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Abstract 
A vanishing point in a 2D image is a point where parallel 
edges in 3D scene converges due to perspective view. 
Vanishing point provides lot of information in most of the 
applications like distance of objects in 3D Scene. This 
point depends on Camera viewing angle as well as 
distance between the parallel edges in a scene. In order 
to find relationship between the Vanishing Points with 
view angle and distance between parallel edges with 
varying focal lengths of the camera, various data were 
collected by having an experimental set-up by varying the 
distance between two parallel sticks in an image and also 
by varying the angle of the camera with the parallel 
sticks. Images are preprocessed to overcome the 
problems of improper lighting in the scene. Different data 
mining techniques were used and the results are twofold. 
The results of regression model for the relationship 
between the angle of the camera and the X and Y 
coordinates of the vanishing point has been analyzed 
using neural network model, which gave 100% validity on 
the model.  
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Introduction 
Vanishing points are useful in applications such as road 
detection in unmanned cars, object detection in an image 
and training canines etc.  In automated vehicles driving 
on the roads, it can be used to monitor and control the 
vehicle to be kept in the specified lane of the road when it 
deviates by tracing the vanishing point. It can also be 
used in embedded system applications to assist the 
visually impaired to direct them on a pathway. The 
method to find the vanishing point works with simple 8-
bit gray scale image. The fundamental visual element is 
the trend line or “directionality” of the image data, in the 
neighborhood of a pixel. This directionality is measured 
as the magnitude of the convolution of a pixel’s 
neighborhood with a Gabor filter. Gabor filters are 
directional wavelet-type filters, or masks. They consist of 
a plane wave, in any direction in the image plane, 
modulated by a Gaussian around a point. The Gaussian 
localizes the response and guarantees that the convolution 
integral converges, and the plane wave affords a non-zero 
convolution over discontinuities that are perpendicular to 

the wave’s direction. In other directions, the periodicity 
of the wave brings the convolution close to zero. The 
phase of the wave, relative to a feature at the origin, is 
best accounted for by a sine/cosine combination of filters: 
cosine responds to even-parity features, sine responds to 
odd-parity features, and the other responses are vector 
combinations of these two. We are interested only in the 
magnitude of the response. The common formulas for the 
Gabor filter are: 
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where the wave propagates along the x’ coordinate, which 
is rotated in some arbitrary direction relative to the image 
coordinates x and y;  is the circular frequency of the 
wave, ω = 2π / λ. Parameter σ is the half-width of the 
Gaussian, and defines roughly the size scale on which 
discontinuities are detected. Parameter γ is the 
eccentricity of the Gaussian: if γ ≠ 1, the Gaussian is 
elongated in the direction of the wave, or perpendicular to 
it. Repeated convolutions of the same mask with every 
pixel’s neighborhood can be accelerated by convolving in 
the Fourier space, where the convolution of two functions 
is expressed as the product of their Fourier transforms.  
 
Intuitively, one can think of the same mask being 
translated across the image. In Fourier space, translations 
become multiplications by a phase factor, and so it is 
possible to transform the image and the mask once, 
multiply the transforms, then perform the inverse 
transform to obtain the value of the convolution at every 
pixel of the image at once. In the program used, the image 
is convolved with Gabor filters in a (large) number of 
evenly spaced directions, from zero to 180 degrees, and 
the direction with the strongest response is retained as the 
local direction field (trend line) of the image. Naturally, 
this calculation is by far the most computationally 
intensive part of the algorithm [1]. A well-known Fast 
Fourier Transform library FFTW is used.  
 
