

International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.1, Pages : 346 – 352 (2013)
Special Issue of ICACSE 2013 - Held on 7-8 January, 2013 in Lords Institute of Engineering and Technology, Hyderabad

ISSN 2278-3091

Reduction of Latency in an Asynchronous Communication
System with Error Correction Capabilities

1Ms. Kasam Navya, 2Dr. Syed Amjad Ali

1M.Tech. (ES & VLSID) student, Lords Institute of Engineering and Technology, Hyderabad, India. Email: kasamnavya@gmail.com
2Professor, Department of ECE and Dean Academics, Lords Institute of Engineering and Technology, Hyderabad India

Email: syedamjadali.lords@gmail.com.

ABSTRACT
This paper introduces a new family of error – correction un-
ordered (ECU) codes for global communication, called zero
– sum. It is the combination of delay insensitive codes and
fault tolerance of error correcting codes. Two important fea-
ture of this code are that they are systematic and weighted.
For this code, a wide variety of weight assignments is used.
Two enhancements are also proposed for zero-sum code. The
zero-sum+ code, it gives error detection for 3-bit errors, or
alternatively provides 2-bit detection and 1-bit correction.
The zero-sum* code, provides heuristic 2-bit correction while
still guaranteeing 2-bit detection, under different weight as-
signments. The outline for this block level system micro ar-
chitecture is given. In comparison with other ECU codes, the
zero-sum code provides better or comparable coding effi-
ciency, with 5.74% - 18.18% reduction in average number of
wire transitions. Zero-sum* code provides 2-bit correction
coverage, with 52.92% to 71.16% of all 2-bit errors with
only a moderate decrease in number of bits per wire and in-
crease in wire transitions.
Key words : Asynchronous communication, delay - insensi-
tive, error-correcting codes, fault tolerances, unordered.
1. Introduction:
As digital systems grow in complexity, the challenges of
design reuse, scalability, power and reliability continue to
grow at a rapid pace [16]. They are expected to become ma-
jor bottlenecks in less than a decade.
To provide flexibility in system integration, asynchronous
global communication [4] [12] [13] is used such system
forms a globally – asynchronous locally - synchronous
(GALS) [8] [17] system. Applications of asynchronous glob-
al communication, using delay insensitive codes [18], in-
clude high-speed commercial FPGA’s and Ethernet routing
chips.
The contributions of this paper are, use of error correcting
unordered codes in asynchronous communication, called
zero-sum [1], [2]. These code supports the delay insensitivity
(i.e., unordered property) and fault tolerance (i.e., 1-bit cor-
rection and 2-bit detection). This detection and correction of
errors are based on their minimum hamming distances.
The zero-sum codes are systematic [6], [11] i.e., allows di-
rect extraction of data by the receiver without any hardware.
They are also weighted i.e., check field is represented as sum
of data field index weights.

The outline of system micro architecture includes three key
hardware support blocks which are an encoder (for the send-
er), completion detector (CD) and error-correcting unit (for
the receiver).
The basic method for generating the zero-sum code builds on
a prior approach briefly introduced by Berger [5] and Bose
[6]. These approaches are limited for single index weight
assignment. For these codes neither hardware support not
experimental evaluation was performed.

2. Background and Related Work:
A. Point-To-Point Asynchronous Communication:
The proposed method assume point-to-point communication
[4], [12], [13] & [18] between a sender and receiver.

a) Asynchronous Communication Channels:
Asynchronous communication means only flow of data be-
tween two entities and no clock information is present in this.

