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Abstract: In this paper, we propose an efficient Monte Carlo 
particle filter for restoring images using probabilistic dynamic 
model. The evolution of  the discrete and continuous states are 
described by the probabilistic dynamic model. Usually, the 
continuous states are assumed to be Gaussian distributed. This 
algorithm exploits some of the analytical structure of the model. 
Using this algorithm the values of the discrete states are found, 
and possible to compute the distribution of the continuous states 
exactly. The importance of the Rao-Blackwellized particle filter is 
to improve the learning stage by estimating a posterior. The 
proposed work is to identify the discrete state of operation using 
the continuous measurements corrupted by Gaussian noise. This 
algorithm also finds some of the analytical structure of the model. 
The Rao-Blackwellized particle filter is the combination of 
particle filter (PF) and states with a bank of Kalman filters.  
 
 
Keywords: Adaptive Resampling,Gaussian mixture,Kalman 
filter, Rao-BlackwellizedParticle Filter,. 
 
 
INTRODUCTION 

A digital image could get corrupted easily due to 
various types of noise during transmission and acquisition. 
A noise is any unwanted signal/pixel that may be added or 
subtracted during transmission. These unwanted 
signals/pixels decrease the image quality. The sources of 
noise in digital images arise during image acquisition 
and/or transmission with unavoidable short noise of an 
ideal photon detector. 

 
Noise Models 

Most types of noise are modeled as known 
probability density functions. Noise model is decided based 
on an understanding of the physics of the sources of noise. 
Parameters can be estimated based on histogram on a small 
flat area of an image. 

o Gaussian: poor illumination 
o Rayleigh: range image 
o Gamma, Exp: laser imaging 
o Impulse: faulty switch during imaging,  
o Uniform is least used. 

 
Image de-noising is a common procedure in 

digital image processing aiming at the suppression of 
different types of noises without losing much detail 
contained in an image. This procedure is traditionally 
performed in the spatial-domain or transform-domain by 
filtering. To reduce the noise from images, various images 

de-noising filters are used.  Image denoising still remains a 
challenge for researchers because noise removal introduces 
artifacts, blurring of the images, and the noise remaining in 
the image edges. The purpose of image restoration is to 
restore a degraded image to its original content and quality. 

The proposed work is to identify the discrete state 
of operation using the continuous measurements corrupted 
by Gaussian noise. This algorithm also finds some of the 
analytical structure of the model. For this to compute the 
distribution of the continuous states exactly. combining a 
particle filter (PF) which is used to compute the 
distribution of the discrete states with a bank of Kalman 
filters which is used to compute the distribution of the 
continuous states. That is, approximate the posterior 
distribution with a recursive, stochastic mixture of 
Gaussians.The importance of the Rao-Blackwellized 
particle filter is to improve the learning stage by estimating 
a posterior. One of the most common particle filtering 
algorithms is the Sampling Importance Resampling (SIR) 
filter. This is done by updating a set of samples 
representing the posterior. 
 
 
RELATED WORK 

The images are corrupted by noise, some of the 
quantities are unobservable. To address these constraints, 
we need to adopt probabilistic dynamic models. These 
models describe the evolution of the discrete and 
continuous states. The continuous states are assumed to be 
Gaussian distributed. In this paper, we propose a 
substantially more efficient Monte Carlo particle filter for 
improving the learning stage.The state of the art method is 
the Monte Carlo particle filter proposed in [2],[4],[6]. This 
method computes recursively in time, a stochastic point-
mass approximation of the posterior distribution of the 
states given the observations.  

Recently Murphy, Doucet and colleagues[12], [14] 
introduced Rao-Blackwellized particle filters as an 
effective means to solve the simultaneous localization and 
mapping (SLAM) problem. The main problem of the Rao-
Blackwellized approaches are their complexity, measured 
in terms of the number of particles required to build an 
accurate map. Therefore reducing this quantity is one of the 
major challenges of this family of algorithms.  

Additionally, the resampling step can eliminate the 
correct particle. This effect is also known as the particle 
depletion problem [7],[9]. A proposal distribution that 
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allows to draw particles in a highly accurate manner, as 
well as an adaptive resampling technique, which maintains 
a reasonable variety of particles and this way reduces the 
risk of particle depletion. The proposal distribution is 
computed by evaluating the likelihood around a particle-
dependent. In this way generating the new particle, 
allowing to estimate the evolution of the system to be a 
more accurate modelin [1], [5], [11]. This model has two 
effects. The estimation error accumulated over time is 
lower and less particles are required to represent the 
posterior.  