Researchers have proposed various methods to determine 
the vanishing point of 2D images. Wolfgang Forstner[5] 
presented a method where in the vanishing points were 
estimated from line segments and their rotation matrix, 
using spherically normalized homogenous coordinates  
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and allowing vanishing points to be at infinity. The 
proposed method had minimal representation for 
uncertainty of homogenous coordinates of 2D points and 
2D lines and rotations to avoid use of singular covariance 
matrices of observed line segments. A more efficient 
method was proposed by Danko Antolovic, Alex Leykin, 
and Steven D. Johnson, where line segments were filtered 
using Gabor filters and having a convolution close to 
zero. The output of Gabor filters were processed to Fast 
Fourier Transformations. There are many methods to 
determine the vanishing point, in this study, a model will 
be formed trying to bring out a relationship between the 
angle of camera and the position of the vanishing points. 
 
Methodology 
Numerous photographs were taken by altering the 
distance between the sticks and the angle between the 
camera and the horizontal. Here the angle () gives the 
angle between the camera axis and the horizontal. Using 
the vanishing point method described by Danko 
Antolovic, Alex Leykin, and Steven D. Johnson, the 
vanishing point was identified for the various data set 
images. The camera angle  was varied from 60o to 120o 
with increments of 10o, for every alteration in the distance 
between the sticks from 25cms to 115cms apart with 
increment of 10cms for each trial.  The images were taken 
for varying intensities for efficient vanishing point 
detection. The resultant data was used to build a 
relationship between them. A schematic of the 
experiment is shown below: 
 

 
Figure 1: Schematic of the experimental set-up. 

 
Phase – I 
General Regression Analysis 
A general regression analysis is carried out for the data 
set for various angles () and the X and Y coordinates of 
the vanishing point determined for the various images. 
The following table shows the initial results. 
 

Table 1: Regression Coefficients 
Term Coefficient SE Coefficient T P 

Constant 231.480 14.8529 15.5848 0.0 
X -0.056 0.0122 -4.5650 0.0 
Y -0.369 0.0369 -10.0217 0.0 

 
From the above table we get the regression coefficients 
for the obtained regression model. The model equation is 
defined by, 

 
= 231.480 - 0.056X - 0.369Y 

Here, by obtaining the X and Y coordinates of the 
vanishing point, the camera angle  can be determined. 
The corresponding P value for the constant, X and Y 
coordinates is 0, thus having a strong significance in the 
model. 
 
Phase – II 
 
Neural Networks and Multilayer Perceptron 
A Multilayer Perceptron (MLP) is a feed forward 
artificial neural network model that maps sets of input 
data onto a set of appropriate output. MLP utilizes a 
supervised learning technique called back propagation for 
training the network. MLP is a modification of the 
standard linear perceptron and can distinguish data that is 
not linearly separable. 
 
Input Layer - a vector of predictor variable values (X1 . . 
. Xp) is presented to the input layer. The input layer 
standardizes these values so that the range of each 
variable is -1 to 1, using the equation mentioned below. 
The input layer distributes the values to each of the 
neurons in the hidden layer. In addition to the predictor 
variables, there is a constant input of 1.0, called the bias 
that is fed to each of the hidden layers, this bias is 
multiplied by a weight and added to the sum going into 
the neuron. 
 
Hidden Layer - arriving at a neuron in the hidden layer, 
the value from each input neuron is multiplied by a 
weight (Wji), and the resulting weighted values are added 
together producing a combined value Uj. The weighted 
sum (Uj) is fed into a transfer function, σ, which outputs a 
value Hj. The outputs from the hidden layer are 
distributed to the output layer. In this case since all data 
are equally important, all have same weights. 
 
Output Layer-arriving at a neuron in the output layer, 
the value from each hidden layer neuron is multiplied by 
a weight (Wkj), and the resulting weighted values are 
added together producing a combined value Vj. The 
weighted sum (Vj) is fed into a transfer function, σ, which 
outputs a value Yk. The Y values are the outputs of the 
network. 
 
Missing value handling for this experiment consists of 
user and system-missing values are treated as missing. 
Statistics are based on cases with valid data for all 
variables used by the procedure. Weight handling is not 
applicable in this experiment, since all coordinates and 
angles and distance between sticks are equally important 
and significant to the study. 
 
