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Abstract: The relationship between the complexity class P 

and NP is one of the most fascinating and unresolved question 
in theoretical Computer Science.  The classical computational 
paradigm, hedged on Turing thesis may be by itself the limiting 
factor. To investigate this relationship, a method for solving a 
query problem on a relational database on the classical and the 
quantum computational paradigm has been developed. The 
method solves queries or database problems through the use of 
graphs. The results indicate that the solution to the P vs NP 
cannot be resolved under the current computation paradigms and 
may requires a new computation paradigm to resolve it. 

 
Key words: P, NP, NP-Complete, NP-Hard, Turing 

Computational Paradigm, Quantum Computational Paradigm. 

INTRODUCTION 
The relationship between the complexity class P and 

NP [1] is one of the most fascinating and unresolved 
question in theoretical computer science. Since 1971 
when Stephen Cook formally outlined the open question 
[2] millions of man hours have been spent by computer 
scientists attempting to solve the problem [3][4].  

It is our submission that today, more than ever before, 
computer scientists have encountered many 
computational problems that cannot be computed in 
polynomial time. In an attempt to solve these problems, 
optimizations, reductions and estimations have been used 
to get as close to the expected result as possible. 

The fact that there exists a problem that cannot be 
effectively computed on the modern computational 
paradigms is a major hindrance to the development of 
computer science field. Until the P vs NP problem is 
resolved, the goal of achieving an intelligent computer 
that would pass the Turing test will not be achieved 

The current computational paradigms have their 
theoretical foundations on the Turing Thesis [5]. The 
Turing Thesis envisaged a universal Turing machine that 
could simulate other Turing machines. Turing himself 
conceded to the fact that there existed some problems that 
could be computed on the Turing machines but their 
results could all the same be verified by a Turing 
machines. The famous non-halting problems embody the 
existence of problems that modern computers cannot 
effectively compute. [6] 

Computer technology is today a major facet of human 
life. Huge data and information is stored in relational 
databases. Retrieval of these data and information is via 
the Structured Query Language (SQL) queries and other 
technologies. As data grows, the speed and accuracy of 
the database query results becomes a challenge. A 
solution to the above question of the relationship between 
P and NP class problems would guarantee a formal proof 
that the results of the query as a solution to the query 
problem. Saliently, when a user issues a database query, 
they have an idea of the expected result.  

This implies that majority of the times; the user verifies 
that the answer is the true result of the query. Database 
query problems are both in P and NP complexity class 
problems with some traversing across the complexity 
class spectrum. 

Given the importance of relational databases, a way to 
optimize the actual query results to the expected user 
results (certificate) offers more insight into the 
relationship between the computational complexity class 
problems 

The existing Turing computational paradigm 
optimization algorithms were used to get the maximum 
clique of the database-query association graph.  

The current computational paradigms as hedged on the 
Turing thesis may be themselves the limitation. To 
explore this aspect, a method of resolving the maximum 
clique problem using a quantum computer was 
investigated. This entailed use of graph embodiment on 
quantum computer 

The Proposition: 
if a method exists that transforms the query problem  

and the results space into a labeled-directed  graph, the 
results of the query being derived as a solution to the 
maximum clique of the graph; and the same can be 
derived by graph embodiment into a quantum computer, 
then there is a high chance that P = NP. In contrasts, then 
the P vs NP problem cannot be resolved under the current 
computation paradigm and axioms. New computational 
and mathematical axioms would be required to solve the 
problem. 
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THE CURRENT STATUS OF P VS NP  

 Problem 
Computer science landscape has dramatically changed 

in the nearly four decades since Steve Cook presented his 
seminal NP-completeness paper "The Complexity of 
Theorem-Proving Procedures"[1] in May 1971. The cost 
of computing has dramatically decreased, not to mention 
the power of the Internet. Computation has become a 
standard tool in just about every academic field. Many 
fields in biology, chemistry, physics, economics and 
others are devoted to large-scale computational modeling, 
simulations, and problem solving. 

As we solve larger and more complex problems with 
greater computational power and cleverer algorithms, the 
problems we cannot tackle begin to stand out. The theory 
of NP-completeness helps us understand these limitations 
and the P versus NP problem begins to loom large not just 
as an interesting theoretical question in computer science, 
but as a basic principle that permeates all the sciences. 

In this section, we look at how people have tried to 
solve the P versus NP problem as well as how this 
question has shaped so much of the research in computer 
science and beyond. We look at how the NP-complete 
problems have been handled and the theory that has 
developed from those approaches. We show how a new 
type of "interactive proof systems" led to limitations of 
approximation algorithms and consider whether quantum 
computing can solve NP-complete problems. 

This section describes the P versus NP problem and the 
major directions in computer science inspired by this 
question over the past several decades. 