Figure 1: Point-to-point Asynchronous Communication
Fig. 1.shows the point-to-point communication. In this send-
er sends information to the receiver and the receiver in turn
provide the Ack (Acknowledgement) to the ender. If the
sender passes the actual data to the receiver, that data is typ-
ically replaced by the encoded data. The Ack indicates that
the data has been received by the receiver and new data can
be sent [18].
b) Four-phase Communication Protocol:
Given an asynchronous communication channel, a protocol
is needed to transfer information from sender to the receiver.
Most widely used protocol is four-phase or return-to-zero
(RZ) [3], [16], [18].
Fig. 2 shows the four-phase or RZ protocol. This protocol
has two phases. 1) Evaluate and 2) Reset. In evaluate phase
logic 0 or logic 1 is evaluated. This protocol uses dual rail
coding i.e., 1-bit of data represents two wires. When one
signal is in data phase and other one is in reset phase then
data should not be considered. When both signals are in data
phase then data is to be considered. In this protocol we are

346

International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.1, Pages : 346 – 352 (2013)
Special Issue of ICACSE 2013 - Held on 7-8 January, 2013 in Lords Institute of Engineering and Technology, Hyderabad

ISSN 2278-3091

providing delay insensitivity with reset phase for every two
data phases. This protocol has less complexity.

Figure 2: Four-phase (or) RZ Protocol

Data T F

0 0 1
 data/evaluate phase 1 1 0

 0 0 Reset phase

An alternative to the RZ protocol is two-phase or non-return
to zero protocol [9], [12]. In this we don’t have any reset
phase. This protocol has even phase and odd phase. This also
use the dual-rail coding. The codes designed for this typical-
ly have large overheads and it has more complex structure.
Hence, four-phase communication protocol is used for
communication in this paper.
c) DI Codes:
When asynchronous communication is used data must be
suitably encoded so that the receiver can identify when a
packet has been received. Delay insensitivity [3], [16], [18],
means that the data comes to the receiver depends on the
delays of individual bits in a code word. The key property is
that no valid codeword is covered by another.
Definition 1 (unordered code [7]): A code word X = x1
x2 . . . xn covers another code word Y = y1 y2 . . . yn if and
only if, for each bit position i, if Yi = 1 then Xi = 1. In these
case Y is covered by X or Y ≤ X. A codeword `c’ is unordered
if each pair of code words in c is unordered.
There are two types of DI codes: Systematic and
non-systematic codes. A systematic code [11], [18] contains
separate data and check fields. For asynchronous communi-
cation, the check field provides extra bit to indicate the entire
code is DI. Types of systematic codes are Berger [5] and
Knuth [18] codes. In this no hardware decoders are required
for the extraction of data because the original data directly
appears in codeword.
In non systematic codes [4], [12], [18], there are no separate
data and check fields. Data is encoded in a unified field,
which ensures delay insensitivity. Dual-rail, 1-of- 4 and gen-
eral class of m-of-n codes are example for these codes.

B. Hamming Error Correction Codes:
Hamming code is one of the mostly used error correcting
code. It is the example of a weight-based code i.e., each bit

position has a weight. These codes have data (information)
and check (parity) bits. Data bits are assigned as
non-power-of-two weights and check bits are assigned as
power-of-two weights. The weights assigned for the data bits
are called weight set. The parity bit provides error coverage
for the data bits.

C. Basic Zero-Sum Code:
This section gives the detailed explanation for zero-sum code.
This code uses the single index weight assignment. This code
provides 1-bit correction or 2-bit detection for symmetric
errors.
This code is combination of Hamming codes [10] and Berger
codes [5]. In Berger code, ‘0’ in data bit is used to generate
the DI field. Berger code counts the number of 0’s in data bit,
where as zero-sum code adds the index weights of 0’s in the
data field.

a) Overview of Code:

Fig. 3 shows the examples of zero-sum code for 2-bit, 3-bit
and 4-bit data words. The code has two fields. 1) data and 2)
check bits. Each bit position is assigned one index weight.
The data word is represented as non-power-of two weights
and check bits are power-of-two weights. The sum of index
weights of 0’s in the data word is represented in check bits.
The sum of index weights of check bits must be greater than
the sum of index weight of data word.
b) Formal Calculation of Code Length:
The check field must support the binary representation of
sum of data index weights i.e., to handle the extreme case
where all bits in data word is 0’s. Therefore, the total no. of
check bits allocated is the [log2 (Σ data word index weights)]
+ 1.
The check field length k in terms of data length `n’ is
 k = [log2 ([n + μ) (n + μ + 1)|2] – 2 μ +1)]
Example 1: For a 4-bit data word 1010 in fig. 2, the sum of
data word index weight of 0’s is `9’. the corresponding check
field is the binary representation of 9, which is 01001. In
similar way all the data words are represented in check bits.
c) Detecting and correcting a 1-bit Error:
Hamming code provides a syndrome which is a vector of
individual check bits and zero-sum provides a syndrome
which is a single positive integer. Syndrome is calculated as
the difference between the sum of index weights of 1’s in
check bits and sum of index weights of 0’s in data word. If
syndrome value is `0’ there is no error and syndrome value is
non-zero indicates an error. It is also used to correct the 1-bit
error. The syndrome value indicates the index weight of the
corrupted bit and by inverting that bit we can correct the er-
ror.
Example 2: If suppose there is an error in transmitting the
4-bit data word 0010, due to a flip in data bit with index 6
(i.e., erroneous data word 0110), transmitted with original
error free check field (i.e., 10000). The newly calculated
check field based on corrupted data word is 10 (i.e., 7 + 3).
The original check field is 16. Therefore the syndrome is 16

347

International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.1, Pages : 346 – 352 (2013)
Special Issue of ICACSE 2013 - Held on 7-8 January, 2013 in Lords Institute of Engineering and Technology, Hyderabad

ISSN 2278-3091

– 10 = 6, which is non-zero and non-power-of-two, indicates
that the error occur in the data bit with index weight `6’.
D. Formal Proof: Zero-Sum a ECU Code:

Theorem 1 (zero-sum code delay – insensitivity [5]): Every
zero sum code is unordered.

Figure 3: Example of zero-sum ECU codes (a) 2-bit ECU b) 3-bit ECU (c) 4 –bit ECU.

Proof: By definition1, it is sufficient to show that zero-sum
code, c, is unordered if each pair of code words is unordered.
Given two data words X and Y, by definition 1 if X covers Y,
then X has more 1’s and Y, and Y has more 0’s than X. The
check field is computed as the sum of the data field index
weight which are `0’. The sum of index weights of check
field must be greater than the sum of index weights of data
word.
Theorem 2 (Zero-sum code 1-bit correction [6]): Every ze-
ro-sum code provides 1-bit detection and correction.
Proof: The check bits can be represented as the sum of the
index weight of 0’s of data word. We calculate the syndrome
value to verify that the data word and check bits are correct
or not. If the syndrome is non-zero there is an error occurred.
The value of the syndrome is the difference between the
check fields of original codeword to the check field of the
newly computed codeword.
Theorem 3 (Zero-sum code error detection [5]): Every ze-
ro-sum code provides 2-bit detection.

Proof: The proof is immediate from theorem 2. Since all
1-bit errors can be corrected, the code must have minimum
distance of at least `3’; therefore, all 2-bit errors can be de-
tected.
3. Extending the Zero-Sum Code:
A zero-sum+ code: zero-sum+ code provide two alternative
modes. In one mode, it can detect all odd number and up to
3-bit errors. In second mode, 2-bit error can be detected and
1-bit error can be corrected.
Overview: It is same as zero-sum code with extra parity bit.
Both data word and check field are identical to those of a
zero-sum code. The new bit is the parity bit which indicates
the even parity.

No. of Errors Parity Syndrome Value

0 Even Zero

1 Odd Zero or non-zero

2 Even Non-zero

3 (or odd) Odd Zero or non-zero

570

348

International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.1, Pages : 346 – 352 (2013)
Special Issue of ICACSE 2013 - Held on 7-8 January, 2013 in Lords Institute of Engineering and Technology, Hyderabad

ISSN 2278-3091

Table 1: Zero-sum+ Error detection classification
As shown in table 1, each error type is detected by it parity
and syndrome values. When the syndrome is zero and parity
is even then there are no errors. When 1-bit error occurs,
there are two possibilities, each resulting in odd parity. If a
1-bit error occurs in data word or check bits, the syndrome is
non-zero, and if 1-bit error occur in parity bit the syndrome
is zero. When the parity is even and syndrome is non-zero
indicates 2-bit errors.
Error Correction:

