
International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 22-30 (2013)
Special Issue of ICACET 2013 - Held during October 14-15, 2013, Kuala Lumpur, Malaysia

22

 ISSN 2278 - 3091

Abstract: The relationship between the complexity class P

and NP is one of the most fascinating and unresolved question
in theoretical Computer Science. The classical computational
paradigm, hedged on Turing thesis may be by itself the limiting
factor. To investigate this relationship, a method for solving a
query problem on a relational database on the classical and the
quantum computational paradigm has been developed. The
method solves queries or database problems through the use of
graphs. The results indicate that the solution to the P vs NP
cannot be resolved under the current computation paradigms and
may requires a new computation paradigm to resolve it.

Key words: P, NP, NP-Complete, NP-Hard, Turing

Computational Paradigm, Quantum Computational Paradigm.

INTRODUCTION
The relationship between the complexity class P and

NP [1] is one of the most fascinating and unresolved
question in theoretical computer science. Since 1971
when Stephen Cook formally outlined the open question
[2] millions of man hours have been spent by computer
scientists attempting to solve the problem [3][4].

It is our submission that today, more than ever before,
computer scientists have encountered many
computational problems that cannot be computed in
polynomial time. In an attempt to solve these problems,
optimizations, reductions and estimations have been used
to get as close to the expected result as possible.

The fact that there exists a problem that cannot be
effectively computed on the modern computational
paradigms is a major hindrance to the development of
computer science field. Until the P vs NP problem is
resolved, the goal of achieving an intelligent computer
that would pass the Turing test will not be achieved

The current computational paradigms have their
theoretical foundations on the Turing Thesis [5]. The
Turing Thesis envisaged a universal Turing machine that
could simulate other Turing machines. Turing himself
conceded to the fact that there existed some problems that
could be computed on the Turing machines but their
results could all the same be verified by a Turing
machines. The famous non-halting problems embody the
existence of problems that modern computers cannot
effectively compute. [6]

Computer technology is today a major facet of human
life. Huge data and information is stored in relational
databases. Retrieval of these data and information is via
the Structured Query Language (SQL) queries and other
technologies. As data grows, the speed and accuracy of
the database query results becomes a challenge. A
solution to the above question of the relationship between
P and NP class problems would guarantee a formal proof
that the results of the query as a solution to the query
problem. Saliently, when a user issues a database query,
they have an idea of the expected result.

This implies that majority of the times; the user verifies
that the answer is the true result of the query. Database
query problems are both in P and NP complexity class
problems with some traversing across the complexity
class spectrum.

Given the importance of relational databases, a way to
optimize the actual query results to the expected user
results (certificate) offers more insight into the
relationship between the computational complexity class
problems

The existing Turing computational paradigm
optimization algorithms were used to get the maximum
clique of the database-query association graph.

The current computational paradigms as hedged on the
Turing thesis may be themselves the limitation. To
explore this aspect, a method of resolving the maximum
clique problem using a quantum computer was
investigated. This entailed use of graph embodiment on
quantum computer

The Proposition:
if a method exists that transforms the query problem

and the results space into a labeled-directed graph, the
results of the query being derived as a solution to the
maximum clique of the graph; and the same can be
derived by graph embodiment into a quantum computer,
then there is a high chance that P = NP. In contrasts, then
the P vs NP problem cannot be resolved under the current
computation paradigm and axioms. New computational
and mathematical axioms would be required to solve the
problem.

The P Vs NP Problem:
A Method for Solving NP-Complete Problems by use of

Graph Embodiment on a Quantum Computation Paradigm
using a Relational Database Query

Shadrack Mwanik1, Andrew Mwaura Kahonge 2, Evans K. Miriti 3
1 University of Nairobi, Kenya, Shadrack_mwaniki@yahoo.com

2 University of Nairobi, Kenya, andrew.mwaura@uonbi.ac.ke
3 University of Nairobi, Kenya, eamiriti@uonbi.ac.ke

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 22-30 (2013)
Special Issue of ICACET 2013 - Held during October 14-15, 2013, Kuala Lumpur, Malaysia

23

 ISSN 2278 - 3091

THE CURRENT STATUS OF P VS NP

 Problem
Computer science landscape has dramatically changed

in the nearly four decades since Steve Cook presented his
seminal NP-completeness paper "The Complexity of
Theorem-Proving Procedures"[1] in May 1971. The cost
of computing has dramatically decreased, not to mention
the power of the Internet. Computation has become a
standard tool in just about every academic field. Many
fields in biology, chemistry, physics, economics and
others are devoted to large-scale computational modeling,
simulations, and problem solving.

