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ABSTRACT 
This paper introduces a new family of error – correction un-
ordered (ECU) codes for global communication, called zero 
– sum. It is the combination of delay insensitive codes and 
fault tolerance of error correcting codes. Two important fea-
ture of this code are that they are systematic and weighted. 
For this code, a wide variety of weight assignments is used. 
Two enhancements are also proposed for zero-sum code. The 
zero-sum+ code, it gives error detection for 3-bit errors, or 
alternatively provides 2-bit detection and 1-bit correction. 
The zero-sum* code, provides heuristic 2-bit correction while 
still guaranteeing 2-bit detection, under different weight as-
signments. The outline for this block level system micro ar-
chitecture is given. In comparison with other ECU codes, the 
zero-sum code provides better or comparable coding effi-
ciency, with 5.74% - 18.18% reduction in average number of 
wire transitions. Zero-sum* code provides 2-bit correction 
coverage, with 52.92% to 71.16% of all 2-bit errors with 
only a moderate decrease in number of bits per wire and in-
crease in wire transitions. 
Key words : Asynchronous communication, delay - insensi-
tive, error-correcting codes, fault tolerances, unordered. 
1. Introduction: 
As digital systems grow in complexity, the challenges of 
design reuse, scalability, power and reliability continue to 
grow at a rapid pace [16]. They are expected to become ma-
jor bottlenecks in less than a decade. 
To provide flexibility in system integration, asynchronous 
global communication [4] [12] [13] is used such system 
forms a globally – asynchronous locally - synchronous 
(GALS) [8] [17] system. Applications of asynchronous glob-
al communication, using delay insensitive codes [18], in-
clude high-speed commercial FPGA’s and Ethernet routing 
chips. 
The contributions of this paper are, use of error correcting 
unordered codes in asynchronous communication, called 
zero-sum [1], [2]. These code supports the delay insensitivity 
(i.e., unordered property) and fault tolerance (i.e., 1-bit cor-
rection and 2-bit detection). This detection and correction of 
errors are based on their minimum hamming distances. 
The zero-sum codes are systematic [6], [11] i.e., allows di-
rect extraction of data by the receiver without any hardware. 
They are also weighted i.e., check field is represented as sum 
of data field index weights. 

The outline of system micro architecture includes three key 
hardware support blocks which are an encoder (for the send-
er), completion detector (CD) and error-correcting unit (for 
the receiver). 
The basic method for generating the zero-sum code builds on 
a prior approach briefly introduced by Berger [5] and Bose 
[6]. These approaches are limited for single index weight 
assignment. For these codes neither hardware support not 
experimental evaluation was performed. 

2. Background and Related Work: 
A. Point-To-Point Asynchronous Communication: 
The proposed method assume point-to-point communication 
[4], [12], [13] & [18] between a sender and receiver. 

a) Asynchronous Communication Channels: 
Asynchronous communication means only flow of data be-
tween two entities and no clock information is present in this. 

 

 

 

Figure 1: Point-to-point Asynchronous Communication 
Fig. 1.shows the point-to-point communication. In this send-
er sends information to the receiver and the receiver in turn 
provide the Ack (Acknowledgement) to the ender. If the 
sender passes the actual data to the receiver, that data is typ-
ically replaced by the encoded data. The Ack indicates that 
the data has been received by the receiver and new data can 
be sent [18]. 
b) Four-phase Communication Protocol: 
Given an asynchronous communication channel, a protocol 
is needed to transfer information from sender to the receiver. 
Most widely used protocol is four-phase or return-to-zero 
(RZ) [3], [16], [18]. 
Fig. 2 shows the four-phase or RZ protocol. This protocol 
has two phases. 1) Evaluate and 2) Reset. In evaluate phase 
logic 0 or logic 1 is evaluated. This protocol uses dual rail 
coding i.e., 1-bit of data represents two wires. When one 
signal is in data phase and other one is in reset phase then 
data should not be considered. When both signals are in data 
phase then data is to be considered. In this protocol we are 
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providing delay insensitivity with reset phase for every two 
data phases. This protocol has less complexity. 

 

 

 

 

 

 

