
International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 05-08 (2013)
Special Issue of ICCECT 2013 - Held during September 20, 2013, Bangalore, India

5

 ISSN 2278 - 3091

Application building concepts in medical image processing using
software design patterns

Niranjan R Chougala, B.E., M.Tech., [Ph.D.-VTU]
Assistant Professor, Information Sciences & Engg. Dept.,

HKBK College of Engineering, S.No. 22/1, Nagawara, Bangalore-45, Karnataka
 Email : nrchougala@gmail.com Phone : +91 9916132205

Dr. Shreedhara K.S.
Professor & Chairman DOS in CS & E,

University BDT College of Engineering – Davanagere, Karnataka

Abstract—The next generation software in particular to
medical domain should able to adopt the new changes and
conditions that may arise when the software’s are deployed.
Since, medical image processing and medical software’s are
complex and difficult, thereby making a highly adaptive system,
a necessary. This paper mainly focus on the various approaches
towards developing a medical software’s in particular to
medical image processing using Software design patterns,
thereby making it possible to design at a higher level of
abstraction and standardize various design patterns which may
be useful in near future for the medical software developers. It
can be design, class or image patterns, reuse of the code remain
the prime focus by building software architecture and design
using new approach. This approach not only provides a new
dimension to the medical image processing approach but also
builds standard signature and communication interfaces among
the softwares. Thus, the purpose of developing and
standardizing efficient, robust, extensible, standard and
reusable software remains a challenge.

Keywords — Medical Image Processing, Adaptive systems,
Design Patterns.

I. INTRODUCTION

In general, we all need efficient, robust, extensible, and
reusable software, which is difficult and complex. The use of
design patterns helps to reduce the complexity and makes
design reuse. Successful developers resolve these challenges
by applying appropriate design patterns. Thus, Design
patterns represent solutions to problems that arise when
developing software within a particular context. Continuous
advances in the size and functionality of medical imaging
techniques and processes over recent years has resulted in an
increasing interest in their use as implementation platforms
for image processing applications.

The physical structure of the design allows us to exploit
the parallelism inherent in low-level image processing
operations. This parallelism exists in two major forms

1. Spatial parallelism, in which the image is divided into
multiple sections and processed concurrently, and

2. Temporal parallelism, where the algorithm may be
represented as a time sequence of simple concurrent
operations.

These implementations have the potential to be parallel
using a mixture of these two forms. Pragmatically, the degree
of parallelization is subject to the processing mode and
hardware constraints imposed by the system [1]. Based on
previous work [2], [3] we believe there are three processing
modes: stream, offline and hybrid processing. We have also
identified the following constraints: timing (limited
processing time), bandwidth (limited access to data), and
resource (limited system resources) constraints. These
constraints are inextricably linked and manifest themselves in
different ways depending on the processing mode. Managing
constraints makes the mapping of image processing
algorithms to hardware more challenging. atterns are about
communicating problems and solutions. In other words,
patterns enable us to document a known recurring problem
and its solution in a particular context and to communicate
this knowledge to others. Here, main focus is on the term
recurring, since the goal of the pattern is to foster conceptual
reuse over time [4]. Some of the common characteristics of
patterns are as follows [4].
 Patterns are observed through experiences.
 Patterns are typically written in structural format.
 Patterns prevent reinventing the wheel.
 Patterns exist at different levels of abstraction.
 Patterns undergo continuous improvements.
 Patterns are reusable artifacts.
 Patterns communicate and designs best practices.
 Patterns can be used together to solve a large problem.
 Design patterns represent solutions to problems that arise

when developing software within a particular context.
 Patterns capture the static and dynamic structure and

collaboration among key participants in software designs.
 Patterns facilitate reuse of successful software architectures

and designs.

Categorizing Patterns [4] then represents the expert

solutions to recurring problems in a context and thus have

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 05-08 (2013)
Special Issue of ICCECT 2013 - Held during September 20, 2013, Bangalore, India

6

 ISSN 2278 - 3091

been captured at many levels of abstraction and in numerous
domains. Numerous categories have been suggested for
classifying software patterns, with some of the most common
being:

 Design Patterns
 Architectural Patterns
 Analysis Patterns
 Creational Patterns
 Structural Patterns
 Behavioral Patterns

The J2EE Patterns [4] included in the following table

classify each pattern with respect to one of the three logical
architectural tiers, namely, Presentation, Business and
Integration.