As we solve larger and more complex problems with
greater computational power and cleverer algorithms, the
problems we cannot tackle begin to stand out. The theory
of NP-completeness helps us understand these limitations
and the P versus NP problem begins to loom large not just
as an interesting theoretical question in computer science,
but as a basic principle that permeates all the sciences.

In this section, we look at how people have tried to
solve the P versus NP problem as well as how this
question has shaped so much of the research in computer
science and beyond. We look at how the NP-complete
problems have been handled and the theory that has
developed from those approaches. We show how a new
type of "interactive proof systems" led to limitations of
approximation algorithms and consider whether quantum
computing can solve NP-complete problems.

This section describes the P versus NP problem and the
major directions in computer science inspired by this
question over the past several decades.

Defining the P versus NP Problem
Suppose we have a large group of students that we

need to pair up to work on projects. We know which
students are compatible with each other and we want to
put them in compatible groups of two. We could search
all possible pairings but even for 40 students we would
have more than 300 billion trillion possible pairings.

In 1965, Jack Edmonds[7] gave an efficient algorithm
to solve this matching problem and suggested a formal
definition of "efficient computation" (runs in time a fixed
polynomial of the input size). The class of problems with
efficient solutions would later become known as P “for
Polynomial Time.”

But many related problems do not seem to have such
an efficient algorithm. What if we wanted to make groups
of three students with each pair of students in each group
compatible (Partition into Triangles)? What if we wanted
to find a large group of students all of whom are
compatible with each other (Clique)? What if we wanted
to sit students around a large round table with no
incompatible students sitting next to each other
(Hamiltonian Cycle)? What if we put the students into
three groups so that each student is in the same group
with only his or her compatibles (3-Coloring)?

All these problems have similar characteristic: Given a

potential solution, for example, a seating chart for the
round table, we can validate that solution efficiently. The
collection of problems that have efficiently verifiable
solutions is known as NP “for Nondeterministic
Polynomial-Time”

So P = NP means that for every problem that has an
efficiently verifiable solution, we can find that solution
efficiently as well.

We call the very hardest NP problems (which include
Partition into Triangles, Clique, Hamiltonian Cycle and 3-
Coloring) "NP-complete," that is, given an efficient
algorithm for one of them, we can find an efficient
algorithm for all of them and in fact any problem in NP.
Steve Cook, Leonid Levin, and Richard Karp[8][9][10]
developed the initial theory of NP-completeness that
generated multiple ACM Turing Awards.

In the 1970s, theoretical computer scientists showed
hundreds more problems NP-complete (see Garey and
Johnson [13]). An efficient solution to any NP-complete
problem would imply P = NP and an efficient solution to
every NP-complete problem.

Most computer scientists quickly came to believe P ≠
NP and trying to prove it quickly became the single most
important question in all of theoretical computer science
and one of the most important in all of mathematics. Soon
the P versus NP problem became an important
computational issue in nearly every scientific discipline.

As computers grew cheaper and more powerful,
computation started playing a major role in nearly every
academic field, especially the sciences. The more
scientists can do with computers, the more they realize
some problems seem computationally difficult.

In 2000, the Clay Math Institute named the P versus NP
problem as one of the seven most important open
questions in mathematics and has offered a million-dollar
prize for a proof that determines whether or not P = NP.

The Implications of P = NP
To understand the importance of the P versus NP

problem let us imagine a world where P = NP.
Technically we could have P = NP, but not have practical
algorithms for most NP-complete problems. But suppose
in fact we do have very quick algorithms for all these
problems.