The estimation algorithms are Extended 
Kalmanfilters (EKFs), maximum likelihood techniques and 
Rao-Blackwellized particle filters. In a work by Murphy 
[12]Rao-Blackwellized particle filters (RBPF) have been 
introduced. The framework has been subsequently 
extended by Montemerlo [14] for that reduces the number 
of required particles.  

Several methods for computing improved 
proposal distributions and for reducing the risk of particle 
depletion have been proposed [13]. It has several 
advantages compared to EKF since it better covers the 
nonlinearities and is faster to compute. In the particle filter, 
the posterior probability density is approximated as a set of 
particles. When the particles are properly placed, weighted 
and propagated, posteriors can be estimated sequentially 
over time. The density of particles represents the 
probability of posterior function. In this the set of candidate 
pixels not fixed and changes per pixel location according to 
local pixel properties.  The disadvantage is even with a 
large number of particles, there are no particles in the 
vicinity of the correct state. This is called the particle 
deprivation problem.  

The paper image restoration using particle filters 
by improving the scale of texture with MRF [3] deals with 
capturing the geometric structure of the image. It is the 
important process in image restoration. Such a process 
involves two steps, (i) a learning stage where the image 
structure is modeled, and (ii) a reconstruction step. Our aim 
is to introduce a strategy that allows a best possible 
selection of the pixels contributing to the reconstruction 
process driven by the observed image geometry. Using this 
to retrieve similar pixels. The issues are (i) the selection of 
the trajectory, (ii) and the evaluation of the trajectory 
appropriateness. To overcome the issues optimizing the 
selection of candidate pixels within a walk as well as the 
overall performance of the method image structure at local 
scale is considered as a learning stage. It computes a 
probability density function that describes the spatial 
relation between similar image patches in a local scale. 
Here to improve the scale of texture by using MRF. 
 
 
 
 
 

PROPOSED METHOD 
 

Rao-Blackwellised Particle Filtering 
It is an efficient Monte Carlo particle filter for restoring 

images. This algorithm finds the analytical structure of the 
model. To compute the distribution of the continuous states 
exactly by knowing the values of the discrete states. A 
particle filter (PF) which is used to compute the 
distribution of the discrete states and a bank of Kalman 
filters which is used to compute the distribution of the 
continuous states. Therefore, combine a particle filter (PF)  
with a bank of Kalman filters is known as Rao-
Blackwellisation, because it is related to the Rao- 
Blackwell formula [8], [15]. That is, we approximate the 
posterior distribution with a recursive, stochastic mixture 
of Gaussians. The RBPF makes less estimation mistakes. 
The distribution of the discrete states is computed by 
RBPF. The Rao-Blackwellized particle filter is to improve 
the learning stage by estimating a posterior. Here Sampling 
Importance Resampling (SIR) filter is used for updating a 
set of samples. 

In the particle filtering, we use a weighted set of 
particles to approximate the posterior. This approximation 
can be updated recursively [4]. The Gaussian density  can 
be computed analytically by using marginal posterior 
density[10]. This density satisfies the alternative recursion.  
The particle filter starts at a time with an unweighted 
measure. For each particle we compute the importance 
weights using the information at time t. A resampling step 
selects only the correct particles to obtain the unweighted 
measure. This yields an approximation of that is 
“concentrated” on the most likely hypothesis. Now use a 
weighted set of samples to represent the marginal posterior 
distribution. The marginal density is a Gaussian mixture 
that can be computed efficiently with a stochastic bank of  
Kalman filters. A Rao-Blackwellised filter that combines 
this marginalisation and sampling.  

 
Markov Linear Gaussian Model 

In this paper adopt the following jump Markov linear 
Gaussian model: 

 
zt ~ P(zt | zt-1)     (1) 
 
xt = A(zt)xt-1 + B(zt)wt + F(zt)ut   (2) 
 
yt = C(zt)xt + D(zt)wt + G(zt)ut   (3)
    
Where yt∈Rn

ydenotes the observations, xt∈Rn
zdenotes the 

unknown Gaussian states, ut∈U is a known control signal, 
zt∈{ 1,…,nz}denotes the unknown discrete states. The 
noise processes are i.i.dGaussian:wt~N(0,1) and vt~N(0,1).  

The continuous densities are calculated using the 
following equation 
 
P(xt|zt,xt-1) = N(A(zt)xt-1 + F(zt)ut , B(zt)B(zt)T )            (4) 
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P(xt|zt,xt-1) = N(C(zt)xt + G(zt)ut , D(zt)D(zt)T ) (5) 
 
Where the parameters A,B,C,D,E,F,P(zt|zt-1) are known 
matrices with D(zt)D(zt)T> 0 for any zt. Finally, the initial 
states are x0~N (μ0 , ∑0) and z0~P (z0).The unknown 
Gaussian states xt is calculated using the kalman filter 
algorithm by substituting the value of zt, . 
 