Defining the P versus NP Problem 
Suppose we have a large group of students that we 

need to pair up to work on projects. We know which 
students are compatible with each other and we want to 
put them in compatible groups of two. We could search 
all possible pairings but even for 40 students we would 
have more than 300 billion trillion possible pairings. 

In 1965, Jack Edmonds[7] gave an efficient algorithm 
to solve this matching problem and suggested a formal 
definition of "efficient computation" (runs in time a fixed 
polynomial of the input size). The class of problems with 
efficient solutions would later become known as P “for 
Polynomial Time.” 

But many related problems do not seem to have such 
an efficient algorithm. What if we wanted to make groups 
of three students with each pair of students in each group 
compatible (Partition into Triangles)? What if we wanted 
to find a large group of students all of whom are 
compatible with each other (Clique)? What if we wanted 
to sit students around a large round table with no 
incompatible students sitting next to each other 
(Hamiltonian Cycle)? What if we put the students into 
three groups so that each student is in the same group 
with only his or her compatibles (3-Coloring)? 

All these problems have similar characteristic: Given a 

potential solution, for example, a seating chart for the 
round table, we can validate that solution efficiently. The 
collection of problems that have efficiently verifiable 
solutions is known as NP “for Nondeterministic 
Polynomial-Time” 

So P = NP means that for every problem that has an 
efficiently verifiable solution, we can find that solution 
efficiently as well. 

We call the very hardest NP problems (which include 
Partition into Triangles, Clique, Hamiltonian Cycle and 3-
Coloring) "NP-complete," that is, given an efficient 
algorithm for one of them, we can find an efficient 
algorithm for all of them and in fact any problem in NP. 
Steve Cook, Leonid Levin, and Richard Karp[8][9][10] 
developed the initial theory of NP-completeness that 
generated multiple ACM Turing Awards. 

In the 1970s, theoretical computer scientists showed 
hundreds more problems NP-complete (see Garey and 
Johnson [13]). An efficient solution to any NP-complete 
problem would imply P = NP and an efficient solution to 
every NP-complete problem. 

Most computer scientists quickly came to believe P ≠ 
NP and trying to prove it quickly became the single most 
important question in all of theoretical computer science 
and one of the most important in all of mathematics. Soon 
the P versus NP problem became an important 
computational issue in nearly every scientific discipline. 

As computers grew cheaper and more powerful, 
computation started playing a major role in nearly every 
academic field, especially the sciences. The more 
scientists can do with computers, the more they realize 
some problems seem computationally difficult. 

In 2000, the Clay Math Institute named the P versus NP 
problem as one of the seven most important open 
questions in mathematics and has offered a million-dollar 
prize for a proof that determines whether or not P = NP. 

The Implications of P = NP 
To understand the importance of the P versus NP 

problem let us imagine a world where P = NP. 
Technically we could have P = NP, but not have practical 
algorithms for most NP-complete problems. But suppose 
in fact we do have very quick algorithms for all these 
problems. 

Many focus on the negative, that if P = NP then public-
key cryptography becomes impossible. True, but what we 
would gain from P = NP will make the whole Internet 
look like a footnote in history. 

Since all the NP-complete optimization problems 
become easy, everything will be much more efficient. 
Transportation of all forms will be scheduled optimally to 
move people and goods around quicker and cheaper. 
Manufacturers can improve their production to increase 
speed and create less waste. And we’ve just scratched the 
surface. 

Learning becomes easy by using the principle of 
Occam's razor—we simply find the smallest program 
consistent with the data. Near perfect vision recognition, 
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language comprehension and translation and all other 
learning tasks become trivial. We will also have much 
better predictions of weather and earthquakes and other 
natural phenomenon. 

P = NP would also have big implications in 
mathematics. One could find short, fully logical proofs for 
theorems but these proofs are usually extremely long. But 
we can use the Occam razor principle to recognize and 
verify mathematical proofs as typically written in 
journals. We can then find proofs of theorems that have 
reasonable length proofs say in under 100 pages.  

Complexity theorists generally believe P ≠ NP and such 
a beautiful world cannot exist. 

Approaches Used to Show that P ≠ NP 
Here, we present a number of ways that have been tried 

and failed to prove P ≠ NP. The survey of Fortnow and 
Homer[12] gives a fuller historical overview of these 
techniques. 

 
Diagonalization  
Can we just construct an NP language L specifically 

designed so that every single polynomial-time algorithm 
fails to compute L properly on some input? This 
approach, known as diagonalization, goes back to the 19th 
century. 

In 1874, Georg Cantor[13] showed the real numbers 
are uncountable using a technique known as 
diagonalization. Given a countable list of reals, Cantor 
showed how to create a new real number not on that list. 

Alan Turing, in his seminal paper on computation [14], 
used a similar technique to show that the Halting problem 
is not computable. In the 1960s complexity theorists used 
diagonalization to show that given more time or memory 
one can solve more problems. Why not use 
diagonalization to separate NP from P? 