Many focus on the negative, that if P = NP then public-
key cryptography becomes impossible. True, but what we
would gain from P = NP will make the whole Internet
look like a footnote in history.

Since all the NP-complete optimization problems
become easy, everything will be much more efficient.
Transportation of all forms will be scheduled optimally to
move people and goods around quicker and cheaper.
Manufacturers can improve their production to increase
speed and create less waste. And we’ve just scratched the
surface.

Learning becomes easy by using the principle of
Occam's razor—we simply find the smallest program
consistent with the data. Near perfect vision recognition,

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 22-30 (2013)
Special Issue of ICACET 2013 - Held during October 14-15, 2013, Kuala Lumpur, Malaysia

24

 ISSN 2278 - 3091

language comprehension and translation and all other
learning tasks become trivial. We will also have much
better predictions of weather and earthquakes and other
natural phenomenon.

P = NP would also have big implications in
mathematics. One could find short, fully logical proofs for
theorems but these proofs are usually extremely long. But
we can use the Occam razor principle to recognize and
verify mathematical proofs as typically written in
journals. We can then find proofs of theorems that have
reasonable length proofs say in under 100 pages.

Complexity theorists generally believe P ≠ NP and such
a beautiful world cannot exist.

Approaches Used to Show that P ≠ NP
Here, we present a number of ways that have been tried

and failed to prove P ≠ NP. The survey of Fortnow and
Homer[12] gives a fuller historical overview of these
techniques.

Diagonalization
Can we just construct an NP language L specifically

designed so that every single polynomial-time algorithm
fails to compute L properly on some input? This
approach, known as diagonalization, goes back to the 19th
century.

In 1874, Georg Cantor[13] showed the real numbers
are uncountable using a technique known as
diagonalization. Given a countable list of reals, Cantor
showed how to create a new real number not on that list.

Alan Turing, in his seminal paper on computation [14],
used a similar technique to show that the Halting problem
is not computable. In the 1960s complexity theorists used
diagonalization to show that given more time or memory
one can solve more problems. Why not use
diagonalization to separate NP from P?

Diagonalization requires simulation and we don't know
how a fixed NP machine can simulate an arbitrary P
machine. Also a diagonalization proof would likely
relativize, that is, work even if all machines involved have
access to the same additional information. Baker, Gill and
Solovay[15] showed no relativizable proof can settle the P
versus NP problem in either direction.

Complexity theorists have used diagonalization
techniques to show some NP-complete problems like
Boolean formula satisfiability cannot have algorithms that
use both a small amount of time and memory,[16] but this
is a long way from P ≠ NP.

Circuit Complexity
To show P ≠ NP it is sufficient to show some NP-

complete problem cannot be solved by relatively small
circuits of AND, OR, and NOT gates (the number of gates
bounded by a fixed polynomial in the input size).

In 1984, Furst, Saxe, and Sipser [17] showed that small
circuits cannot solve the parity function if the circuits
have a fixed number of layers of gates. In 1985, Razborov
[18] showed the NP-complete problem of finding a large
clique does not have small circuits if one only allows

AND and OR gates (no NOT gates). If one extends
Razborov's result to general circuits one will have proved
P ≠ NP.

Razborov later showed his techniques would fail
miserably if one allows NOT gates.[19] Razborov and
Rudich [20] develop a notion of "natural" proofs and give
evidence that our limited techniques in circuit complexity
cannot be pushed much further.

Proof Complexity
Consider the set of Tautologies, the Boolean formulas f

of variables over ANDs, ORs, and NOTs such that every
setting of the variables to True and False makes f true, for
example the formula

(1) (x AND y) OR (NOT x) OR (NOT y)
A literal is a variable or its negation, such as x or NOT

x. A formula, like the one here, is in Disjunctive Normal
Form (DNF) if it is the OR of ANDs of one or more
literals.

If a formula f is not a tautology, we can give an easy
proof of that fact by exhibiting an assignment of the
variables that makes f false. But if f were indeed a
tautology, we don't expect short proofs. If one could
prove there are no short proofs of tautology that would
imply P ≠ NP.