TABLE I : J2EE PATTERNS

Tier Pattern name
Presentation Intercepting Filter

Front Controller
Context Object
Application Controller
View Helper
Composite View
Service to Worker
Dispatcher View

Business Business Delegate
Service Locator
Session Façade
Application Service
Business Object
Composite Entity
Transfer Object
Transfer Object
Assembler
Value List Handler

Integration Data Access Object
Service Activator
Domain Store
Web Service Broker

However, one of the challenges when using any set of patterns
is …. Understanding how to best use the pattern in
combination. According to Christopher Alexander (in his
book Patterns Language) “In short, no pattern is an isolated
entity. Each pattern can exist in the world, only to the extent
that is supported by other patterns: the larger patterns in
which it is embedded and the patterns of the same size that
surround it and the smaller patterns which are embedded in
it”. J2EE patterns are no exception to this rule. As we study
each of these patterns in detail, we will see the patters and
strategies that are embedded within it, in which it is
contained, and which it supports. Sometimes these patterns
build on other patterns from the J2EE patterns catalog or
from others. Benefits of using patterns:

 Leverage a proven solution
 Provide a common vocabulary

 Constrain solution space

There are various relationships between the patterns, and

these are generally referred to as being part of Pattern
Language. Also, there is another way of defining these
relations is in terms of Pattern Framework, that is, collection
of patterns in a united scenario. This is a key factor in
identifying end-to-end solutions and wiring components
together at the pattern level.

II. VB.NET DESIGN PATTERNS
In Visual Basic [6] developers recognizes more benefits

and they brought most of the useful features of the concepts to
the users. Also, the arrivals of the .NET frameworks and
VB.NET has dramatically changed the analysis, since it is
truly object-oriented, and therefore good choice of production
language for OO applications whose designs are on design
patterns. Visual developers have acquired one of the most
powerful object-oriented languages and also discovered that
migration from VB6 to VB.NET is more difficult than their
migration to the earlier versions of VB, it is armed with a
mastery of API calls. However VB.NET can now able to
provide a vital solutions to some of the challenges faced by
the developer community. Since, this paper restricts it study
to the Medical domain image processing, focus and study is
restricted to its limit.

III. WHAT, WHERE AND WHERE NOT ABOUT DESIGN PATTERNS
Design Pattern Descriptions [7]

 Name and Classification: Essence of pattern
 Intent: What it does, its rationale, its context
 AKA: Other well-known names
 Motivation: Scenario illustrates a design problem
 Applicability: Situations where pattern can be applied
 Structure: Class and interaction diagrams
 Participants: Objects/classes and their responsibilities
 Collaborations: How participants collaborate
 Consequences: Trade-offs and results
 Implementation: Pitfalls, hints, techniques, etc.
 Sample Code
 Known Uses: Examples of pattern in real systems
 Related Patterns: Closely related patterns

Design Patterns are useful where …

 Object-Oriented programming languages [and
paradigm] are more amenable to implementing design
patterns

 Procedural languages: need to define
o Inheritance
o Polymorphism
o Encapsulation

and they are NOT …
 Designs that can be encoded in classes and reused as

is (i.e., linked lists, hash tables)

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 05-08 (2013)
Special Issue of ICCECT 2013 - Held during September 20, 2013, Bangalore, India

7

 ISSN 2278 - 3091

 Complex domain-specific designs (for an entire
application or subsystem)

 They are: “Descriptions of communicating objects and
classes that are customized to solve a general design
problem in a particular context.”

They are USED in…

 Solutions to problems that recur with variations
o No need for reuse if problem only arises in one

context
 Solutions that require several steps:

o Not all problems need all steps
o Patterns can be overkill if solution is a simple linear

set of instructions
 Solutions where the solver is more interested in the

existence of the solution than its complete derivation
o Patterns leave out too much to be useful to someone

who really wants to understand
o They can be a temporary bridge

What Makes Patterns ?

 A Pattern must [7] :
o Solve a problem and be useful
o Have a context and can describe where the solution

can be used
o Recur in relevant situations
o Provide sufficient understanding to tailor the

solution
o Have a name and be referenced consistently

IV. BENEFITS, DRAWBACKS & EFFECTIVE USE
The research work undertaken in this paper has the following
benefits and drawbacks.

BENEFITS:

 Design patterns enable large-scale reuse of software
architectures and also help document systems

 Patterns explicitly capture expert knowledge and
design tradeoffs and make it more widely available

 Patterns help improve developer communication
 Pattern names form a common vocabulary
 Patterns help ease the transition to OO technology

DRAWBACKS:
 Patterns do not lead to direct code reuse
 Patterns are deceptively simple
 Teams may suffer from pattern overload
 Patterns are validated by experience and discussion

rather than by automated testing
 Integrating patterns into a software development

process is a human-intensive activity.
However, The suggestion for the effective use includes…

 Do not recast everything as a pattern

o Instead, develop strategic domain patterns and
reuse existing tactical patterns

 Institutionalize rewards for developing patterns
 Directly involve pattern authors with application

developers and domain experts
 Clearly document when patterns apply and do not

apply
 Manage expectations carefully.