Kalman Filter Algorithm 

The aim is to compute the marginal posterior 
distribution of the discrete states P (z0: t | y1: t). This 
distribution can be derived from the posterior distribution 
by standard marginalisation. The posterior density satisfies 
the following recursion.  

 
P(x0:t , z0:t | y1:t) = P(x0:t-1 , z0:t-1 | y1:t-1) 
xP(yt|xt,zt)P(xt,zt |xt-1,zt-1)   
—————————          (6) 
P (yt|y1: t-1) 
This recursion involves intractable integrals. The density  is 
Gaussian and it can be computed analytically using the 
marginal posterior density.  
 
P(z0:t ,| y1:t) = P(z0:t-1 | y1:t-1) 
x    P(yt|y1:t-1,z0:t)P(zt |zt-1)   
                                          —————————          (7) 
                                                   P (yt|y1: t-1) 

The continuous probability distributions and 
discrete distributionsadmit densities. To represent the 
marginal posterior distribution using a weighted set of 
samples. 
^                   N 
PN(z0:t|y1:t)=∑ωt

(i)δz0:t(i)(z1:t)   (8) 
                   i=1 
The marginal density x0:tis a Gaussian mixture that can be 
computed efficiently with a stochastic bank of  Kalman 
filters.  
^                   N 
PN(x0:t|y1:t)=∑ωt

(i)p(x0:t  | y1:t , z(i)
0:t)   (9) 

                   i=1 
 
A Rao-Blackwellised filter that combines this 
marginalisation and sampling of zt.  

The RBPF is similar to the PF, but we only 
sample the discrete states. Then for each sample of the 
discrete states, we update the mean and covariance of the 
continuous states using exact computations. In particular, 

we sample zt
(i) and then propagates the mean μ(i) and 

covariance ∑(i)
tofx twith a Kalman filter as follows: 

μ(i) 
t|t-1= A (zt

(i))μ�(i)�
t-1|t-1 + F (zt

(i))ut 
∑(i)

t|t-1 = A (zt
(i) ) ∑(i) 

t-1|t-1 A (zt
(i) )T + B (zt

(i) ) B ( zt
(i) )T 

 
St

(i)  = C (zt
(i) ) ∑(i) 

t-1|t-1 C (zt
(i) )T + D (zt

(i) ) D ( zt
(i) )T 

 
y(i) 

t|t-1= C (zt
(i))μ�(i)�

t|t-1 + G (zt
(i))ut 

μ(i) 
t|t= μ�(i)�

t|t-1 + ∑(i) 
t|t-1 C (z t(i) )T St

-1(i)  (  yt- y(i) 
t|t-1) 

 
∑(i)

t|t = ∑(i)
t|t-1 - ∑(i) 

t|t-1 C (z t(i) )T S t
-1(i)  C (z t

(i) ) ∑(i)
t|t-1 

Where μt|t-1  ≜  E (xt | y1: t-1) ,μt|t≜  E (xt | y1: t), yt|t-1 ≜  E (yt | 
y1: t-1), ∑ t|t-1 ≜  cov (x t | y1: t-1), ∑ t|t≜  cov (xt | y1: t) and St  
≜  cov (yt | y1: t-1). Hence, using the prior proposal for z 
tand applying equation (7), we find that the importance 
weights for z t are given by the predictive density 
P ( yt | y1:t-1, z1:t ) = N (yt; yt|t-1, St )  (10) 

EXPERIMENTAL RESULTS AND DISCUSSION 
 

The proposed algorithm is tested using 256 X 256 
8-bits/pixel standardgray scaleimages. There are 50 
imagestaken from the Berkely Segmentation Dataset & 
Benchmark database. The performance of theproposed 
algorithm is tested with different noise levels.Each time the 
test image is corrupted by different additive white Gaussian 
noise standard deviation ranging from 10 to 50 with an 
increment of 10. These noisy images are denoised by 
RBPF and the performancearemeasured by the parameters 
PSNR and MSE. All the filters are implemented inMatlab 
10. 