Resolution is a standard approach to proving
tautologies of DNFs by finding two clauses of the form
(v1 AND x) and (v2 AND NOT x) and adding the clause
(v1 AND v2). A formula is a tautology exactly when one
can produce an empty clause in this manner.

In 1985, Wolfgang Haken [21] showed that tautologies
that encode the pigeonhole principle (n + 1 pigeons in n
holes means some hole has more than one pigeon) do not
have short resolution proofs.

Since then complexity theorists have shown similar
weaknesses in a number of other proof systems including
cutting planes, algebraic proof systems based on
polynomials, and restricted versions of proofs using the
Frege axioms, the basic axioms one learns in an
introductory logic course.

But to prove P ≠ NP we would need to show that
tautologies cannot have short proofs in an arbitrary proof
system. Even a breakthrough result showing tautologies
don't have short general Frege proofs would not suffice in
separating NP from P.

Dealing with NP Hardness
So you have an NP-complete problem you just have to

solve. If, as we believe, P ≠ NP you won't find a general
algorithm that will correctly and accurately solve your
problem all the time. But sometimes you need to solve the
problem anyway. We describe some of the tools used to
solve NP-complete problems and how computational
complexity theory studies these approaches. Typically
one needs to combine several of these approaches when
tackling NP-complete problems in the real world.

Brute Force
Computers have gotten faster, much faster since NP-

completeness was first developed. Brute force search

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 22-30 (2013)
Special Issue of ICACET 2013 - Held during October 14-15, 2013, Kuala Lumpur, Malaysia

25

 ISSN 2278 - 3091

through all possibilities is now possible for some small
problem instances. With some clever algorithms we can
even solve some moderate size problems with ease.

The NP-complete traveling salesperson problem asks
for the smallest distance tour through a set of specified
cities. Using extensions of the cutting-plane method we
can now solve, in practice, traveling salespeople problems
with more than 10,000 cities [22]

Consider the 3SAT problem, solving Boolean formula
satisfiability where formulas are in the form of the AND
of several clauses where each clause is the OR of three
literal variables or negations of variables). 3SAT remains
NP-complete but the best algorithms can in practice solve
SAT problems on about 100 variables. We have similar
results for other variations of satisfiability and many other
NP-complete problems.

But for satisfiability on general formulae and on many
other NP-complete problems we do not know algorithms
better than essentially searching all the possibilities. In
addition, all these algorithms have exponential growth in
their running times, so even a small increase in the
problem size can kill what was an efficient algorithm.
Brute force alone will not solve NP-complete problems no
matter how clever we are.

Parameterized Complexity
Consider the Vertex Cover problem; find a set of k

"central people" such that for every compatible pair of
people, at least one of them is central. For small k we can
determine whether a central set of people exists efficiently
no matter the total number n of people we are
considering. For the Clique problem even for small k the
problem can still be difficult.

Downey and Fellows [3] developed a theory of
parameterized complexity that gives a fine-grained
analysis of the complexity of NP-complete problems
based on their parameter size.

Approximation.
We cannot hope to solve NP-complete optimization

problems exactly but often we can get a good
approximate answer. Consider the traveling salesperson
problem again with distances between cities given as the
crow flies (Euclidean distance). This problem remains
NP-complete but Arora[8] gives an efficient algorithm
that gets very close to the best possible route.

Consider the MAX-CUT problem of dividing people
into two groups to maximize the number of incompatibles
between the groups. Goemans and Williamson[4] use
semi-definite programming to give a division of people
only a .878567 factor of the best possible.

Heuristics and Average-Case Complexity
The study of NP-completeness focuses on how

algorithms perform on the worst possible inputs. However
the specific problems that arise in practice may be much
easier to solve. Many computer scientists employ various
heuristics to solve NP-complete problems that arise from
the specific problems in their fields.

While we create heuristics for many of the NP-

complete problems, Boolean formula Satisfiability (SAT)
receives more attention than any other. Boolean formulas,
especially those in conjunctive normal form (CNF), the
AND of ORs of variables and their negations, have a very
simple description and yet are general enough to apply to
a large number of practical scenarios particularly in
software verification and artificial intelligence. Most
natural NP-complete problems have simple efficient
reductions to the satisfiability of Boolean formulas. In
competition these SAT solvers can often settle
satisfiability of formulas of one million variables.[23]

Leonid Levin [24] developed a theory of efficient
algorithms over a specific distribution and formulated a
distributional version of the P versus NP problem.

