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ABSTRACT 
 
The paper discussed suggests a new algorithm for image 
compression that combines the features useful of Finite 
impulse type and Infinite impulse type filters. The 
simulation results show that the new algorithm improves 
good compression ratio as it is needed for many advanced 
image processing applications. 
 
Key words: FIR filter, IIR filter, Image compression, Hybrid 
filter.  
 
1. INTRODUCTION 
 
Data compression is the process of converting data files into 
smaller files for efficiency of storage and transmission. As 
one of the enabling technologies of the multimedia 
revolution, data compression is a key to rapid progress being 
made in information technology. It would not be practical to 
put images, audio, and video alone on websites without 
compression. Wavelet transform based image compression is 
lossy compression method.  There are also other methods of 
lossy image compression like vector quantization (VQ), 
predictive coding, and Fractal compression. 
 
Wavelet transform analysis has emerged as a major new 
time- frequency decomposition tool for data analysis. The 
wavelet transform has been found to be particularly useful 
for analyzing signals which are transitory, discontinuous, 
noisy, and so on. Its ability to examine the signal in both 
time and frequency resolution is distinctive and enables 
myriads of applications possible that traditional signal 
analysis tools such as Fourier transform cannot handle. It has 
now been applied to diverse realm of data analysis/process: 
climate analysis, financial indices analysis, signals de 
noising, characterization, feature extraction, data 
compression, and so on. 
 
 

 
 
 
 
 
2. IMAGE COMPRESSION TECHNIQUES 
 
A digital color image can be viewed as a three valued 
(channels) positive function I=I(x,y) defined onto a plane. Its 
algebraic representation is obtained through an N by M by 3 
matrix A. Thus, each entry of A is a three component  integer  
vector  (pixel  color)  expressing  an  intensity  value  at 
discrete location (x,y) with a precision p (for instance, one bit 
for each channel). Each component or layer of the image can 
be viewed as a single channel image, which, under particular 
conditions, can be analyzed independently from the others. 
This is not the case for RGB space, if two channels  are  
fixed,  human  visual  perception  is  very  sensitive  to  small 
changes of the value of the remaining channel. Thus, even 
though RGB is the most common storage format for images, 
other formats may be better for compression. 
 
 The key step in lossy data compression in which 
data cannot be recovered exactly is the quantization phase, 
which exploits a data reduction based on their low 
information content. This is not optimal for RGB images. 
Nevertheless, for three layers, this can lead to the elimination 
of some low coefficients in a channel in a certain spatial 
location, even though the corresponding coefficients in the 
other layers are not eliminated because they carry high 
information content. When reconstructing the image at that 
location, a high visual distortion is introduced. The 
assumption of analyzing the three layers separately is valid 
only if they are not correlated with respect the visual 
appearance. 
 
Lossless Compression 

 If data have been lossless compressed, the original 
data can be recovered exactly from the compressed data. It is 
generally used for applications that cannot allow any 
difference between the original and reconstructed data. 
Run Length Encoding. Run length encoding, sometimes 
called recurrence coding, is one of the simplest data 
compression algorithms. It is effective for data sets that are 
comprised of long sequences of a single repeated character. 
For instance, text files with large runs of spaces or tabs may 
compress well with this algorithm. Old versions of the arc 
compression program used this method. 
 

Image Compression using Combined FIR-IIR Filters  
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RLE finds runs of repeated characters in the input stream and 
replaces them with a three-byte code. The code consists of a 
flag character, a count byte, and the repeated      characters. 
For instance, the string `AAAAAABBBBCCCCC'' could be 
more efficiently   represented as ``*A6*B4*C5''. That saves 
us six bytes. Of course, since it does not make sense to 
represent runs less than three characters in length with a 
code, none is used. 

Thus ``AAAAAABBCCCDDDD’’ might be represented 
as ``*A6BBCCC*D4''. The flag byte is called a sentinel byte. 
 
Lossy Compression Methods  

 
 Lossy compression techniques involve some loss of 
information, and data cannot be recovered or reconstructed 
exactly. In some applications, exact reconstruction is not 
necessary. For example, it is acceptable that a reconstructed  
video  signal  is  different  from the  original  as  long  as  the 
differences do not result in annoying artifacts. However, we 
can generally obtain higher compression ratios than is 
possible with lossless compression. 
 
