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Abstract—Sensors are low-cost devices which sense and 

disseminate information about the environment around 
them. A set of such nodes which can communicate by radio 
transmission form a sensor network, which communicates 
with the outside world through a sink node. In view of 
their low cost and adhoc nature of deployment, sensor 
nodes have computational constraints and limited power 
supply. Each node produces a stream of sensor data, all 
of which may not be stored or used. The user poses 
queries to the sensor network to obtain the necessary 
information about the environment. The sensor responds 
by transmitting the required data. Transmission is typically 
energy consuming operation. The queries may require data 
from more than one node, such as join of data produced 
at two nodes. This paper deals with the specific problem 
of efficient join processing using data from two nodes. 
We investigate the use of Bloom vector to perform join 
operation on data streams produced at two nodes, so as 
to minimize the number of bytes transmitted. We propose 
different methods applicable based on the accessibility of 
the nodes and provide a cost analysis of the methods. 
Our results indicate that the proposed method gives a 
significant improvement when compared to the traditional 
method for normal values of join selectivity. 
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INTRODUCTI ON 

Sensors are devices that measure a physical quantity 
such as temperature and give a corresponding electri- 
cal signal. The sensor nodes communicate by wireless 
transmission. Sensor nodes are constrained in battery 
power, memory and processing capacities. The sensor 
nodes collect unbounded continuous data stream of val- 
ues. The sensors are connected to the outside world 
through a Link node. The data collected by the sensors 
are requested by users using queries. The queries may 
originate from one of the nodes or from external sources 
and the nodes respond by sending relevant data. Certain 
blocking operations such as sort and symmetric join are 
not allowed over such streams unless the user specifies 
a bounded subset of stream or window [1], [2]. This 
paper deals with the issue of computing join efficiently

between data of two different nodes. We propose the 
use of bloom vector in order to reduce the amount of
data transmitted [3]. A Bloom filter is a space-efficient 
probabilistic data structure that is used to test whether
an element is a member of a set or not. 

The rest of the paper is organized as follows. In
the next section we give a brief description on sensor 
applications and use of bloom vector. The proposed
method is presented in section 3. Section 4 provides 
comparision of the cost analysis between the traditional
and proposed method. Conclusions and future work are
presented in section 5. 

BACKG ROUND 

Sensor networks have a variety of applications. Exam- 
ples include environmental monitoring (air, soil and wa- 
ter, tsunami), habitat monitoring (determining the plant
and animal species population and behavior), seismic de- 
tection, military surveillance, inventory tracking etc [4]. 
In many of these applications, data is produced continu- 
ously and hence it is called “data stream”. It is obviously 
not practical to store all the data produced. Storing and 
querying data streams pose a serious challenge for data
management systems as traditional DBMS paradigm of
set-oriented processing of disk-resident tuples does not
apply. Join is an important operation in a data stream 
processing system [5]. Kang and Viglas described a
“Moving Window Join” which run continuously and
produce new results as new tuples arrive [6], [7], [8],
[9]. Let R and S be two data streams that contain a 
join attribute ’A’ and ’B’. The Equi-Join of R and S 
is the subset of the cross product of the two streams
that contains exactly those pairs of tuples(r, s) such that
r ∈ R and s ∈ S and r.A=s.B [10]. 

Processing a join over unbounded input streams re-
quires unbounded memory, since every tuple in one
infinite stream must be compared with every tuple in
other. This is not practical in a sensor network due to 
limited memory and processing capabilities. Join queries 
for sensor data should contain “window predicates” that 
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TABLE 1 
HASH VALUES FOR KEYS X, Y, Z 

 
Key h1(key) h2(key) h3(key) 

x 1 5 13 
y 4 11 16 
z 3 5 11 

 
 
 
 
 
 
 

Fig. 1. Example for Sensor Network 
 
 
restrict the number of tuples that must be stored for each 
stream [6]. For the above example, we might specify that 
we are only interested in R tuples that have arrived in last 
t1 seconds and S tuples that have arrived in the last t2 

seconds. We next describe bloom vector and its use [11]. 