Some problems, like versions of the shortest vector
problem in a lattice or computing the permanent of a
matrix, are hard on average exactly when they are hard on
worst-case inputs, but neither of these problems is
believed to be NP-complete. Whether similar worst-to-
average reductions hold for NP-complete sets is an
important open problem.

Average-case complexity plays an important role in
many areas of computer science, particularly
cryptography, as discussed later.

Could Quantum Computers Solve NP-Complete
Problems?

While we have randomized and nonrandomized
efficient algorithms for determining whether a number is
prime, these algorithms usually don't give us the factors
of a composite number. Much of modern cryptography
relies on the fact that factoring or similar problems do not
have efficient algorithms.

In the mid-1990s, Peter Shor [25] showed how to factor
numbers using a hypothetical quantum computer. He also
developed a similar quantum algorithm to solve the
discrete logarithm problem. The hardness of discrete
logarithm on classical computers is also used as a basis
for many cryptographic protocols. Nevertheless, we don't
expect that factoring or finding discrete logarithms are
NP-complete. While we don't think we have efficient
algorithms to solve factoring or discrete logarithm, we
also don't believe we can reduce NP-complete problems
like Clique to the factoring or discrete logarithm
problems.

So could quantum computers one day solve NP-
complete problems? So far, no indications yet.

Only Physists can address the problem as to whether
these machines can actually be built at a large enough
scale to solve factoring problems larger than we can with
current technology (about 200 digits). After billions of
dollars of funding of quantum computing research we still
have a long way to go.

Lov Grover [26] did find a quantum algorithm that
works on general NP problems but that algorithm only
achieves a quadratic speed-up.

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 22-30 (2013)
Special Issue of ICACET 2013 - Held during October 14-15, 2013, Kuala Lumpur, Malaysia

26

 ISSN 2278 - 3091

METHODOLOGY
In this section we describe the methodology employed

to gain more understanding on the relation between NP
and P problems and hopefully answer the question; is P =
NP?.

 The goal was to determine if a method exists that
transforms a database query problem and the relational
database solution space (a problem in P) into labeled-
directed graphs, the results of the query being derived as a
solution to the maximum clique of the graph; and deriving
the same by graph embodiment into a quantum computer.

If the above method exists, then there is a high chance
that P = NP. Otherwise, the P vs NP problem cannot be
resolved under the current computation paradigm and
axioms i.e Turing and Quantum. New computational and
mathematical axioms would be required to solve the
problem.

High Level Description

Fig 1: High Level Description of the Methodology.

Analysis, Development and Testing
The Detailed analysis of Existing body of knowledge

on P vs NP Problem Involved Contents analysis of
literatures and publications relating to the P vs NP
problem. The summary is presented in section 2 above.

The development of the algorithms to transform the
relational database and Query into a graph representation
was informed by the analysis of the current systems and
methods of representing a relational database as a binary
tree formed the basis of the algorithm development

A student’s information management database was

developed as the basis for developing and testing the
algorithms.

The Development of the algorithms was carried out

largely on experimental basis and try and error
methodologies.

Tests were carried out using the students’ database to

refine the algorithms until the final algorithms presented
here were achieved.

The Algorithm to Find the Maximum Clique of the

Association graph is based on the standard maximum
clique algorithm. Modifications are made to the algorithm
to ensure the algorithm terminates in case of no clique.

The O-notation was used to analyze the performance of
the algorithms and compute the time complexity
efficiency of the algorithms

The “Quantum Algorithm for finding the maximum
Clique on a graph” Allan Bojic was used to analyse the
effect of the for the maximum Clique on quantum
computation paradigm

Finally, the results of the of the maximum clique on
classical computer and Quantum computation paradigms
were analysed to establish the relationship between P and
NP on both paradigms.