Diagonalization requires simulation and we don't know 
how a fixed NP machine can simulate an arbitrary P 
machine. Also a diagonalization proof would likely 
relativize, that is, work even if all machines involved have 
access to the same additional information. Baker, Gill and 
Solovay[15] showed no relativizable proof can settle the P 
versus NP problem in either direction. 

Complexity theorists have used diagonalization 
techniques to show some NP-complete problems like 
Boolean formula satisfiability cannot have algorithms that 
use both a small amount of time and memory,[16] but this 
is a long way from P ≠ NP. 

Circuit Complexity  
To show P ≠ NP it is sufficient to show some NP-

complete problem cannot be solved by relatively small 
circuits of AND, OR, and NOT gates (the number of gates 
bounded by a fixed polynomial in the input size). 

In 1984, Furst, Saxe, and Sipser [17] showed that small 
circuits cannot solve the parity function if the circuits 
have a fixed number of layers of gates. In 1985, Razborov 
[18] showed the NP-complete problem of finding a large 
clique does not have small circuits if one only allows 

AND and OR gates (no NOT gates). If one extends 
Razborov's result to general circuits one will have proved 
P ≠ NP. 

Razborov later showed his techniques would fail 
miserably if one allows NOT gates.[19] Razborov and 
Rudich [20] develop a notion of "natural" proofs and give 
evidence that our limited techniques in circuit complexity 
cannot be pushed much further.  

Proof Complexity  
Consider the set of Tautologies, the Boolean formulas f 

of variables over ANDs, ORs, and NOTs such that every 
setting of the variables to True and False makes f true, for 
example the formula 

(1)  (x AND y) OR (NOT x) OR (NOT y) 
A literal is a variable or its negation, such as x or NOT 

x. A formula, like the one here, is in Disjunctive Normal 
Form (DNF) if it is the OR of ANDs of one or more 
literals. 

If a formula f  is not a tautology, we can give an easy 
proof of that fact by exhibiting an assignment of the 
variables that makes f false. But if f were indeed a 
tautology, we don't expect short proofs. If one could 
prove there are no short proofs of tautology that would 
imply P ≠ NP. 

Resolution is a standard approach to proving 
tautologies of DNFs by finding two clauses of the form 
(v1 AND x) and (v2 AND NOT x) and adding the clause 
(v1 AND v2). A formula is a tautology exactly when one 
can produce an empty clause in this manner. 

In 1985, Wolfgang Haken [21] showed that tautologies 
that encode the pigeonhole principle (n + 1 pigeons in n 
holes means some hole has more than one pigeon) do not 
have short resolution proofs. 

Since then complexity theorists have shown similar 
weaknesses in a number of other proof systems including 
cutting planes, algebraic proof systems based on 
polynomials, and restricted versions of proofs using the 
Frege axioms, the basic axioms one learns in an 
introductory logic course. 

But to prove P ≠ NP we would need to show that 
tautologies cannot have short proofs in an arbitrary proof 
system. Even a breakthrough result showing tautologies 
don't have short general Frege proofs would not suffice in 
separating NP from P. 

Dealing with NP Hardness 
So you have an NP-complete problem you just have to 

solve. If, as we believe, P ≠ NP you won't find a general 
algorithm that will correctly and accurately solve your 
problem all the time. But sometimes you need to solve the 
problem anyway. We describe some of the tools used to 
solve NP-complete problems and how computational 
complexity theory studies these approaches. Typically 
one needs to combine several of these approaches when 
tackling NP-complete problems in the real world. 

Brute Force  
Computers have gotten faster, much faster since NP-

completeness was first developed. Brute force search 
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through all possibilities is now possible for some small 
problem instances. With some clever algorithms we can 
even solve some moderate size problems with ease. 

The NP-complete traveling salesperson problem asks 
for the smallest distance tour through a set of specified 
cities. Using extensions of the cutting-plane method we 
can now solve, in practice, traveling salespeople problems 
with more than 10,000 cities [22] 

Consider the 3SAT problem, solving Boolean formula 
satisfiability where formulas are in the form of the AND 
of several clauses where each clause is the OR of three 
literal variables or negations of variables). 3SAT remains 
NP-complete but the best algorithms can in practice solve 
SAT problems on about 100 variables. We have similar 
results for other variations of satisfiability and many other 
NP-complete problems. 

But for satisfiability on general formulae and on many 
other NP-complete problems we do not know algorithms 
better than essentially searching all the possibilities. In 
addition, all these algorithms have exponential growth in 
their running times, so even a small increase in the 
problem size can kill what was an efficient algorithm. 
Brute force alone will not solve NP-complete problems no 
matter how clever we are. 

Parameterized Complexity  
Consider the Vertex Cover problem; find a set of k 

"central people" such that for every compatible pair of 
people, at least one of them is central. For small k we can 
determine whether a central set of people exists efficiently 
no matter the total number n of people we are 
considering. For the Clique problem even for small k the 
problem can still be difficult. 