Multilayer Perceptron: Anglevs. X Coordinate  
147 of 210 observations were used to build the models 
which were later used to predict the remaining 
observations. 
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Table 2: Case Processing Summary 
 N Percent 

Sample Training 147 70.0% 
Testing 63 30% 

Valid 210 100.0% 
Excluded 0  

Total 210  
 
The input layer consists of two covariates, the distance 
between the sticks in the experiment and the X coordinate 
of the vanishing point. It thus consists of two units, 
excluding the bias unit in the set-up. The rescaling 
method used for the covariates was standardizing. The 
dependent and independent variable were standardized 
using, 
 

ࢄ ࢔ࢇࢋࡹ−
 ࢋࢠ࢏ࡿ ࢋ࢒࢖࢓ࢇࡿ

 
Only one hidden layer is used with three units in the 
hidden layer excluding the bias unit. The activation 
function used was the hyperbolic tangent function.  
 
The output layer depends only on the X coordinates with 
only one unit in it. A standardized rescaling method was 
used for the scale dependents. An identity activation 
function was used in this case. To incorporate the error, a 
sum of squares error function was incorporated. 
 
Synaptic Weight < 0 
Synaptic Weight > 0 
 
 
 
 
 
 
 
 
 
Figure 2: Multilayer Perceptron model for Anglevs. 

X Coordinate 
 

Table 3: Model Summary 

Training 

Sum of 
Squares Error 33.206 

Relative Error 0.730 

Stopping Rule 
Used 

One consecutive 
step(s) with no 

decrease in error 
(error computations 

are based on the 
testing sample) 

Testing 
Sum of 

Squares Error 8.478 

Relative Error 0.510 
 
 

SSE is the error function that the network tries to 
minimize during training. Note that the sums of squares 
and all following error values are computed for the 
rescaled values of the dependent variables. The relative 
error for each scale-dependent variable is the ratio of the 
sum-of-squares error for the dependent variable to the 
sum-of-squares error for the “null” model, in which the 
mean value of the dependent variable is used as the 
predicted value for each case. 
 

Table 4: Parameter Estimates 

Predictor 

Predicted 
Hidden 
Layer 1 

Output 
Layer 

H(1:1) X 
Coordinates 

Input Layer 
(Bias) -0.110  

Distance 0.038  
X -0.821  

Hidden 
Layer 1 

(Bias)  -0.137 
H(1:1)  -0.928 

 
Table 5: Independent Variable Importance 

 Importance Normalized Importance 
Distance 0.040 4.2% 

X 0.960 100.0% 
 

 
Figure 3: Variable Importance 

 
Summation of importance is 1. Hence the importance of 
each of the independent variables in predicting the 
dependent can be understood. From the figure we can 
clearly understand the importance of the X coordinates of 
the Vanishing point for various camera angles , and has 
a 100% importance level, while the distance between the 
sticks do not account much for the model. This agrees 
with the first regression equation initially derived. 
 
Multilayer Perceptron: Angle  vs. Y Coordinate 
139 of 210 observations were used to build the model 
which was later used to predict 71 of the remaining 
observations. 

 
 
 
 

Bias 

H(1:1) 

Bias 

Distanc

X 
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Y_Value 

Table 6: Case Processing Summary 
 N Percentage 

Sample Training 139 66.1 
Testing 71 33.8 

Valid 210 100.0 
Excluded 0  

Total 210  
 
The input layer consists of two covariates, the distance 
between the sticks in the experiment and the Y coordinate  
of the vanishing point. It thus consists of two units, 
excluding the bias unit in the set-up. The rescaling 
method used for the covariates was standardizing. The 
dependent and independent variable were standardized 
using, 

ࢅ ࢔ࢇࢋࡹ−
 ࢋࢠ࢏ࡿ ࢋ࢒࢖࢓ࢇࡿ

 
Only one hidden layer was used with three units in the 
hidden layer excluding the bias unit. The activation 
function used was the hyperbolic tangent function.  
 