No. of Errors Parity Error Handling

0 Even None

1 Odd 1-bit correction method

1 Odd Toggle parity bit
Table 2: Zero-sum+ error correction Classification

Table 2 shows zero-sum error correction classification.
When `0’ error occurs, parity is even and syndrome value is
zero. Therefore no error handling method I applied. If no. of
errors is `1’ then there are two cases. If the parity is odd,
syndrome is non-zero then 1-bit correction method is applied.
It is identical to the zero-sum the parity bit the error can be
corrected
4. Hardware Support:
Hardware Components: Fig. 4 shows the block-level sys-
tem micro architecture the four phase communication chan-
nel is used to transfer the data between sender and receiver.
The sender node generatesthe data word to the encoder
which generates the check bits. The corresponding data word
and check bits are given to the completion detector and error
correction unit. The CD generates the Ack which again given
back to the sender. The ECU unit generates the corrected
data word and the check bits.

Figure 4: Block – Level System Micro architecture

Figure 5: Basic 4-bit Encoder Design

349

International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.1, Pages : 346 – 352 (2013)
Special Issue of ICACSE 2013 - Held on 7-8 January, 2013 in Lords Institute of Engineering and Technology, Hyderabad

ISSN 2278-3091

Fig. 5. shows the basic 4-bit encoder designs. It consists of
multiplexers followed by adders. There is one selector for
each data field index value (3, 5, 6, 7). This selector passes
the index value if the corresponding data bit is `0’ and it

passes `0’ if the corresponding data bit is 1. By adding all
these values the check bits can be generated.
In CD we have a timer block. This timer waits for the correct
data to be sent. If the sender passes some information with
one error then the CD waists for the arrival of correct bit and
it waits for the valid code word. If the valid code word i sent
then an Ack is given the sender. ECU unit generate the co-
deword by detecting and correcting the 1-bit errors.

Figure 6: Modified Block Level System Architecture
Fig. 6 shows the modified block level system architecture. In
this we have source, encoder, 4-phase converter and CD and
decoder.
Initially we have Ack = 0, enable = 0. When enable is `1’
source will give the information or data to the encoder. En-
coder generates the check bits. The output of encoder is giv-
en to the 4-phase converter. In this 4-phase converter eva-
luate phase and reset phase are present. In this one bit can be
represented as true rails and false rails. When both inputs are
in data phase then only the data will be considered. If one is
in evaluate phase and one is reset phase data will not consi-

dered. From this the total output is given the CD and only
true rails are given to the decoder. In this CD, we are totally
removing the timer block. The CD waits for the data word
and once the data has received then it sends Ack to the send-
er. In this we are using a c-element whose output is `0’ when
all inputs are `0’ and vice-versa. In the previous architecture,
CD waits for the arrival of correct data but in this it waits
only for the data and the decoder decodes the true rail and
produces the output. By the removal of timer block we are
reducing the execution time i.e., reducing the latency with
1-bit detection and correction for the zero-sum code.

Figure 7: Zero sum system with timer block

349

350

International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.1, Pages : 346 – 352 (2013)
Special Issue of ICACSE 2013 - Held on 7-8 January, 2013 in Lords Institute of Engineering and Technology, Hyderabad

ISSN 2278-3091

Figure 8: Zero sum system without timer block

6. Conclusion:
Zero-sum codes support the design of asynchronous global
communication which combines the delay insensitivity and
fault tolerance. The complete zero-sum code family was de-
fined, by generated the weight assignment. Zero-sum+ and
zero-sum* were also proposed.
Zero-sum+ code extends error detection to 3-bit errors and
zero-sum* code provides 2-bit detection and correction cov-
erage. In comparison with other ECU codes, zero-sum code
provides better coding efficiency. The correction coverage of
2-bit errors are upto 52.92% to 71.16%. We identified the
simulation results for zero-sum code and reduction of latency
with a modification to the block level architecture.
REFERENCES
[1] M.Y. Agyekum, “Designing delay – insensitive codes

for robust global asynchronous communication”, Ph.D.
dissertation, Columbia University, New York, Jan.
2011.