Bloom Filter 
A Bloom filter is a space-efficient probabilistic data 

structure that is used to test whether a given element 
is a member of a set [12], [13], [14]. False positive 
retrieval results are possible, but false negatives are not; 
i.e a query returns either “inside set (may be wrong)” 
or “definitely not in set”. Elements can be added to the 
set, but not removed. For a given vector size, as more 
elements are added to the set, the probability of false 
positives increases. 

To start with, the Bloom filter is a bit array of m bits, 
all set to 0. There are k different hash functions, each 
of which maps or hashes a set element to one of the m 
array positions with a uniform random distribution. To 
add an element x, we compute h1(x), h2(x), ... hk (x) 
and set the corresponding bit positions to 1. To query 
if y is present, we compute h1(y), h2(y), ... hk (y ) and 
check to see if the bit is set. If any of the bits at these k 
positions happens to be 0, then the element is definitely 
not in the set. If all are 1 then y is in the set with a very 
high probability. 

Fig 1 shows an example of a Bloom filter, repre- 
senting the set x, y, z. The table 1 shows the positions 
in the bit array that each element is mapped to. For this 
figure, m = 18 and k = 3 where m is bloom vector size 
and k is number of hash functions. For example consider 
the element w, which hashes to 4, 13 and 15. As the bit 
at address 15 is 0, we can conclude that the element w 
does not belong to the set. For an element v , suppose 
the hash values are 3, 5 and 11. All the bit positions are

Fig. 2. Problem Scenario 
 
 
 
1 and we will falsely conclude that v belongs to the set.
It is called a false positive If all are 1, then either the
element is in the set, or the bits have by chance been set
to 1 during the insertion of other elements, resulting in
a false positive. 

BLOOM VECTOR JOIN 

The scenario we consider is as follows. One of the
nodes is the base station and is connected to the outside
world. All queries arrive at the base station from outside 
world, although they could also originate from the other 
nodes. The base station communicates the query to
the required sensor node. Depending on the query the 
response may be one-time or periodic. For example, if
the query is “report current temperature”, we have one
response. If the query is “report average temperature 
every hour on the hour”, the response will be one tuple
every hour. Specifically, we consider join queries. The 
query involves join of the tuples being produced at node 
R and node S. A and B are the join attributes in relation 
R and S respectively, the join being on the condition
R.A=S.B. The result is required at node P as shown in 
the Fig 2. Nodes R and S are able to communicate 
with node P either directly or through other intermediate
nodes. P may be the base station. Nodes R and S may or 
may not be able to communicate directly (that is within
the transmission range of each other). 

A. Traditional Method 
The query transmitted from node P to nodes R and

S, should specify that the join involves tuples that have
arrived at R in last t1 seconds and tuples that have arrived 
at S in the last t2 seconds is requested. In response to 
such a query, nodes R and S send all the relevant data
to node P. Node P computes the join. The join result is 
sent to the requesting node. If there are 100 tuples each
of 50 bytes at both the nodes R and S. R and S have to
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send 5000 bytes each of which are transmitted to node P. 
Totally 10000 bytes need to be transmitted. The energy 
consumed for data transmission is proportional to the 
amount of data transmitted. If the join selectivity is low, 
most of the tuples received at P will not participate in 
the result and hence the transmission energy is wasted. 
Our idea is to use the bloom vector technique to reduce 
the amount of data transmitted, by selecting only the 
relevant tuples for transmission. 

B. Bloom Vector Join 
Let us assume that there is no direct communication 

between nodes R and S and all the communication takes 
place through parent node P. Node R stores the data 
arrived during the last t1 time interval and node S stores 
the data that arrived during the last t2 time interval 
due to memory limitations. We assume that the nodes 
communicate about the hash functions beforehand. We 
use 3 hash functions h1(key), h2(key) and h3(key). 

• When a query arrives at node R, it generates the 
bloom vector BVR by computing the 3 hash ad- 
dresses for each element of the attribute ’A’ of each 
tuple. The bloom vector size depends on the number 
of tuples in the relation R. For m tuples, we suggest 
a bloom vector of m bytes, i.e m � 8 bits. Thus, the 
load factor will be 3/8 * 100 = 37.5% which is 
adequate to give a very low false positive rate [11]. 

