireless
transmission. Sensor nodes are constrained in battery
power, memory and processing capacities. The sensor
nodes collect unbounded continuous data stream of val-
ues. The sensors are connected to the outside world
through a Link node. The data collected by the sensors
are requested by users using queries. The queries may
originate from one of the nodes or from external sources
and the nodes respond by sending relevant data. Certain
blocking operations such as sort and symmetric join are
not allowed over such streams unless the user specifies
a bounded subset of stream or window [1], [2]. This
paper deals with the issue of computing join efficiently

between data of two different nodes. We propose the
use of bloom vector in order to reduce the amount of
data transmitted [3]. A Bloom filter is a space-efficient
probabilistic data structure that is used to test whether
an element is a member of a set or not.

The rest of the paper is organized as follows. In
the next section we give a brief description on sensor
applications and use of bloom vector. The proposed
method is presented in section 3. Section 4 provides
comparision of the cost analysis between the traditional
and proposed method. Conclusions and future work are
presented in section 5.

BACKG ROUND

Sensor networks have a variety of applications. Exam-
ples include environmental monitoring (air, soil and wa-
ter, tsunami), habitat monitoring (determining the plant
and animal species population and behavior), seismic de-
tection, military surveillance, inventory tracking etc [4].
In many of these applications, data is produced continu-
ously and hence it is called “data stream”. It is obviously
not practical to store all the data produced. Storing and
querying data streams pose a serious challenge for data
management systems as traditional DBMS paradigm of
set-oriented processing of disk-resident tuples does not
apply. Join is an important operation in a data stream
processing system [5]. Kang and Viglas described a
“Moving Window Join” which run continuously and
produce new results as new tuples arrive [6], [7], [8],
[9]. Let R and S be two data streams that contain a
join attribute ’A’ and ’B’. The Equi-Join of R and S
is the subset of the cross product of the two streams
that contains exactly those pairs of tuples(r, s) such that
r ∈ R and s ∈ S and r.A=s.B [10].

Processing a join over unbounded input streams re-
quires unbounded memory, since every tuple in one
infinite stream must be compared with every tuple in
other. This is not practical in a sensor network due to
limited memory and processing capabilities. Join queries
for sensor data should contain “window predicates” that

 International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages :54-58 (2013)
 Special Issue of ICCECT 2013 - Held during September 20, 2013, Bangalore, India

55

 ISSN 2278 - 3091

TABLE 1
HASH VALUES FOR KEYS X, Y, Z

Key h1(key) h2(key) h3(key)

x 1 5 13
y 4 11 16
z 3 5 11

Fig. 1. Example for Sensor Network

restrict the number of tuples that must be stored for each
stream [6]. For the above example, we might specify that
we are only interested in R tuples that have arrived in last
t1 seconds and S tuples that have arrived in the last t2

seconds. We next describe bloom vector and its use [11].

Bloom Filter
A Bloom filter is a space-efficient probabilistic data

structure that is used to test whether a given element
is a member of a set [12], [13], [14]. False positive
retrieval results are possible, but false negatives are not;
i.e a query returns either “inside set (may be wrong)”
or “definitely not in set”. Elements can be added to the
set, but not removed. For a given vector size, as more
elements are added to the set, the probability of false
positives increases.

To start with, the Bloom filter is a bit array of m bits,
all set to 0. There are k different hash functions, each
of which maps or hashes a set element to one of the m
array positions with a uniform random distribution. To
add an element x, we compute h1(x), h2(x), ... hk (x)
and set the corresponding bit positions to 1. To query
if y is present, we compute h1(y), h2(y), ... hk (y) and
check to see if the bit is set. If any of the bits at these k
positions happens to be 0, then the element is definitely
not in the set. If all are 1 then y is in the set with a very
high probability.

Fig 1 shows an example of a Bloom filter, repre-
senting the set x, y, z. The table 1 shows the positions
in the bit array that each element is mapped to. For this
figure, m = 18 and k = 3 where m is bloom vector size
and k is number of hash functions. For example consider
the element w, which hashes to 4, 13 and 15. As the bit
at address 15 is 0, we can conclude that the element w
does not belong to the set. For an element v , suppose
the hash values are 3, 5 and 11. All the bit positions are

Fig. 2. Problem Scenario

1 and we will falsely conclude that v belongs to the set.
It is called a false positive If all are 1, then either the
element is in the set, or the bits have by chance been set
to 1 during the insertion of other elements, resulting in
a false positive.