Downey and Fellows [3] developed a theory of 
parameterized complexity that gives a fine-grained 
analysis of the complexity of NP-complete problems 
based on their parameter size. 

Approximation.  
We cannot hope to solve NP-complete optimization 

problems exactly but often we can get a good 
approximate answer. Consider the traveling salesperson 
problem again with distances between cities given as the 
crow flies (Euclidean distance). This problem remains 
NP-complete but Arora[8] gives an efficient algorithm 
that gets very close to the best possible route. 

Consider the MAX-CUT problem of dividing people 
into two groups to maximize the number of incompatibles 
between the groups. Goemans and Williamson[4] use 
semi-definite programming to give a division of people 
only a .878567 factor of the best possible. 

Heuristics and Average-Case Complexity  
The study of NP-completeness focuses on how 

algorithms perform on the worst possible inputs. However 
the specific problems that arise in practice may be much 
easier to solve. Many computer scientists employ various 
heuristics to solve NP-complete problems that arise from 
the specific problems in their fields. 

While we create heuristics for many of the NP-

complete problems, Boolean formula Satisfiability (SAT) 
receives more attention than any other. Boolean formulas, 
especially those in conjunctive normal form (CNF), the 
AND of ORs of variables and their negations, have a very 
simple description and yet are general enough to apply to 
a large number of practical scenarios particularly in 
software verification and artificial intelligence. Most 
natural NP-complete problems have simple efficient 
reductions to the satisfiability of Boolean formulas. In 
competition these SAT solvers can often settle 
satisfiability of formulas of one million variables.[23]  

Leonid Levin [24] developed a theory of efficient 
algorithms over a specific distribution and formulated a 
distributional version of the P versus NP problem. 

Some problems, like versions of the shortest vector 
problem in a lattice or computing the permanent of a 
matrix, are hard on average exactly when they are hard on 
worst-case inputs, but neither of these problems is 
believed to be NP-complete. Whether similar worst-to-
average reductions hold for NP-complete sets is an 
important open problem. 

Average-case complexity plays an important role in 
many areas of computer science, particularly 
cryptography, as discussed later. 

Could Quantum Computers Solve NP-Complete 
Problems? 

While we have randomized and nonrandomized 
efficient algorithms for determining whether a number is 
prime, these algorithms usually don't give us the factors 
of a composite number. Much of modern cryptography 
relies on the fact that factoring or similar problems do not 
have efficient algorithms. 

In the mid-1990s, Peter Shor [25] showed how to factor 
numbers using a hypothetical quantum computer. He also 
developed a similar quantum algorithm to solve the 
discrete logarithm problem. The hardness of discrete 
logarithm on classical computers is also used as a basis 
for many cryptographic protocols. Nevertheless, we don't 
expect that factoring or finding discrete logarithms are 
NP-complete. While we don't think we have efficient 
algorithms to solve factoring or discrete logarithm, we 
also don't believe we can reduce NP-complete problems 
like Clique to the factoring or discrete logarithm 
problems. 

So could quantum computers one day solve NP-
complete problems? So far, no indications yet. 

Only Physists can address the problem as to whether 
these machines can actually be built at a large enough 
scale to solve factoring problems larger than we can with 
current technology (about 200 digits). After billions of 
dollars of funding of quantum computing research we still 
have a long way to go. 

Lov Grover [26] did find a quantum algorithm that 
works on general NP problems but that algorithm only 
achieves a quadratic speed-up. 
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METHODOLOGY 
In this section we describe the methodology employed 

to gain more understanding on the relation between NP 
and P problems and hopefully answer the question; is P = 
NP?. 

 The goal was to determine if a method exists that 
transforms a database query problem and the relational 
database solution space (a problem in P) into labeled-
directed graphs, the results of the query being derived as a 
solution to the maximum clique of the graph; and deriving 
the same by graph embodiment into a quantum computer. 

If the above method exists, then there is a high chance 
that P = NP. Otherwise, the P vs NP problem cannot be 
resolved under the current computation paradigm and 
axioms i.e Turing and Quantum. New computational and 
mathematical axioms would be required to solve the 
problem. 

High Level Description 

 
 
Fig 1: High Level Description of the Methodology. 

Analysis, Development and Testing 
The Detailed analysis of Existing body of knowledge 

on P vs NP Problem Involved Contents analysis of 
literatures and publications relating to the P vs NP 
problem. The summary is presented in section 2 above.  

 

The development of the algorithms to transform the 
relational database and Query into a graph representation 
was informed by the analysis of the current systems and 
methods of representing a relational database as a binary 
tree formed the basis of the algorithm development  

 
A student’s information management database was 

developed as the basis for developing and testing the 
algorithms.  

 
The Development of the algorithms was carried out 

largely on experimental basis and try and error 
methodologies.  