• The bloom vector BVR is sent to node P. 
• Parent P forwards the bloom vector BVR to node 

S. 
At node S the same 3 hash functions h1(key), 
h2(key) and h3(key) are used on the tuples in S, 
by passing each element of attribute ’B’ as the key 
to compute the addresses. For each key, we check 
to see if the addresses generated from the hash 
functions are set in the bloom vector of R. If all the 
three positions in the bloom vector are set to 1 then, 
we can conclude that the corresponding matching 
key might be present at node R and the tuple in S 
will be selected. 
Bloom vector BVS is generated only for the se- 
lected tuples at node S (Note: The bloom vector 
size can be smaller depending on the number of 
selected tuples in S). 

• BVS and the selected tuples are forwarded from 
node S to parent P, then to R. 

• Node R matches its tuples with BVS similar to the 
above. 

• Node R sends the matching tuples to P.

Fig. 3. Bloom Vector BVR Generated by Node R 
 
 
 

• P performs the Equi-Join of the tuples from nodes
R and S and forwards the result to the sink node.
Note that any false positive tuples are taken care of
automatically during the join operation. 

We illustrate the above algorithm with a small example, 
with relation R having 5 tuples with values of attribute
’A’ as 8, 13, 15, 20, 25. The relation S has 6 tuples 
with values of attribute ’B’ as 5, 7, 8, 12, 15, 30. The 
adequate bloom vector size for R would be 5*8=40 bit
positions. We use a bloom vector size of 19 bits only, to 
keep the diagram small. Initially all the bits are set to 0. 

We use the hash functions, 

h1(x) = x mod 19 
h2(x) = 3x mod 19 
h3(x) = 5x mod 19 

At node R, the hash values are computed for each
element of attribute A . The resulant hash positions for 
the key 8 is h1(8)=8, h2(8)=5 and h3(8)=2. Then the bit 
positions 8, 5 and 2 are set to 1 in the bloom vector BVR 

. Similarly, R computes the hash functions on remaining 
keys, i.e 13, 15, 20, 25 and the corresponding bits in
the bloom vector are set to 1. Fig 3 shows the bloom 
vector after all bits have been set. 

The bloom vector BVR generated at node R is for- 
warded to node S through the parent node P. At node S, 
the above hash functions are applied on attribute B for
the tuples in S and the resultant addresses are checked
with the bloom vector of R. If all the three hash values 
are set to 1 in the bloom vector of R, then that tuple will 
be selected. The value 8 generates hash address 8, 5, 2. 
All the three values are matching with bloom vector of
R. Hence the corresponding tuple is selected. If any one 
of the hash positions is 0 in the bloom vector, then that
tuple will not be selected. 

There is a possibility of some false keys being se-
lected. Consider the key 5 in node S which hashes to 
positions 5, 15, 6 which are all set in bloom vector BVR. 
But the key 5 does not exist in set R. Therefore, this is 
a false positive. But it does not cause any problem and
the only consequence is that an extra tuple is sent to
node P. For the selected tuples in S, bloom vector BVs 

is generated and it is forwarded to R through P. Also the 
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selected tuples in S are sent to P. Similar comparision is 
done in R to get the tuples from node R and then the 
selected tuples are sent to node P. Node P now contains 
all the matching tuples from R and S and P computes 
the join between the selected tuples. False key tuples are 
eliminated during the join operation in the parent P. 

C. Bloom Vector Join with Direct communication 
Consider the case when there is direct communication 

between nodes R and S, i.e data and results can be 
exchanged directly between R and S without going 
through P. When the join query is sent from parent P 
to nodes R and S, we compute the join as follows. 

• R computes the bloom vector for the tuples using 
attribute ’A’ and transmits it to node S. 

• S uses the bloom vector received from R. It selects 
the matching tuples by hashing the data in attribute 
B(similar to indirect communication) and transmits 
the tuples to P. 

• S also sends a bloom vector(only for the selected 
tuples in node S) to node R 

• Node R selects the matching tuples using the re- 
ceived bloom vector of S and attribute ’A’and sends 
the matching tuples to P 

• P computes the join using the tuples received from 
R and S. 

The same can be accomplished by sending the bloom 
vector of S to R first. 