The output layer depended only on the Y coordinates with 
only one unit in it. A standardized rescaling method was 
used for the scale dependents. An identity activation 
function was used in this case. To incorporate the error, a 
sum of squares error function was incorporated. 
 
Synaptic Weight < 0 
Synaptic Weight > 0 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Multilayer Perceptron model for Anglevs.Y 
Coordinate 

 
Table 7: Model Summary 

Training 

Sum of Squares 
Error 22.622 

Relative Error 0.532 

Stopping Rule 
Used 

One consecutive 
step(s) with no 

decrease in error 
(error computations 

are based on the 
testing sample) 

Testing 
Sum of Squares 

Error 10.772 

Relative Error 0.571 
 
Similar to the case of that of the X coordinates, even the 
Y coordinates follows the same model. 

Table 8: Parameter Estimates 

Predictor 

Predicted 
Hidden 
Layer 1 

Output 
Layer 

H(1:1) Y 
Coordinates 

Input Layer 
(Bias) 0.534  

Distance -0.019  
Y 0.896  

Hidden 
Layer 1 

(Bias)  -0.272 
H(1:1)  1.128 

 
Table 9: Independent Variable Importance 

 Importance Normalized Importance 
Distance .019 2.0% 

Y .981 100.0% 
Summation of importance is 1. Hence the importance of 
each of the independent variables in predicting the 
dependent can be understood. 
 
 

 
Figure 5: Variable Importance 

 
 
From the figure we can clearly understand the importance 
of the Y coordinates of the Vanishing point for various 
camera angles , and has a 100% importance level, while 
the distance between the sticks do not account much for 
the model. This agrees with the first regression equation 
initially derived. 
 
Phase - II 
For the same camera angle , the distance between the 
sticks, and the brightness intensity was varied at small 
intervals to study the effect of the intensity of brightness 
on the detection of vanishing points in images. The 
results follow.  
 
Multilayer Perceptron: Brightness – X 
User and system missing values are treated as missing. 
Statistics are based on cases with valid data for all 
variables used by the procedure. 
 
 
 
 
 

Bias 

Distance 

Y 

Bias 

H(1:1) 
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Table 10: Case Processing Summary 
 N Percent 

Sample 
Training 142 67.6% 
Testing 68 32.3% 

Valid 210 100.0% 
Excluded 0  
Total 210  

 
Table 11: Network Information 

Input 
Layer 

Covariates 

1 Distance 

2 X 

Number of Unitsa 2 
Rescaling Method for 
Covariates Standardized 

Hidden 
Layer(s) 

Number of Hidden 
Layers 1 

Number of Units in 
Hidden Layer 1a 3 

Activation Function Hyperbolic tangent 

Output 
Layer 

Dependent 
Variables 1 X_Value 

Number of Units 1 
Rescaling Method for 
Scale Dependents Standardized 

Activation Function Identity 
Error Function Sum of Squares 

a. Excluding the bias unit 
 
Synaptic Weight < 0 
Synaptic Weight > 0 
 

 
Figure 6: Hidden layer activation function: 

Hyperbolic tangent, Output layer activation function: 
Identity 

 
Table 12: Model Summary 

Training 

Sum of Squares Error 31.552 

Relative Error .725 

Stopping Rule Used 
1 consecutive 
step(s) with no 
decrease in errora 

Training Time 0:00:00.03 

Testing 
Sum of Squares Error 21.762 

Relative Error .743 
Dependent Variable: X Value 
a. Error computations are based on the testing sample. 

The error, both sum of squares and relative is high, 
implying that higher and lower brightness peaks is not 
advisable for the detection of vanishing points. 
 