 
Tests were carried out using the students’ database to 

refine the algorithms until the final algorithms presented 
here were achieved. 

 
The Algorithm to Find the Maximum Clique of the 

Association graph is based on the standard maximum 
clique algorithm. Modifications are made to the algorithm 
to ensure the algorithm terminates in case of no clique.  

The O-notation was used to analyze the performance of 
the algorithms and compute the time complexity 
efficiency of the algorithms 

The “Quantum Algorithm for finding the maximum 
Clique on a graph” Allan Bojic was used to analyse the 
effect of the for the maximum Clique on quantum 
computation paradigm 

Finally, the results of the of the maximum clique on 
classical computer and Quantum computation paradigms 
were analysed to establish the relationship between P and 
NP on both paradigms. 

RESULTS 
After development and testing of the algorithms, the 

analysis was done with the aim to determine if the 
performance of the algorithms. The performances under 
Turing and Quantum computational paradigms are 
compared and evaluated 

Conversion of a Database into a Directed Labeled 
Graph 

1.1.1 THE ALGORITHM 
The algorithm requires that: 
The database b, has a set of relations R; Where  
       (2). R = ri;for i=1, ..,|R| 
The resultant graph Gb, is a labelled directed graph where 
       (3). Gb=(Vb, Eb, µb)  

1. Procedure GENERATEGRAPH(R); 
2.   Vb []; Eb[]; µb[]  //Initialize the graph 
3.    For ri ε R do   //loop over all the 

relations in the database 
4.      TableName:=RELNAME(ri); 
5.      KeyAttrib:=GETKEY(ri); 
6.      For t ε TUPLES(ri) do 
7.         nt[KeyAttrib]; 
8.         VbADDNODE(n,Vb); 
9.         If ISCOMPOUND(KeyAttrib) and  (PARTY(ri)) > 2 then;  //Add 

compound key as a  Node 
10.           For i := 1 to |KeyAttrib| Do 
11.     a:=n[i]; 

Detailed analysis of Existing body 
of knowledge on P vs NP Problem 

Develop Algorithm to convert a 
Relational Database into a Directed 
Labeled Graph 

Develop Algorithm to convert a 
Query Solution Space into a 
Directed Labeled Graph 

Develop Algorithm to generate an 
association graph of the Database 
and Graph 

Adapt the “Maximum Clique 
Algorithm” to find the Maximum 
Clique of the Association graph 

Transform the association graph 
Algorithm into a quantum 
computation paradigm 

Use the O-notation to analyze the 
algorithms computational efficiency 

Determine the correlation between 
the Truing paradigm and Quantum 
paradigm 
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12.     Vb=ADDNODE(a,Vb); 
13.      Eb:=ADDEDGE(<n,a>,Eb);  
14.      µb(n,a):=TableName.KeyAttrib[i]; 
15.            End for  
16.           End if 
17.  NonKeyAttribKeyAttrib; 
18.  If ISEMPTY(NonKeyAttrib) then  //No non-key  
19. attributes so add a loop 
20.       EADDEDGE(n,n); 
21.        µb(n,n):=TableName; 
22.    Else 
23.    For i ε 1,  [NonKeyAttrib] do //Add edge between key 

and non-key attribute 
24.       mt[NonKeyAttrib[i]]; 
25.       VbADDNODE(m,Vb); 
26.       Eb:=ADDEDGE(<n,m>,Eb);  
27.      µb(n,m):=TableName.NonKeyAttrib[i]; 
28.    End for 
29.  End if 
30.         End for 
31.      End for 
32.  End Procedure 

 
1.1.2 DESCRIPTION 

A Labeled directed graph is generated from the 
database as follows: 

If all the relations in the database are at most 2-arity 
(meaning they have only one or two attributes) and the 
elements of all tables came from a set U, then the set U is 
identified with the vertex V, of the graph. This means 
there is a node in the graph for each element occurring in 
a tuple and a column of every table in the database 

The method processes all relations, and for each 
relation adds the appropriate nodes to the vertex list and 
the appropriately names edges to the edge list and name 
mappings. The table name is obtained and used as the 
basis for naming edges. The KeyAttrib list records the 
attributes which are keys for the table. At line 6 begins a 
loop over all the rows in the table. t labels any particular 
row. For this row, the values corresponding to the keys 
are extracted and added to the node list. 

The ADDNODE function adds the node to list of ver-
tices V. If the node is already present mV it is added 
again. If the key to the table is compound (there is more 
than 1 attribute in the key), then nodes are also added for 
the values of all key attributes in t. An edge is added from 
each of these attribute nodes to the node representing the 
compound key for the row. Each node is labeled by 
TableName.keyAttrib[i] where KeyAttrib[i] is the 
attribute name for ith attribute node. 