We also considered the following alternative. R sends 
its bloom vector to S and S computes the selected tuples 
and transmits them to R. R then computes the join using 
the tuples received for S and the join result is transmitted 
to P. The cost with this method is marginally more than 
the above method. Hence we will not elaborate further 
on this method. 

COST ANALYSIS 

We provide a cost analysis of the different methods. 
The number of bytes transmitted is the cost measure. 
Power consumed is a direct funtion of the number of 
bytes transmitted. We ignore the overheads of transmis- 
sion such as preamble, etc in the packets and consider 
the payload bytes only. We assume the bloom vector size 
for node R as nr bytes(nr *8 bits). 
We use the following notations 

Number of tuples in Relation R = nr 

Number of bytes in each tuple in R = br 

Number of tuples in Relation S = ns 

Number of bytes in each tuple in S = bs

Selectivity at node S, i.e the relative number of tuples
relevant for the join = σs 

From among the ns tuples at S, nsσs tuples will be 
participating in the join operation. Note that this assumes 
ideal performance of the bloom vector and hence does
not consider the effect of the false positives. However, 
this error due to false positives is insignificant. 

A. Traditional Method 
Number of bytes transferred in the straight forward

approach can be shown as follows, 
Tuples from Node R to Node P : nr br 

Tuples from Node S to node P : nsbs 

Total Cost = nr br + nsbs 

B. Bloom Vector Method with Indirect Communication 
The number of bytes transferred for this scenario can

be shown as follows. 
• Bloom Vector from Node R to Node P : nr (size of 

the bloom vector of R) 
• Bloom Vector from Node P to Node S : nr (size of 

the bloom vector of R) 
• Selected tuples from Node S to node P : bsnsσs 

• Bloom Vector from Node S to Node P and from P
to R : 2nsσs (size of the bloom vector of selected 
tuples of S) 

• Selected tuples from Node R to node P : br nrσr 

Join will be performed at P. 
Total Cost = 2nr + bsnsσs + 2nsσs + br nrσr 

C. Bloom Vector Method with Direct Communication 
Let us consider the first scenario. The number of bytes 

transferred for this scenario can be shown as follows 
• Bloom Vector from Node R to Node S : nr (size of 

the bloom vector of R) 
• Selected tuples from Node S to node P : bsnsσs 

• Bloom Vector of selected tuples in S to node R :
nsσs 

• Selected tuples from Node R to node P : br nrσr 

Total Cost = nr + bsnsσs + nsσs + br nrσr 

To give us a clear picture of cost involved, we use
a numerical example. First we assume nr = ns = 
100 tuples br = bs = 50 bytes The join selectivity factor 
σ varies from 0.01 to 1. We have considered σr = σs 

for this example. The results are shown in the Table
2 with nr = ns = 100 tuples, br = bs = 50 bytes.
We observe that the number of bytes transmitted is
reduced dramatically with Bloom Vector Method as
compared to traditional Join Method. Table 3  shows
the computed results with parameters differing between  
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TABLE 2 
NO.OF BYTES TRANSMITTED, nr = ns = 100, br = bs = 50 

 
Selectivity Traditional Bloom Direct Bloom Indirect 

0.01 10000 201 302 
0.05 10000 650 710 
0.1 10000 1110 1220 
0.5 10000 5150 5300 
1 10000 10200 10400 

 
 

TABLE 3 
NO.OF BYTES TRANSMITTED, 

nr = 100, ns = 1000, br = 20, bs = 100 
 

Selectivity Traditional Bloom Direct Bloom Indirect 
0.01 102000 1130 1240 
0.05 102000 5250 5400 
0.1 102000 10400 10600 
0.5 102000 51600 52200 
1 102000 103100 104200 

 
 
 
the two tables with nr = 100, ns = 1000, br = 20,
bs = 100. The benefit of bloom vector join is even
more significant in this case. For example, the number
of bytes transferred is only one percent of the
traditional join method when the selectivity is 0.01. 

[14] 
CONCLUSIONS 

In this paper we addressed the issue of reducing data 
transfer while processing join queries in wireless sensor 
networks. We proposed a new method based on Bloom 
vector, and provided an analysis of the approach in com- 
parison to the traditional method. Based on the results 
of the analysis, we conclude that for small values of join 
selectivity, the Bloom vector based method reduces the 
amount of data transfer quite significantly. 
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