Vector Quantization: 
Vector Quantization (VQ) is a lossy compression method. It 
uses a codebook containing pixel patterns with 
corresponding indexes on each of them. The main idea of 
VQ is to represent arrays of pixels by an index in the 
codebook. In this way, compression is achieved because the 
size of the index is usually a small fraction of that of the 
block of pixels. 
The main advantages of VQ are the simplicity of its idea and 
the possible efficient implementation of the decoder. 
Moreover, VQ is theoretically an efficient method for image 
compression, and superior performance will be gained for 
large vectors.  However, in order to use large vectors, VQ 
becomes complex and requires many computational 
resources (e.g. memory, computations per pixel) in order to 
efficiently construct and search a codebook. More research 
on reducing this complexity has to be done in order to make 
VQ a practical image compression method with superior 
quality. 
 
Predictive Coding: 

 
Predictive coding has been used extensively in image 
compression.  Predictive image coding algorithms are used 
primarily to exploit the correlation between adjacent pixels. 
They predict the value of a given pixel based on the values of 
the surrounding pixels.  Due to the correlation property 
among adjacent pixels in image, the use of a predictor can 
reduce the amount of information bits to represent image. 
This type of lossy image compression technique is not as 
competitive as transform coding techniques used in modern 
lossy image compression, because predictive techniques 
have inferior compression ratios and worse reconstructed 
image quality than those of transform coding. 
 

Fractal Compression: 
 

The application of fractals in image compression started with 
M.F. Barnsley and A.Jacquin. Fractal image compression is a 
process to find a small set of mathematical equations that can 
describe the image. By sending the parameters of these 
equations to the decoder, we can reconstruct the original 
image. In general, the theory of fractal compression is based 
on the contraction mapping theorem in the mathematics of 
metric spaces. The Partitioned Iterated Function System 
(PIFS), which is essentially a set of contraction mappings, is 
formed by analyzing the image. Those mappings can exploit 
the redundancy that is commonly present in most images.  
This  redundancy  is  related  to  the similarity of an image 
with itself, that is, part A of a certain image is similar to 
another part B of the image, by doing an arbitrary number of 
contractive transformations that can bring A and B together.  
These contractive transformations are actually common 
geometrical operations such as rotation, scaling, skewing and 
shifting. By applying the resulting PIFS on an initially blank 
image iteratively, we can completely regenerate the original 
image at the decoder. Since the PIFS often consists of a 
small number of parameters, a huge compression ratio (e.g. 
500 to 1000 times) can be achieved by representing the 
original image using  these parameters. However fractal 
image compression has its disadvantages. Because fractal 
image compression usually involves a large amount of 
matching and geometric operations, it is time consuming. 
The coding process is so asymmetrical that encoding of an 
image takes much longer time than decoding. 
 
 
Reason to Use Wavelet Based Compression 

 
As discussed earlier, for image compression, loss of some 
information is acceptable.  Among  all  of  the  above  lossy 
compression  methods, vector quantization requires many 
computational resources for large vectors; fractal 
compression is time consuming for coding; predictive coding 
has inferior compression ratio and worse reconstructed 
image quality than those of transform based coding. So, 
transform based compression methods are generally best for 
image compression. 
For transform based compression, JPEG compression 
schemes based on DCT (Discrete Cosine Transform) have 
some advantages such as simplicity, satisfactory 
performance, and availability of special purpose hardware 
for implementation. However, because the input image is 
blocked, correlation across the block boundaries cannot be 
eliminated. 
 
 
3.  BLOCK DIAGRAM 
 
A block  diagram  of a  wavelet  based  image  compression  
system  is shown  in  Figure  3.3. At the heart of the analysis 
(or compression)  stage of the system is the forward  discrete 
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wavelet  transform  (DWT) [26]. Here, the input image is 
mapped from a spatial domain, to a scale-shift domain.   This 
transform separates the image information into octave 
frequency sub bands.  The expectation is that certain 
frequency bands will have zero or negligible energy content; 
thus, information in these bands can be thrown away or 
reduced so that the image is compressed without much loss 
of information. 
The DWT coefficients are then quantized to achieve 
compression.  Information lost during the quantization 
process cannot be recovered and this impacts the quality of 
the reconstructed image.   Due to the nature of the transform,  
DWT  coefficients  exhibit  spatial  correlation, that are 
exploited  by quantization  algorithms  like the embedded  
zero-tree  wavelet  (EZW) [2] and set partitioning in 
hierarchical  trees (SPIHT) [28] for efficient quantization. 
The quantized coefficients may then be entropy coded; this is 
a reversible process that eliminates any redundancy at the 
output of the quantizer. 
 