Next, edges are added between the key node and the 
values in the non-key attributes. If there are no non-key 
attributes (line 18) then a loop is added on the key node. 
The loop is labeled by the table's name. If there are non-
key columns in the table, an edge is added from the 
compound node to each of these non-key nodes. Each 
edge is labeled by TableName.nonKeyAttrib[i] where 
NonKeyAttrib[i] is the attribute name for the ith non key 
attribute node. 

1.1.3 ANALYSIS 
The running time for the algorithm to convert the 

relational database into a directed labeled graph is 
      (4).  Θ(n^3). 
Since n is bound to the total rations in the database U, 

the running time is therefore   

       (5). Θ(|R|^3). 
As the number of relations R in a database increases, 

the running time of the algorithm increases by power of 3. 

Conversion of a Query Q, Into a Directed Labelled 
Graph. 

1.1.4 THE ALGORITHM 
The algorithm involves the pruning of the database d into 
smaller database (Subset of d) being the representation of 
the solution space relevant to the Query,  
      (6).  q={Q1, Q2, ...Q|q| } 
The algorithm requires that: 
 The database has a set of relations R Where  
    (7).  R = Ri;for i=1, ..,|R|  
 A query q,  
    (8).  q= {Q1,Q2,... Q|q| } 
 Minimal database R’ Where  
     (9).  R’ = ri;for i=1, ..,|q| 
 The resultant graph Gq, is a labelled directed graph 

Gq 
     (10).  Gq=(Vq, Eq, µq)  

1. Procedure PRUNEDATABASEGRAPH(R, q); 
2.  For i ε 1,|q| do    
3.     [Attribs, Vals]  GROUND(Qi ); 
4.     ri GETTABLE(Qi); 
5.     ri SELECTANDPROJECT(ri,Qi,Attribs,Vals); 
6.    End for 
7.  End Procedure 

 

1.1.5 DESCRIPTION 
For each table (Qi) entering into the query the set of 

attributes (attribs) which are grounded is determined, and 
as is the value (vals) to which each attribute is con-
strained. In line 4  the table referenced by Qi retrieved 
from the database.  

In SELECTANDPROJECT a row is eliminated from 
the table by selecting down to include only the rows 
which have the assigned values for the attributes and 
which are then projected out to include only those 
columns of Qi involving variables. 

1.1.6 ANALYSIS 
The running time for the algorithm to convert the 

Query into a directed labeled graph is O(n^2). 
Since n is bound to the query attributes in the query Q, 

the running time is therefore O(|q|^2). 

Generation of Association Graph (Ga) From the 
Pruned Query (Gq) and Database (Gb) 

1.1.7 THE ALGORITHM 
The algorithm requires that: 
 A set of pruned relations R; Where 
      (11).   R = ri;for i=1, ..,r|R| 
 A pruned query q’; Where q’ 
        (12).  q’ = Q’i for i = 1,..,|q| 
 The association graph Ga  
         (13).  Ga=(Va, Ea)  
is formed from the query and the database graph 

1. Procedure FORMASSOCIATIONGRAPH(R,q’); 
2.   Va []; Ea[];     //Initialize the graph 
3.    For Q’i ε q’ do  //Generate and store graphs for 

each query subgoal 
4.       [Vqi,Eqi, µqi]ROWGRAPH(Q’i); 
5.   Endfor 
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6.   For ri ε R do 
7.     TableName:=RELNAME(ri); 
8.     AttribNames:=ATTRIBNAMES(ri); 
9.     For t ε ROWS(ri) do 
10.          VtROWNODES(t) 
11.          EtROWEDGES(t) 
12.          For i ε1 to |q| Do 
13.  V’a:=ASSOCIATENODES(Va,Vt,,Vqi, µqi,TableName) 
14.   E’a:= ASSOCIATEEDGES(V’a,Et,Eqi, µqi,TableName, 

AttribNames) 
15.   VaROWNODES(Va,V’a) 
16.   EaROWEDGES(Ea,E’a) 
17.           End for 
18.       End for 
19.     End For 
20.  End Procedure 

 

1.1.8 DESCRIPTION 
An Association graph is generated from the pruned 
database and the Query as follows: 

The graph for the pruned query is constructed and 
stored (line 4). Then looping over all pruned relations and 
all rows in each relation is performed. For each row t the 
nodes V, and edges E, for the row are determined (lines 
10 and 11). The nodes are simply the elements in the 
attributes of the table and an additional key node if 
required. The edges connect all attributes to the key node. 

Once the graph for the row has been defined, it may 
then compared with the graphs for each of the |q| query 
subgoals. For each subgoal, the association graph vertices 
may be defined by pairing variable nodes from the query 
with compatible row nodes. 

Compatible nodes have the same labeled loops which 
can be determined from the relation name (stored in 
TableName). Note that some of these a-vertices may have 
previously been generated. Even in such cases V’a 
includes all a-vertices generated by the tuple and the 
subgoal graphs. However, when these a-nodes are added 
to the set Va, of a-vertices duplicates are not permitted 
(line 15). 