Figure 2: Four-phase (or) RZ Protocol 
 

Data T F  

0 0 1  
  data/evaluate phase 1 1 0 

 0 0 Reset phase 

An alternative to the RZ protocol is two-phase or non-return 
to zero protocol [9], [12]. In this we don’t have any reset 
phase. This protocol has even phase and odd phase. This also 
use the dual-rail coding. The codes designed for this typical-
ly have large overheads and it has more complex structure. 
Hence, four-phase communication protocol is used for 
communication in this paper. 
c) DI Codes: 
When asynchronous communication is used data must be 
suitably encoded so that the receiver can identify when a 
packet has been received. Delay insensitivity [3], [16], [18], 
means that the data comes to the receiver depends on the 
delays of individual bits in a code word. The key property is 
that no valid codeword is covered by another. 
Definition 1 (unordered code [7]): A code word X = x1 
x2  . . . xn covers another code word Y = y1 y2 . . . yn if and 
only if, for each bit position i, if Yi = 1 then Xi = 1. In these 
case Y is covered by X or Y ≤ X. A codeword `c’ is unordered 
if each pair of code words in c is unordered. 
There are two types of DI codes: Systematic and 
non-systematic codes. A systematic code [11], [18] contains 
separate data and check fields. For asynchronous communi-
cation, the check field provides extra bit to indicate the entire 
code is DI. Types of systematic codes are Berger [5] and 
Knuth [18] codes. In this no hardware decoders are required 
for the extraction of data because the original data directly 
appears in codeword. 
In non systematic codes [4], [12], [18], there are no separate 
data and check fields. Data is encoded in a unified field, 
which ensures delay insensitivity. Dual-rail, 1-of- 4 and gen-
eral class of m-of-n codes are example for these codes. 

B. Hamming Error Correction Codes: 
Hamming code is one of the mostly used error correcting 
code. It is the example of a weight-based code i.e., each bit 

position has a weight. These codes have data (information) 
and check (parity) bits. Data bits are assigned as 
non-power-of-two weights and check bits are assigned as 
power-of-two weights. The weights assigned for the data bits 
are called weight set. The parity bit provides error coverage 
for the data bits. 

C. Basic Zero-Sum Code: 
This section gives the detailed explanation for zero-sum code. 
This code uses the single index weight assignment. This code 
provides 1-bit correction or 2-bit detection for symmetric 
errors. 
This code is combination of Hamming codes [10] and Berger 
codes [5]. In Berger code, ‘0’ in data bit is used to generate 
the DI field. Berger code counts the number of 0’s in data bit, 
where as zero-sum code adds the index weights of 0’s in the 
data field. 

a) Overview of Code: 

Fig. 3 shows the examples of zero-sum code for 2-bit, 3-bit 
and 4-bit data words. The code has two fields. 1) data and 2) 
check bits. Each bit position is assigned one index weight. 
The data word is represented as non-power-of two weights 
and check bits are power-of-two weights. The sum of index 
weights of 0’s in the data word is represented in check bits. 
The sum of index weights of check bits must be greater than 
the sum of index weight of data word. 
b) Formal Calculation of Code Length: 
The check field must support the binary representation of 
sum of data index weights i.e., to handle the extreme case 
where all bits in data word is 0’s. Therefore, the total no. of 
check bits allocated is the [log2 (Σ data word index weights)] 
+ 1. 
The check field length k in terms of data length `n’ is 
 k = [log2 ([n + μ) (n + μ + 1)|2] – 2 μ +1)] 
Example 1: For a 4-bit data word 1010 in fig. 2, the sum of 
data word index weight of 0’s is `9’. the corresponding check 
field is the binary representation of 9, which is 01001. In 
similar way all the data words are represented in check bits. 
c) Detecting and correcting a 1-bit Error: 
Hamming code provides a syndrome which is a vector of 
individual check bits and zero-sum provides a syndrome 
which is a single positive integer. Syndrome is calculated as 
the difference between the sum of index weights of 1’s in 
check bits and sum of index weights of 0’s in data word. If 
syndrome value is `0’ there is no error and syndrome value is 
non-zero indicates an error. It is also used to correct the 1-bit 
error. The syndrome value indicates the index weight of the 
corrupted bit and by inverting that bit we can correct the er-
ror. 
Example 2: If suppose there is an error in transmitting the 
4-bit data word 0010, due to a flip in data bit with index 6 
(i.e., erroneous data word 0110), transmitted with original 
error free check field (i.e., 10000). The newly calculated 
check field based on corrupted data word is 10 (i.e., 7 + 3). 
The original check field is 16. Therefore the syndrome is 16 
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– 10 = 6, which is non-zero and non-power-of-two, indicates 
that the error occur in the data bit with index weight `6’. 
D. Formal Proof: Zero-Sum a ECU Code: 

Theorem 1 (zero-sum code delay – insensitivity [5]): Every 
zero sum code is unordered. 
 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Example of zero-sum ECU codes (a) 2-bit ECU b) 3-bit ECU (c) 4 –bit ECU.

Proof: By definition1, it is sufficient to show that zero-sum 
code, c, is unordered if each pair of code words is unordered. 
Given two data words X and Y, by definition 1 if X covers Y, 
then X has more 1’s and Y, and Y has more 0’s than X. The 
check field is computed as the sum of the data field index 
weight which are `0’. The sum of index weights of check 
field must be greater than the sum of index weights of data 
word. 
Theorem 2 (Zero-sum code 1-bit correction [6]): Every ze-
ro-sum code provides 1-bit detection and correction. 
Proof: The check bits can be represented as the sum of the 
index weight of 0’s of data word. We calculate the syndrome 
value to verify that the data word and check bits are correct 
or not. If the syndrome is non-zero there is an error occurred. 
The value of the syndrome is the difference between the 
check fields of original codeword to the check field of the 
newly computed codeword. 
Theorem 3 (Zero-sum code error detection [5]): Every ze-
ro-sum code provides 2-bit detection. 