BLOOM VECTOR JOIN

The scenario we consider is as follows. One of the
nodes is the base station and is connected to the outside
world. All queries arrive at the base station from outside
world, although they could also originate from the other
nodes. The base station communicates the query to
the required sensor node. Depending on the query the
response may be one-time or periodic. For example, if
the query is “report current temperature”, we have one
response. If the query is “report average temperature
every hour on the hour”, the response will be one tuple
every hour. Specifically, we consider join queries. The
query involves join of the tuples being produced at node
R and node S. A and B are the join attributes in relation
R and S respectively, the join being on the condition
R.A=S.B. The result is required at node P as shown in
the Fig 2. Nodes R and S are able to communicate
with node P either directly or through other intermediate
nodes. P may be the base station. Nodes R and S may or
may not be able to communicate directly (that is within
the transmission range of each other).

A. Traditional Method
The query transmitted from node P to nodes R and

S, should specify that the join involves tuples that have
arrived at R in last t1 seconds and tuples that have arrived
at S in the last t2 seconds is requested. In response to
such a query, nodes R and S send all the relevant data
to node P. Node P computes the join. The join result is
sent to the requesting node. If there are 100 tuples each
of 50 bytes at both the nodes R and S. R and S have to

 International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages :54-58 (2013)
 Special Issue of ICCECT 2013 - Held during September 20, 2013, Bangalore, India

56

 ISSN 2278 - 3091

send 5000 bytes each of which are transmitted to node P.
Totally 10000 bytes need to be transmitted. The energy
consumed for data transmission is proportional to the
amount of data transmitted. If the join selectivity is low,
most of the tuples received at P will not participate in
the result and hence the transmission energy is wasted.
Our idea is to use the bloom vector technique to reduce
the amount of data transmitted, by selecting only the
relevant tuples for transmission.

B. Bloom Vector Join
Let us assume that there is no direct communication

between nodes R and S and all the communication takes
place through parent node P. Node R stores the data
arrived during the last t1 time interval and node S stores
the data that arrived during the last t2 time interval
due to memory limitations. We assume that the nodes
communicate about the hash functions beforehand. We
use 3 hash functions h1(key), h2(key) and h3(key).

• When a query arrives at node R, it generates the
bloom vector BVR by computing the 3 hash ad-
dresses for each element of the attribute ’A’ of each
tuple. The bloom vector size depends on the number
of tuples in the relation R. For m tuples, we suggest
a bloom vector of m bytes, i.e m � 8 bits. Thus, the
load factor will be 3/8 * 100 = 37.5% which is
adequate to give a very low false positive rate [11].

• The bloom vector BVR is sent to node P.
• Parent P forwards the bloom vector BVR to node

S.
At node S the same 3 hash functions h1(key),
h2(key) and h3(key) are used on the tuples in S,
by passing each element of attribute ’B’ as the key
to compute the addresses. For each key, we check
to see if the addresses generated from the hash
functions are set in the bloom vector of R. If all the
three positions in the bloom vector are set to 1 then,
we can conclude that the corresponding matching
key might be present at node R and the tuple in S
will be selected.
Bloom vector BVS is generated only for the se-
lected tuples at node S (Note: The bloom vector
size can be smaller depending on the number of
selected tuples in S).

• BVS and the selected tuples are forwarded from
node S to parent P, then to R.

• Node R matches its tuples with BVS similar to the
above.

• Node R sends the matching tuples to P.

Fig. 3. Bloom Vector BVR Generated by Node R

• P performs the Equi-Join of the tuples from nodes
R and S and forwards the result to the sink node.
Note that any false positive tuples are taken care of
automatically during the join operation.

We illustrate the above algorithm with a small example,
with relation R having 5 tuples with values of attribute
’A’ as 8, 13, 15, 20, 25. The relation S has 6 tuples
with values of attribute ’B’ as 5, 7, 8, 12, 15, 30. The
adequate bloom vector size for R would be 5*8=40 bit
positions. We use a bloom vector size of 19 bits only, to
keep the diagram small. Initially all the bits are set to 0.

We use the hash functions,

h1(x) = x mod 19
h2(x) = 3x mod 19
h3(x) = 5x mod 19

At node R, the hash values are computed for each
element of attribute A . The resulant hash positions for
the key 8 is h1(8)=8, h2(8)=5 and h3(8)=2. Then the bit
positions 8, 5 and 2 are set to 1 in the bloom vector BVR

. Similarly, R computes the hash functions on remaining
keys, i.e 13, 15, 20, 25 and the corresponding bits in
the bloom vector are set to 1. Fig 3 shows the bloom
vector after all bits have been set.