The ASSOCIATEEDGES routine then generates the a-
edges that are generated between the a-vertices stored in 
V’a. Compatible edges can be identified by knowing µqi 
the relation name (TABLENAME) and the attribute 
names (AttribNames). Some of these edges may have 
previously been generated, but some will be new (for 
example those nodes connected to the key). ADDEDGES 
appends only the new edges to the a-edge set Ea. 

1.1.9 ANALYSIS 
The Construction of the Association Graph (Ga) from the 
pruned query and Database is similar to the conversion of 
the database into a directed graph only that this time 
around, the graph is created from the pruned database to 
reflect the query solution space. 
The running time for the algorithm to generate the 
association is Θ(n^3). 
Since n is bound to the number of vertices v in the 
database graph, the running time is therefore Θ (|v|^3).  

 Maximum Clique of the Association Graph Ga. 
1.1.10 THE ALGORITHM 

The algorithm requires that: 
 Association Graph Ga,  
       (14).  Ga = (Va,Ea),  

 Lower bound on clique lb (default, 0). 
 The result is the size of the maximum clique in the 

graph 
 

1. procedure MAXCLIQUE(Ga,lb) 
2.   max  lb 
3.   for i ε 1 to n do 
4.      if d(vi)   >= max then              // Pruning 1 
5.          U 0;  
6.      for each vj ε N(vi) do 
7.            if j > i then                        // Pruning 2 
8.                if d(vj)  >=  max then    // Pruning 3 
9.                     U  U U{vj} 
10.      CLIQUE(Ga , U, 1) 
11.  
12. CLIQUE Recursive Subroutine 
13. procedure CLIQUE(Ga U, size) 
14.     if U = 0 then 
15.     if size > max then 
16.         max  size 
17.         return 
18.      while |U| > 0 do 
19.            if size + |U| <= max then   //Pruning 4 
20.                   return 
21.            Select any vertex u from U 
22.            UU \{u}  
23.            N’(u) := {w|w ε N(u) ^ d(w) >= max  // Pruning 5 
24.            CLIQUE(Ga,U ∩N’(u), size + 1) 

 
1.1.11 DESCRIPTION 

The maximum clique for the association graph is found 
by computing the largest clique containing each vertex 
and picking the largest among them. A key element of the 
algorithm is that during the search for the largest clique 
containing a given vertex, vertices that cannot form 
cliques larger than the current maximum clique are 
pruned, in a hierarchical fashion. 

The subroutine CLIQUE goes through every relevant 
clique containing vi in a recursive fashion and returns the 
largest. The subroutine is similar to the Carraghan-
Pardalos algorithm [19].  

Our algorithm consists of several pruning steps. The 
pruning in Line 4 of MAXCLIQUE (Pruning 1) filters 
vertices having strictly fewer neighbors than the size of 
the maximum clique already computed. These vertices 
can be safely ignored, since even if a clique were to be 
found, its size would not be larger than max.  

While forming the neighbor list U for a vertex vi, we 
include only those of vi’s neighbors for which the largest 
clique containing them has not been found (Line 7, 
Pruning 2), to avoid recomputing previously found 
cliques. Furthermore, the pruning in Line 8 (Pruning 3) 
excludes vertices vj ε N(vi) that have degree less than the 
current value of max, since any such vertex  could not 
form a clique of size larger than max.  

The pruning strategy in Line 7 of subroutine CLIQUE 
(Pruning 4) checks for the case where even if all vertices 
of U were added to get a clique, its size would not exceed 
that of the largest clique encountered so far in the search, 
max.  

The pruning in Line 11 of CLIQUE (Pruning 5) 
reduces the number of comparisons needed to generate 
the intersection set in Line 12. Pruning 4 is used in most 
existing algorithms, whereas pruning steps 1, 2, 3 and 5 
are new. 
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1.1.12 ANALYSIS 
First inner while loop, and let n = Size 

The while loop loops for log(i) times, so inside one 
iteration of the for i loop, c * log(i) operations are done. 
In total  

   (15).  c*log(1) + c*log(2) + c*log(3) + ... + c*log(n) 
The two nested for loops and the recursive Clique 

procedure call would introduce the exponential growth on 
the n of order 2, as the number of vertices grows 

The running time for this algorithm to find the 
maximum clique is Θ(2^n). 

Since n is bound to the total vertices in the database U, 
the running time is therefore Θ(2^|u|).  

This represents an exponential growth of order 2 as the 
number of vertices increases. 