Table 13: Parameter Estimates 

Predictor Predicted 

Hidden Layer 1 Output 
Layer 

H(1:1) H(1:2) H(1:3) X_Value 

Input 
Layer 

(Bias) .086 .280 .007  
Distance -.184 .243 -.094  
X -.244 .593 -.446  

Hidden 
Layer 1 

(Bias)    .083 

H(1:1)    -.418 

H(1:2)    .470 

H(1:3)    -.337 

 
 

Table 14: Independent Variable Importance 
 Importance Normalized 

Importance 
Distance .289 40.7% 
X .711 100.0% 

 

 
Figure 7: Normalized Importance 

 
From the figure we can clearly understand the importance 
of the X(Brightness intensity in this case) of the image 
under study, and has a 100% importance level, while the 
distance between the sticks do account much for the 
model, partly due to the relative error. 

 
Multilayer Perceptron: Brightness – Y 
User and system missing values are treated as missing. 
Statistics are based on cases with valid data for all 
variables used by the procedure. 
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Table 15: Case Processing Summary 
 N Percent 

Sample 
Training 151 71.9% 
Testing 59 28% 

Valid 210 100.0% 
Excluded 0  
Total 210  

 
Table 16: Network Information 

Input Layer 

Covariates 
1 Distance 
2 Y 

Number of Unitsa 2 
Rescaling Method for 
Covariates Standardized 

Hidden 
Layer(s) 

Number of Hidden 
Layers 1 

Number of Units in 
Hidden Layer 1a 4 

Activation Function Hyperbolic 
tangent 

Output 
Layer 

Dependent 
Variables 1 Y_Value 

Number of Units 1 
Rescaling Method for 
Scale Dependents Standardized 

Activation Function Identity 

Error Function Sum of 
Squares 

a. Excluding the bias unit 
 
Synaptic Weight < 0 
Synaptic Weight > 0 
 

 
Figure 8: Hidden layer activation function: 

Hyperbolic tangent, Output layer activation function: 
Identity 

 
Table 17: Model Summary 

Training 

Sum of Squares Error 27.035 
Relative Error .581 

Stopping Rule Used 
1 consecutive 
step(s) with no 
decrease in errora 

Training Time 0:00:00.05 

Testing 
Sum of Squares Error 9.178 
Relative Error .396 

Dependent Variable: Y_Value 
a. Error computations are based on the testing sample. 

 

The error, both sum of squares and relative is high, 
implying that higher and lower brightness peaks is not 
advisable for the detection of vanishing points. 

 
Table 18: Parameter Estimates 

Predictor Predicted 
Hidden Layer 1 Output 

Layer 
H(1:1) H(1:2) H(1:3) H(1:4) Y_Value 

Input 
Layer 

(Bias) 1.311 -.904 -.461 .223  
Distance -.127 -.064 .642 .473  
Y 1.983 .675 -.767 .284  

Hidden 
Layer 1 

(Bias)     .470 

H(1:1)     .894 

H(1:2)     1.018 

H(1:3)     .596 

H(1:4)     -.342 

 
Table 19: Independent Variable Importance 

 Importance Normalized 
Importance 

Distance .119 13.6% 
Y .881 100.0% 

 

 
Figure 9: Normalized Importance 

 
From the figure we can clearly understand the importance 
of the Y(Brightness intensity in this case) of the image 
under study, and has a 100% importance level, while the 
distance between the sticks do account some for the 
model, partly due to the relative error. 
 
Conclusion 
 
From the two models, the regression model and the neural 
network model, we can easily find a relationship between 
the camera angle and the vanishing point. Using this 
information and the given vanishing point various 
applications can be handled likeroad detection in 
unmanned cars, object detection in an image, as a tool to 
assist the visually challenged, and training canines are a 
few to name. Brightness plays an integral part in the 
detection of vanishing points, too low and very high 
bright photos are not advisable for processing directly. 
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Pre-processing must be done to improve the edge and 
horizon detection, which is yet another emerging field in 
research. 
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