The bloom vector BVR generated at node R is for-
warded to node S through the parent node P. At node S,
the above hash functions are applied on attribute B for
the tuples in S and the resultant addresses are checked
with the bloom vector of R. If all the three hash values
are set to 1 in the bloom vector of R, then that tuple will
be selected. The value 8 generates hash address 8, 5, 2.
All the three values are matching with bloom vector of
R. Hence the corresponding tuple is selected. If any one
of the hash positions is 0 in the bloom vector, then that
tuple will not be selected.

There is a possibility of some false keys being se-
lected. Consider the key 5 in node S which hashes to
positions 5, 15, 6 which are all set in bloom vector BVR.
But the key 5 does not exist in set R. Therefore, this is
a false positive. But it does not cause any problem and
the only consequence is that an extra tuple is sent to
node P. For the selected tuples in S, bloom vector BVs

is generated and it is forwarded to R through P. Also the

 International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages :54-58 (2013)
 Special Issue of ICCECT 2013 - Held during September 20, 2013, Bangalore, India

57

 ISSN 2278 - 3091

selected tuples in S are sent to P. Similar comparision is
done in R to get the tuples from node R and then the
selected tuples are sent to node P. Node P now contains
all the matching tuples from R and S and P computes
the join between the selected tuples. False key tuples are
eliminated during the join operation in the parent P.

C. Bloom Vector Join with Direct communication
Consider the case when there is direct communication

between nodes R and S, i.e data and results can be
exchanged directly between R and S without going
through P. When the join query is sent from parent P
to nodes R and S, we compute the join as follows.

• R computes the bloom vector for the tuples using
attribute ’A’ and transmits it to node S.

• S uses the bloom vector received from R. It selects
the matching tuples by hashing the data in attribute
B(similar to indirect communication) and transmits
the tuples to P.

• S also sends a bloom vector(only for the selected
tuples in node S) to node R

• Node R selects the matching tuples using the re-
ceived bloom vector of S and attribute ’A’and sends
the matching tuples to P

• P computes the join using the tuples received from
R and S.

The same can be accomplished by sending the bloom
vector of S to R first.

We also considered the following alternative. R sends
its bloom vector to S and S computes the selected tuples
and transmits them to R. R then computes the join using
the tuples received for S and the join result is transmitted
to P. The cost with this method is marginally more than
the above method. Hence we will not elaborate further
on this method.

COST ANALYSIS

We provide a cost analysis of the different methods.
The number of bytes transmitted is the cost measure.
Power consumed is a direct funtion of the number of
bytes transmitted. We ignore the overheads of transmis-
sion such as preamble, etc in the packets and consider
the payload bytes only. We assume the bloom vector size
for node R as nr bytes(nr *8 bits).
We use the following notations

Number of tuples in Relation R = nr

Number of bytes in each tuple in R = br

Number of tuples in Relation S = ns

Number of bytes in each tuple in S = bs

Selectivity at node S, i.e the relative number of tuples
relevant for the join = σs

From among the ns tuples at S, nsσs tuples will be
participating in the join operation. Note that this assumes
ideal performance of the bloom vector and hence does
not consider the effect of the false positives. However,
this error due to false positives is insignificant.

A. Traditional Method
Number of bytes transferred in the straight forward

approach can be shown as follows,
Tuples from Node R to Node P : nr br

Tuples from Node S to node P : nsbs

Total Cost = nr br + nsbs

B. Bloom Vector Method with Indirect Communication
The number of bytes transferred for this scenario can

be shown as follows.
• Bloom Vector from Node R to Node P : nr (size of

the bloom vector of R)
• Bloom Vector from Node P to Node S : nr (size of

the bloom vector of R)
• Selected tuples from Node S to node P : bsnsσs

• Bloom Vector from Node S to Node P and from P
to R : 2nsσs (size of the bloom vector of selected
tuples of S)

• Selected tuples from Node R to node P : br nrσr

Join will be performed at P.
Total Cost = 2nr + bsnsσs + 2nsσs + br nrσr

C. Bloom Vector Method with Direct Communication
Let us consider the first scenario. The number of bytes

transferred for this scenario can be shown as follows
• Bloom Vector from Node R to Node S : nr (size of

the bloom vector of R)
• Selected tuples from Node S to node P : bsnsσs

• Bloom Vector of selected tuples in S to node R :
nsσs

• Selected tuples from Node R to node P : br nrσr

Total Cost = nr + bsnsσs + nsσs + br nrσr

To give us a clear picture of cost involved, we use
a numerical example. First we assume nr = ns =
100 tuples br = bs = 50 bytes The join selectivity factor
σ varies from 0.01 to 1. We have considered σr = σs

for this example. The results are shown in the Table
2 with nr = ns = 100 tuples, br = bs = 50 bytes.
We observe that the number of bytes transmitted is
reduced dramatically with Bloom Vector Method as
compared to traditional Join Method. Table 3 shows
the computed results with parameters differing between