Proof: The proof is immediate from theorem 2. Since all 
1-bit errors can be corrected, the code must have minimum 
distance of at least `3’; therefore, all 2-bit errors can be de-
tected. 
3. Extending the Zero-Sum Code: 
A zero-sum+ code: zero-sum+ code provide two alternative 
modes. In one mode, it can detect all odd number and up to 
3-bit errors. In second mode, 2-bit error can be detected and 
1-bit error can be corrected.  
Overview: It is same as zero-sum code with extra parity bit. 
Both data word and check field are identical to those of a 
zero-sum code. The new bit is the parity bit which indicates 
the even parity. 

No. of Errors Parity Syndrome Value 

0 Even Zero 

1 Odd Zero or non-zero 

2 Even Non-zero 

3 (or odd) Odd Zero or non-zero 

570 
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Table 1: Zero-sum+ Error detection classification 
As shown in table 1, each error type is detected by it parity 
and syndrome values. When the syndrome is zero and parity 
is even then there are no errors. When 1-bit error occurs, 
there are two possibilities, each resulting in odd parity. If a 
1-bit error occurs in data word or check bits, the syndrome is 
non-zero, and if 1-bit error occur in parity bit the syndrome 
is zero. When the parity is even and syndrome is non-zero 
indicates 2-bit errors. 
Error Correction: 

No. of Errors Parity Error Handling 

0 Even None 

1 Odd 1-bit correction method 

1 Odd Toggle parity bit 
Table 2: Zero-sum+ error correction Classification 

Table 2 shows zero-sum error correction classification. 
When `0’ error occurs, parity is even and syndrome value is 
zero. Therefore no error handling method I applied. If no. of 
errors is `1’ then there are two cases. If the parity is odd, 
syndrome is non-zero then 1-bit correction method is applied. 
It is identical to the zero-sum the parity bit the error can be 
corrected 
4. Hardware Support: 
Hardware Components: Fig. 4 shows the block-level sys-
tem micro architecture the four phase communication chan-
nel is used to transfer the data between sender and receiver. 
The sender node generatesthe data word to the encoder 
which generates the check bits. The corresponding data word 
and check bits are given to the completion detector and error 
correction unit. The CD generates the Ack which again given 
back to the sender. The ECU unit generates the corrected 
data word and the check bits. 

 
 
 
 
 
 
 
 
 

Figure 4: Block – Level System Micro architecture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 

Figure 5: Basic 4-bit Encoder Design
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Fig. 5. shows the basic 4-bit encoder designs. It consists of 
multiplexers followed by adders. There is one selector for 
each data field index value (3, 5, 6, 7). This selector passes 
the index value if the corresponding data bit is `0’ and it 

passes `0’ if the corresponding data bit is 1. By adding all 
these values the check bits can be generated. 
In CD we have a timer block. This timer waits for the correct 
data to be sent. If the sender passes some information with 
one error then the CD waists for the arrival of correct bit and 
it waits for the valid code word. If the valid code word i sent 
then an Ack is given the sender. ECU unit generate the co-
deword by detecting and correcting the 1-bit errors. 

 
 
 
 
 
 
 
 

Figure 6: Modified Block Level System Architecture
Fig. 6 shows the modified block level system architecture. In 
this we have source, encoder, 4-phase converter and CD and 
decoder. 
Initially we have Ack = 0, enable = 0. When enable is `1’ 
source will give the information or data to the encoder. En-
coder generates the check bits. The output of encoder is giv-
en to the 4-phase converter. In this 4-phase converter eva-
luate phase and reset phase are present. In this one bit can be 
represented as true rails and false rails. When both inputs are 
in data phase then only the data will be considered. If one is 
in evaluate phase and one is reset phase data will not consi-

dered. From this the total output is given the CD and only 
true rails are given to the decoder. In this CD, we are totally 
removing the timer block. The CD waits for the data word 
and once the data has received then it sends Ack to the send-
er. In this we are using a c-element whose output is `0’ when 
all inputs are `0’ and vice-versa. In the previous architecture, 
CD waits for the arrival of correct data but in this it waits 
only for the data and the decoder decodes the true rail and 
produces the output. By the removal of timer block we are 
reducing the execution time i.e., reducing the latency with 
1-bit detection and correction for the zero-sum code. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Zero sum system with timer block
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Figure 8: Zero sum system without timer block

6. Conclusion: 
Zero-sum codes support the design of asynchronous global 
communication which combines the delay insensitivity and 
fault tolerance. The complete zero-sum code family was de-
fined, by generated the weight assignment. Zero-sum+ and 
zero-sum* were also proposed. 
Zero-sum+ code extends error detection to 3-bit errors and 
zero-sum* code provides 2-bit detection and correction cov-
erage. In comparison with other ECU codes, zero-sum code 
provides better coding efficiency. The correction coverage of 
2-bit errors are upto 52.92% to 71.16%. We identified the 
simulation results for zero-sum code and reduction of latency 
with a modification to the block level architecture. 
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