 
 

Figure 3.3: A Wavelet Based image compression system 
 

In the synthesis (or decompression) stage, the inverse 
discrete wavelet transform recovers the original image from 
the DWT coefficients. In the absence of any quantization the 
reconstructed image will be identical to the input image.   
However, if any information was discarded during the 
quantization process, the reconstructed image will only be an 
approxi- mation of the original image.  Hence this is called 
lossy compression. The more an image is compressed, the 
more information is discarded by the quantizer; the result is a 
reconstructed image that exhibits increasingly more artifacts. 
Certain integer wavelet transforms exist that result in DWT 
coefficients that can be quantized without any loss of 
information.   These result in lossless compression, where 
the reconstructed image is an exact replica of the input 
image.   However, compression ratios achieved by these 
transforms are small compared to lossy transforms (e.g. 4:1 
compared to 40:1). 
The remainder of this chapter explores the discrete wavelet 
transform [27], and the hardware implementation of the 
transform stage for computation of the 2D DWT for an 
image. 
 
 
4. The Fast Wavelet Transform Algorithm 

 
The Discrete Wavelet Transform (DWT) coefficients can be 
computed by using  Mallat.s  Fast  Wavelet  Transform  
algorithm.  This  algorithm  is sometimes referred  to  as  the  
two-channel  sub-band  coder  and  involves filtering the 
input signal based on the wavelet function used. 
 
 

Implementation Using Filters: 
To explain the implementation of the Fast Wavelet 
Transform algorithm consider the following equations: 

                
The  first  equation  is  known  as  the  twin-scale  relation  
(or  the  dilation equation) and defines the scaling function 

. The next equation expresses the wavelet in 
terms of the scaling function  The third equation is the 
condition required for the wavelet to be orthogonal to the 
scaling function and its translates. The coefficients c(k) or 
{c0, .., c2N-1} in the above equations represent the impulse 
response coefficients for a low pass filter of length 2N, with 

a sum of 1 and a norm of 1/ . 
The high pass filter is obtained from the low pass filter 

using the relationship  
 

                                                                     
 
where k varies over the range (1 . (2N . 1)) to 1. 
 

Equation 3.19 shows that the scaling function is essentially a 
low pass filter and is used to define the approximations. The 
wavelet function defined by equation 3.19 is a high pass 
filter and defines the details. Starting with a discrete input 
signal vector s, the first stage of the FWT algorithm 
decomposes the signal into two sets of coefficients. These 
are the approximation coefficients cA1 (low frequency 
information) and the detail coefficients c_D1 (high 
frequency information), as shown in the figure below. 

The coefficient vectors are obtained by convolving s with 
the low-pass filter Lo_D for approximation and with the 
high-pass filter Hi_D for details. This filtering operation is 
then followed by dyadic decimation or down sampling by a 
factor of 2. 

 
 

Figure 3.12: Filter operation during DWT 
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Signal Reconstruction 
 
The original signal can be reconstructed or synthesized using 
the inverse discrete wavelet transform (IDWT). The 
synthesis starts with the approximation and detail 
coefficients cAj and cDj, and then reconstructs cAj-1 by up 
sampling and filtering with the reconstruction filters. 

 
 

Figure 3.14: Wavelets reconstruction 
 
 
The reconstruction filters are designed in such a way to 
cancel out the effects of aliasing introduced in the wavelet 
decomposition phase. The reconstruction filters (Lo_R and 
Hi_R) together with the low and high pass decomposition 
filters, forms a system known as quadrature mirror filters 
(QMF). For a multilevel analysis, the reconstruction process 
can itself be iterated producing successive approximations at 
finer resolutions and finally synthesising the original signal. 

 
Most of the gain associated with sub band/wavelet coders 
comes from the compaction achieved by the frequency-
sensitive analysis filter bank. As discussed in the earlier 
section, on top of having food frequency selectivity, 
important secondary gains can be achieved through phase 
linearity and transition band modifications to the magnitude 
response that lower high-frequency channel aliasing energy. 
In this section, we consider the formulation of new analysis 
filters that are short (comparable to the 5/3 bi-orthogonal 
filters) but with improved frequency-domain characteristics, 
consistent with earlier observation. Simple reoptimization of 
the filter coefficient does not result in demonstrably 
consistent improvement, owing primarily to the constrained 
nature of the exact reconstruction conditions for FIR filter 
banks 

 
 
 

              

Where  are the low- and high-pass 
analysis filters, respectively,  and  

 are the low- and high-pass synthesis filters, 
respectively. However, employing the more general perfect 
reconstruction conditions 

 

                                                      
…………. (4.2) 
We can consider a boarder class of solutions. Given an 

arbitrary pair of analysis filters  and the 
synthesis filters  and  as determined by the 
reconstruction conditions above, are 

 