Fig. 1 : Creational design patterns

V. EXAMPLES
http://sourcemaking.com/design_patterns

Creational design patterns:

This design patterns is all about class instantiation. This
pattern can be further divided into class-creation patterns and
object-creational patterns. While class-creation patterns use
inheritance effectively in the instantiation process, object-
creation patterns use delegation effectively to get the job
done.

1. Abstract Factory - Creates an instance of several families

of classes
2. Builder - Separates object construction from its

representation
3. Factory Method - Creates an instance of several derived

classes
4. Object Pool - Avoid expensive acquisition and release of

resources by recycling objects that are no longer in use
5. Prototype - A fully initialized instance to be copied or

cloned
6. Singleton - A class of which only a single instance can

exist

Structural design patterns:

This design patterns is all about Class and Object
composition. Structural class-creation patterns use
inheritance to compose interfaces. Structural object-patterns
define ways to compose objects to obtain new functionality.

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 05-08 (2013)
Special Issue of ICCECT 2013 - Held during September 20, 2013, Bangalore, India

8

 ISSN 2278 - 3091

Fig. 2 : Structural design patterns

Adapter - Match interfaces of different classes
Bridge - Separates an object’s interface from its
implementation
Composite - A tree structure of simple and composite objects
Decorator - Add responsibilities to objects dynamically
Façade - A single class that represents an entire subsystem
Flyweight - A fine-grained instance used for efficient sharing
Private Class Data - Restricts accessor/mutator access
Proxy - An object representing another object

Behavioral design patterns:
This design patterns is all about Class's objects
communication. Behavioral patterns are those patterns that
are most specifically concerned with communication between
objects.

Chain of responsibility - A way of passing a request between
a chain of objects
Command - Encapsulate a command request as an object
Interpreter - A way to include language elements in a
program
Iterator - Sequentially access the elements of a collection
Mediator - Defines simplified communication between
classes
Memento - Capture and restore an object's internal state
Null Object - Designed to act as a default value of an object
Observer - A way of notifying change to a number of classes

State - Alter an object's behavior when its state changes
Strategy - Encapsulates an algorithm inside a class
Template method - Defer the exact steps of an algorithm to a
subclass
Visitor - Defines a new operation to a class without change

VI. CONCLUSION
The rapid changes and technological advancements in the

Software Engineering methodologies and medical domain
make it necessary to adapt next generation ready applications.
This survey and study primarily focuses on the use of medical
application developments through Software Design Patterns
and to standardize some of the design patterns as applicable
to the medical software development area. The survey
indicates a larger scope of application of these design patterns
in the said domain and primarily highlights the need of
convergence with consensus with software and medical
domains. This study also refines the fact that, with more
emphasis on design patterns the said domains can be more
benefited in terms of efficiency, robust, extensible, reliable,
reusable and internationalization.

REFERENCES

[1]. K. T. Gribbon, D. G. Bailey, C. T. Johnston, "Using
Design Patterns to Overcome Image Processing
Constraints on FPGAs", Institute of Information
Sciences and Technology Massey University, Private
Bag 11 222, Palmerston North, New Zealand. 2006.

[2]. Gribbon, K. T. and Bailey, D. G., “A Novel Approach
to Real-time Bilinear Interpolation,” Second IEEE
International Workshop on Electronic Design, Test
and Applications, Perth, Australia, pp. 126-131, Jan,
2004.

[3]. Gribbon, K. T., Johnston, C. T., and Bailey, D. G., “A
Realtime FPGA Implementation of a Lens Distortion
Correction Algorithm with Bilinear Interpolation,”
Proc. Image and Vision Computing New Zealand,
Massey University, Palmerston North, New Zealand,
pp. 408-413, Nov, 2003.

[4]. Deepak Alur, John Crupi and Dan Malks, “Core J2EE”
patterns, Second Edition, 2003.

[5]. Douglas C. Schmidt, "Using Design Patterns to
Develop Object-Oriented Communication Software
Frameworks and Applications", Washington
University, St. Louis.

[6]. Tom Fischer, John S, Pete S, Chaur G Wu
“Professional Design Patterns in VB.NET, Building
Adaptable Applications”, Wrox Press, 2002.

[7]. Gama, Helm, Johnson, Vlissides, Design Patterns
Elements of Reusable Object-Oriented Software,
Addison Wesley, 1995,B. Cheng – Michigan State
University.