 International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages :54-58 (2013)
 Special Issue of ICCECT 2013 - Held during September 20, 2013, Bangalore, India

58

 ISSN 2278 - 3091

J. Kang, J. F. Naughton, and S. D. Viglas, “Evaluating window
joins over unbounded streams,” in Data Engineering, 2003.
Proceedings. 19th International Conference on. IEEE, 2003,
pp. 341–352.
H.-S. Lim, J.-G. Lee, M.-J. Lee, K.-Y. Whang, and I.-Y. Song,
“Continuous query processing in data streams using duality of
data and queries,” in Proceedings of the 2006 ACM SIGMOD
international conference on Management of data. ACM, 2006,
pp. 313–324.
J. Krämer and B. Seeger, “Semantics and implementation of
continuous sliding window queries over data streams,” ACM
Transactions on Database Systems (TODS), vol. 34, no. 1, p. 4,
2009.
J. Teubner and R. Mueller, “How soccer players would do
stream joins,” in Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data. ACM, 2011,
pp. 625–636.
A. Das, J. Gehrke, and M. Riedewald, “Approximate join
processing over data streams,” in Proceedings of the 2003 ACM
SIGMOD international conference on Management of data.
ACM, 2003, pp. 40–51.
M. V. Ramakrishna, “Practical performance of bloom filters and
parallel free-text searching,” Commun. ACM, vol. 32, no. 10, pp.
1237–1239, Oct. 1989.
A. Kirsch and M. Mitzenmacher, “Less hashing, same perfor-
mance: building a better bloom filter,” in Algorithms–ESA 2006.
Springer, 2006, pp. 456–467.
P. Bose, H. Guo, E. Kranakis, A. Maheshwari, P. Morin,
J. Morrison, M. Smid, and Y. Tang, “On the false-positive rate of
bloom filters,” Information Processing Letters, vol. 108, no. 4,
pp. 210–213, 2008.
M. Zhong, P. Lu, K. Shen, and J. Seiferas, “Optimizing data
popularity conscious bloom filters,” in Proceedings of the
twenty-seventh ACM symposium on Principles of distributed
computing. ACM, 2008, pp. 355–364.

TABLE 2
NO.OF BYTES TRANSMITTED, nr = ns = 100, br = bs = 50

Selectivity Traditional Bloom Direct Bloom Indirect

0.01 10000 201 302
0.05 10000 650 710
0.1 10000 1110 1220
0.5 10000 5150 5300
1 10000 10200 10400

TABLE 3
NO.OF BYTES TRANSMITTED,

nr = 100, ns = 1000, br = 20, bs = 100

Selectivity Traditional Bloom Direct Bloom Indirect
0.01 102000 1130 1240
0.05 102000 5250 5400
0.1 102000 10400 10600
0.5 102000 51600 52200
1 102000 103100 104200

the two tables with nr = 100, ns = 1000, br = 20,
bs = 100. The benefit of bloom vector join is even
more significant in this case. For example, the number
of bytes transferred is only one percent of the
traditional join method when the selectivity is 0.01.

[14]
CONCLUSIONS

In this paper we addressed the issue of reducing data
transfer while processing join queries in wireless sensor
networks. We proposed a new method based on Bloom
vector, and provided an analysis of the approach in com-
parison to the traditional method. Based on the results
of the analysis, we conclude that for small values of join
selectivity, the Bloom vector based method reduces the
amount of data transfer quite significantly.

REFERENCES

[1] J. Gehrke and S. Madden, “Query processing in sensor net-
works,” Pervasive Computing, IEEE, vol. 3, no. 1, pp. 46–55,
2004.

[2] L. Golab, S. Garg, and M. T. Özsu, “On indexing sliding
windows over online data streams,” in Advances in Database
Technology-EDBT 2004. Springer, 2004, pp. 712–729.

[3] M. Mitzenmacher, “Compressed bloom filters,” IEEE/ACM
Transactions on Networking (TON), vol. 10, no. 5, pp. 604–
612, 2002.

[4] A. Bharathidasan and V. A. S. Ponduru, “Sensor networks: An
overview.”

[5] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs,
“Algorithms and metrics for processing multiple heterogeneous
continuous queries,” ACM Transactions on Database Systems
(TODS), vol. 33, no. 1, p. 5, 2008.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