                              
Where, 
                                  

                                      
These reconstruction conditions have the attractive feature 

that they allow the analysis filters and  to be 
chosen independently. The only restriction is that N (z)   
should be stable, which means no zeros on the unit circle. A 
consequence of the generality of (4.3) is that the synthesis 
filters could be recursive, but still quite interesting if these 
filters can be implemented with efficiency greater than or 
equal to their FIR counterpart. 
Using (4.3), we can choose analysis filters in a virtually 
unconstrained fashion based on desired frequency-domain 
characteristics. The Sym2 analysis low-pass filter (no pass 
band deviation) and the 5/3 analysis high-pass filter (strong 
rejection of aliasing) were chosen for the analysis pair of the 
new filters, 

 

Where H0 (z) is the low-pass analysis filter of the Sym2, 
with x=1/(2-√3) , and Co and C1  are the normalization 
constants. Computing N (z) using (4.1), we obtain 

 

[(4-x)+(4-6x)                                           
The corresponding synthesis filters are then derived 

directly from (4.3). To increase computational efficiency, we 
modify the value of x from 1/ (2-√3) ≈3.732 to 4.0. This 
conversion from floating point precision to integer results in 
a simple and stable denominator 

             )                                        
 
Where CN is the normalization constant. In direct form, the 

analysis filters of are given by 

Perhaps not surprisingly, the coefficient conversion to 
integer precision does not change the analysis filter 
frequency response dramatically, nor is the compression 
performance in our test results affected by this change. We 
call this new FIR–IIR hybrid filter set “Hybrid1.” 
Coefficients of the Hybrid1 filters are listed in Table 4.1. 
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Only the 15 largest coefficients are shown for the IIR 
filters. Its compression performance is evaluated for many 
test images; results on seven specific test images are 
presented in Table 4.1, along with benchmark comparisons 
against the Sym2 and5/3   filters.  
To construct linear-phase FIR–IIR hybrid filters, we start 
with the linear-phase 5/3 low-pass filter and optimize the 
reciprocal roots affecting the pass band so that the pass band 
magnitude response approximates that of the Sym2. As 
previously, the optimized coefficients are converted to 
integers in order to realize computational savings. The 
resulting filters, which we call Hybrid2, are given by 
 

 
 
 
 
The low-pass filter frequency response is shown in Fig. 

7.6. The close approximation to the Sym2 and Hybrid1 is 
evident, as is the notable improvement over the 5/3 low-pass 
filter. Using (4.4), we obtain 

 
                             N (z) =  
                                     
Then, the synthesis filters are derived from Filter 

coefficients of the Hybrid2 are shown in Table 4.1 
  The arithmetic complexity for the Hybrid1 filters, as 

conveyed by multiplies and adds, is quite modest. The FIR 
part can be implemented using two additions per data point 
(1-D transform) for decomposition and three additions for 
reconstruction. For the recursion in reconstruction, one extra 
addition and multiplication is needed. Thus, the combined 
complexity of both decomposition and reconstruction is six 
additions and one multiplication. 

 

4. SIMULATION RESULTS 

 
Comparison of wavelet transforms methods 

To compare the objective equality for different wavelet 
types, we use the standard testing image lena. 
 

Table 7.1: Comparison of Compression Results by Using 
Different Wavelets for standard image Lena 

Table 7.2 Shows Peak Signal to Noise Ratio(PSNR) and 
Compression Ratio (CR) of different type of bi-orthogonal 
wavelets i.e sym2,biorth 5/3, hybrid1 and hybrid2 ; for 
different images i.e. lena, Barbara, Light house and Mandrill. 
From above tables, we can observe that the bi-orthogonal 
hybrid filters giving better performance compared to all other 
bi-orthogonal filters.    

 

5. CONCLUSION 
 
Image compression is currently an active topic for research 
in the areas of Very Large Scale Integrated (VLSI) circuit 
technologies and Digital Signal Processing (DSP). The 
Discrete Wavelet Transform performs very well in the 
compression of images. For real time image processing 
however, its performance is not as good. Therefore for real 
time image compression it is recommended to use a wavelet 
with a small number of vanishing moments at level 5 
decomposition or less. Using wavelets, the compression ratio 
can be easily varied, while most other compression 
techniques have fixed compression ratios. 
Further data compaction is possible by exploiting the 
redundancy in the encoded transform coefficients. A bit 
encoding scheme could be used to represent the data more 
efficiently. A common loss-less coding technique is Entropy 
coding. Two common entropy coding schemes are Prefix 
coding and tree-structured Huffman coding. Both these 
forms of entropy coding require  a  prior  knowledge  of  the  
nature  of  the  source  data,  such  as probability distribution 
of the source output data . In practice however, probabilistic 
models are usually not known a priori. Thus a model of the 
data must be constructed from the data set itself. 
.  
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