Clearly, the modified maximum clique algorithm still 
exhibits exponential tendencies making a perfect NP-
Complete problem 

Maximum Clique on Quantum Computation 
A Quantum Algorithm for finding the maximum Clique 
on a graph is given by Allan Bojic [27] , A Quantum 
Algorithm for finding the maximum Clique on a graph. 
Bojic algorithm gives the complexity of the worst case 

scenario as ). If |v| = n, the running time is 

therefore  
This is a tremendous improvement compared to the 
Θ(2^n) of the classical implementation of the maximum 
clique described in section 4.4 above 

DISCUSSION OF THE RESULTS 
From the results of algorithm analysis in section 4, we 

have been able to show that: 
A method does exist that can transform a relation 

database into a directed labeled graph. The running time 
complexity of the algorithm is Θ(n^3). As n increase, 
the performance degrades rapidly. However in normal 
database implementation, n is tightly bound by the 
number tables and relations therein. The running time is 
there limited to the number of relations R. This yields a  
running time complexity Θ(|n|^3) for n=R 

A method exists that can transform the query into a 
query database graph being a representation of the 
database solution space. The running time complexity of 
the algorithm is Θ(n^2). As n increase, the 
performance degrades rapidly. However in normal 
database implementation, n is tightly bound by the 
number variables and table relations in the query. The 
running time is therefore limited to the number of 
relations q. This yields a  running time complexity Θ 
(|n|^2) for n=q   

A method exists that generate an association graph of 
the database and query graph. The running time 
complexity of the algorithm is Θ(n^3). As n increase, 
the performance degrades rapidly. However in normal 
database implementation, n is tightly bound by the 

number of tables and relations therein. The running time 
is there limited to the number of relations R. This yields a  
running time complexity Θ (|n|^3) for n=R  

The maximum clique of the association graph yields 
the solution to the query. The algorithm running 
complexity is Θ(2^n). Since n is bound to the total 
vertices in the database U, the running time is therefore Θ 
(2^|u|).  The algorithm has an exponential growth of order 
2 on the number of vertices in the association graph. This 
reinforces the fact that maximum clique is a NP-Complete 
problem. 

A method exists that transforms the maximum clique 
into a quantum computation paradigm. The time 

complexity of the algorithm is  )The 
algorithm has greatly improved on the quantum 
computation by 2-order square root. 

The relationship between the generation of the query 
graph and the database graph is interesting. While running 
time complexity for the generation of the database graph 
is in order of 3 of the input size, the query is in order of 2 
of the query input size i.e Number of relations within the 
query. Instead of generating the database graph and the 
query graph separately, the association graph could be 
generated directly by pruning the database query 
representation. By directly generating the association 
graph this way, the running time complexity can be 
significantly reduced to the order of 2/3  of the  database 
table relation Θ (n^2/3). 

Of greatest interest is the relationship between the 
maximum clique algorithm on a classical computation 
paradigm (Turing) and the quantum computational 
paradigm. On quantum computation, the performance 
improves by the root of the input. This improvement can 
be attributed to the extra state of the Qbits 
superimposition in the quantum mechanics. 

CONCLUSION 
From the hypothesis, it suffices to conclude that there 

is a high likelihood of the N =NP. However the 
relationship between the maximum clique algorithm on a 
classical computation paradigm (Turing) and the quantum 
computational paradigm has opened a new thought into 
the relationship between P and NP problems. 

As mentioned earlier, the improvement of the 
maximum clique problem on quantum computation 
paradigm may be attributed to the extra bit, Qubit that can 
be superimposed to give 4 state (0,1,0’, 1’) as opposed to 
the normal classical computing paradigm of 2 states (1,0). 

The limitation of the classical computation paradigm is 
by itself hedged on the current representation of the states 
by use of electric current (Electrons) flow as medium of 
realizing the implementation. 

Moreover, many of the quantum algorithms are 
likewise based on the classical implementation. 
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Conjecture 
Supposing we had a new element Oracle Ω in the 

periodic table, that can yield N different states. It suffices 
to say that it would be possible reduce the computational 
time complex of many NP-Complete problems by root of 
N. This would be sufficient to solve many of the NP 
problems hopefully in polynomial time 

Since the Oracle Ω element does not exist at the 
moment, then it suffices to say that the P vs NP problem 
cannot be resolved under the current computational 
paradigm. A new, Ω computational paradigm is required 
to resolve the problem. 

Further work 
Further research can be carried out to enable:- 
The algorithms presented are independent of the 

implementation platform. Further work is required to 
implement the algorithms and run tests to derive actual 
computation complexity in both time and space. 

The maximum clique problem on quantum 
computation is based on the Alan Jobic algorithm [2] 
which is an improvement of the Grower’s database search 
algorithm. Further research is required on the effect of 
using Shor’s fourier transformation quantum computation 
algorithm  

CERN, has announced the possibility of the Boson 
particle identified by the Large Hydron Collider (LHC) 
experiment as being the elusive Higgs Boson. Further 
research on what value the Boson can add.  

Further research on use of labeled directed graph 
embodiment as way to improve database query problems 
using the methods presented 
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