In Table 1and 2 provide a PSNR, MSE values of 
restored images for the RBPF. The PSNR values for the 
RBPF for five images at different Gaussian levels are 
displayed in  Table1. The MSE values for the RBPF for 
five images at different Gaussian levels are displayed in  
Table 2. As seen the results of Table 1, 2 the RBPF method 
produces very good results. The visual quality results are 
presented in Fig. 2. A noise free image, Gaussian noise 
image, restored image using RBPF Gaussian noise  σ = 10 
as shown in Fig. 3. (a), (b) and (c) respectively. In all 
graphs the x-axis values are represented as 1,2,3,4 and 5 
which denotes 1 for baboon, 2 for Barbara, 3 for Buiding, 4 
for Cameraman and 5 for Lena. The visual quality and 
quantitative results clearly show the RBPF better than other 
existing methods in terms of PSNR and MSE.  

 
Table 1: :PSNR Values For The Denoised Images At Different Guassian Noise Levels 

Images σ =10 σ =20 σ =30  σ =40 σ =50 
Baboon 41.85 47.12 49.79  51.45 52.81 
Barbara 42.85 47.97 50.58  51.96 52.81 
Building 43.74 48.69 51.10  52.45 53.27 

Cameraman 44.17 49.03 51.43  52.83 53.65 
eena 43.21 48.28 50.81  52.21 53.10 
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Table 2: MSE Values For The Denoised Images At Different Guassian Noise Levels 
 

Images σ =10 σ =20 σ =30  σ =40 σ =50 
Baboon 0.85 0.45 0.32  0.25 0.21 
Barbara 0.75 0.39 0.28  0.23 0.20 
Building 0.64 0.35 0.26  0.21 0.18 

Cameraman 0.59 0.33 0.24  0.19 0.17 
Leena 0.70 0.38 0.27  0.22 0.19 

 
 

 
 
Fig. 1.(a) :PSNR of   RBPF for  5 images at different 
Gaussian noise levels 
 

Experiments are conducted on standard grayscale 
test images corrupted by additive Gaussian white noise at 
different levels. Fig1. (a) shows PSNR versus the noise 
standard deviation of the RBPF  for 5 standard test  images. 
In all graphs x-axis represents images and the y-axis 
represents PSNR values. In this the red line indicates the 
PSNR values of the RBPF for 5 images at Gaussian noise 
level 10, The blue line indicate the PSNR values of the 
RBPF for 5 images at Gaussian noise level 20, The pink 
line indicates the PSNR values of the RBPF for 5 images at 
Gaussian noise level 30, The black line indicates the PSNR 
values of the RBPF for 5 images at Gaussian noise level 
40, The green line indicates the PSNR values of the RBPF 
for 5 images at Gaussian noise level 50.  

Fig1. (b) shows MSE  versus the noise standard 
deviation of the RBPF  for 5 natural images. In this the red 
line indicates the PSNR values of the RBPF for 5 images at 
Gaussian noise level 10, The blue line indicate the PSNR 
values of the RBPF for 5 images at Gaussian noise level 
20, The pink line indicates the PSNR values of the RBPF 
for 5 images at Gaussian noise level 30, The black line 
indicates the PSNR values of the RBPF for 5 images at 
Gaussian noise level 40, The green line indicates the PSNR 
values of the RBPF for 5 images at Gaussian noise level 
50.  
 

 
 
Fig. 1.(b) :MSE of   RBPF for  5 images at different 
Gaussian noise levels 
 

In fig. 2. (a) shows the input image, (b) shows the 
image with Gaussian noise of 10. Denoising using the 
RBPF are shown in ©. Denoising quality is given by PSNR 
and MSE w.r.t. the original image. The experimental 
results are shown as graphs in Fig.1. Performance of 
denoising algorithms is measured using quantitative 
performance measures such as PSNR, MSE as well as in 
terms of visual quality of the images. 
 

 
Fig.2. (a) : Input Image 
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(b) Gaussian Noise Image 
 

 
( c ) RBPF 
 
CONCLUSION 

 
 In this paper, an efficient algorithm is proposed for 
removing noise from corrupted image. RBPF approach 
computes a highly accurate proposal distribution based on 
the observation likelihood. This allows us to draw particles 
in a more accurate manner which seriously reduces the 
number of required samples. The approach has been 
implemented and evaluated with different data sets. To 
demonstrate the superior performance of the proposed 
method, extensive experiments have been conducted on 
several standard test images. The proposed RBPF performs 
better than other existing methods both in PSNR and 
visually. Promising experimental results demonstrate the 
potentials of our approach.  

Limitation for the Rao-Blackwellized approaches is 
their complexity measured in terms of the number of 

particles required to build an accurate map and the 
performance of the system is reduced since each particle is 
iterated. 

The future work is to increase the performance of  
theRao-Blackwellized particle filters and to improve 
proposal by  limiting the number of particles and to reduce 
the risk of particle depletion in a highly accurate manner.  
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