[2] M.Y. Agyekum and S.M. Nowick,” An error-correcting
unordered code and hardware support for robust asyn-
chronous global communication”, in proc DATE mar.
2010, PP, 765 – 770.

[3] V. Akella, N.H. Vaidya and G.R. Redinbo, “ Asyn-
chronous comparison based decoders for de-
lay-insensitive code”, IEEE trans. Comput., Vol. 47,
No. 7, PP – 802 – 811, Jul, 1988.

[4] W.J. Bainbridge, W.B. Toms, D.A. Edwards and .B.
Fuber, “Delay insensitive point-to-point interconnects
using M-of-N codes”, in Proc. IEEE async. Symp. May
2033, PP. 132 – 140.

[5] J.M. Berger “ A note on error detecting codes for
asymmetric channel”, Inform, Contr. Vol. 4, No. 1, PP.
68 – 73, 1961.

[6] B. Bose, “unidirectional error-correction | detection for
VLSI memory”, in proc. ISCA, 1984, PP. 242 – 244.

[7] B. Bose and T.R.N. Rao, “ Theory of unidirectional
error correcting | detecting codes”, IEEE trans, comput,
vol. 31, No. 6. PP. 521 – 530, Jun 1982.

[8] D.M. Chapiro, “Globally – asynchronous locally syn-
chronous system”, Ph.D, thesis, Dept. Comput. Sci.,
Stanford Univ., Palo Alto, CA, Oct. 1984.

[9] M.E. Dean, T.E. Williams and D.L. Dill, “ Efficient
self-timing with level-encoded 2-phae dual rial
(LEDR)”, in proc. UC santa cruz conf. Adv. Res. VLSI,
19091, PP. 55-70.

[10] R.W. Hamming, “Error detecting and Error correcting
codes”, Bell syst. Tech. J., Vol. 29, No. 1, PP. 147 –
150, 1950.

[11] N.K. Jha,”Seperable codes for detecting unidirectional
errors”, IEEE trans. comput. Aided Des., Vol., 8, No. 5,
PP. 571 – 574, May 1989.

[12] P.B. McGee, M. Y. Agyekum, M.A. Mohamed, and
S.M. Nowick, “ A level – encoded transition signaling
protocol for high throughput asynchronous global
communication”, in proc. IEEE async. Symp. Apr.
2008, PP. 116 – 127.

[13] S.Ogg. B. Al-Hashimi, and A.Yakovlev, “Asynchron-
ous transient resilient links for NOC, “in proc. CODEs,
Oct. 2008, PP. 209-214.

[14] W.W. person and E.J. Weldon, Error-correcting codes,
2nd ed. Cambridge, MA; MIT press, 1972.

[15] S.J. Piestrak and T. Nanya, “Towards totally
self-checking delay insensitive system”, in proc FTCS,
Jun. 1995, PP. 228 – 237.

[16] J.D. Owens, W.J. Dally, R. Ho., D.N. Jayasimha, S.W.
Keckler and L.S. Peh, “Research challenge for on-chip

573

351

International Journal of Advanced Trends in Computer Science and Engineering, Vol.2 , No.1, Pages : 346 – 352 (2013)
Special Issue of ICACSE 2013 - Held on 7-8 January, 2013 in Lords Institute of Engineering and Technology, Hyderabad

.

ISSN 2278-3091

interconnection networks”, IEEE micro., Vol. 27, No.
5, PP. 96 – 108.

[17] P. Techan, M. Greenstreetn, and G. Lemieux, “A sur-
vey and taxonomy of GALS design style”, IEEE des.
test comput., Vol. 24, No. 5, PP. 418 – 429. Sept-Oct
2007.

[18] T.Verhoeff, “Delay insensitive codes” An overview”, Dis-
trib comput., Vol 3, No. 1, pp. 1 – 8, 1998.

352