RESULTS
After development and testing of the algorithms, the

analysis was done with the aim to determine if the
performance of the algorithms. The performances under
Turing and Quantum computational paradigms are
compared and evaluated

Conversion of a Database into a Directed Labeled
Graph

1.1.1 THE ALGORITHM
The algorithm requires that:
The database b, has a set of relations R; Where
 (2). R = ri;for i=1, ..,|R|
The resultant graph Gb, is a labelled directed graph where
 (3). Gb=(Vb, Eb, µb)

1. Procedure GENERATEGRAPH(R);
2. Vb []; Eb[]; µb[] //Initialize the graph
3. For ri ε R do //loop over all the

relations in the database
4. TableName:=RELNAME(ri);
5. KeyAttrib:=GETKEY(ri);
6. For t ε TUPLES(ri) do
7. nt[KeyAttrib];
8. VbADDNODE(n,Vb);
9. If ISCOMPOUND(KeyAttrib) and (PARTY(ri)) > 2 then; //Add

compound key as a Node
10. For i := 1 to |KeyAttrib| Do
11. a:=n[i];

Detailed analysis of Existing body
of knowledge on P vs NP Problem

Develop Algorithm to convert a
Relational Database into a Directed
Labeled Graph

Develop Algorithm to convert a
Query Solution Space into a
Directed Labeled Graph

Develop Algorithm to generate an
association graph of the Database
and Graph

Adapt the “Maximum Clique
Algorithm” to find the Maximum
Clique of the Association graph

Transform the association graph
Algorithm into a quantum
computation paradigm

Use the O-notation to analyze the
algorithms computational efficiency

Determine the correlation between
the Truing paradigm and Quantum
paradigm

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 22-30 (2013)
Special Issue of ICACET 2013 - Held during October 14-15, 2013, Kuala Lumpur, Malaysia

27

 ISSN 2278 - 3091

12. Vb=ADDNODE(a,Vb);
13. Eb:=ADDEDGE(<n,a>,Eb);
14. µb(n,a):=TableName.KeyAttrib[i];
15. End for
16. End if
17. NonKeyAttribKeyAttrib;
18. If ISEMPTY(NonKeyAttrib) then //No non-key
19. attributes so add a loop
20. EADDEDGE(n,n);
21. µb(n,n):=TableName;
22. Else
23. For i ε 1, [NonKeyAttrib] do //Add edge between key

and non-key attribute
24. mt[NonKeyAttrib[i]];
25. VbADDNODE(m,Vb);
26. Eb:=ADDEDGE(<n,m>,Eb);
27. µb(n,m):=TableName.NonKeyAttrib[i];
28. End for
29. End if
30. End for
31. End for
32. End Procedure

1.1.2 DESCRIPTION

A Labeled directed graph is generated from the
database as follows:

If all the relations in the database are at most 2-arity
(meaning they have only one or two attributes) and the
elements of all tables came from a set U, then the set U is
identified with the vertex V, of the graph. This means
there is a node in the graph for each element occurring in
a tuple and a column of every table in the database

The method processes all relations, and for each
relation adds the appropriate nodes to the vertex list and
the appropriately names edges to the edge list and name
mappings. The table name is obtained and used as the
basis for naming edges. The KeyAttrib list records the
attributes which are keys for the table. At line 6 begins a
loop over all the rows in the table. t labels any particular
row. For this row, the values corresponding to the keys
are extracted and added to the node list.

The ADDNODE function adds the node to list of ver-
tices V. If the node is already present mV it is added
again. If the key to the table is compound (there is more
than 1 attribute in the key), then nodes are also added for
the values of all key attributes in t. An edge is added from
each of these attribute nodes to the node representing the
compound key for the row. Each node is labeled by
TableName.keyAttrib[i] where KeyAttrib[i] is the
attribute name for ith attribute node.

Next, edges are added between the key node and the
values in the non-key attributes. If there are no non-key
attributes (line 18) then a loop is added on the key node.
The loop is labeled by the table's name. If there are non-
key columns in the table, an edge is added from the
compound node to each of these non-key nodes. Each
edge is labeled by TableName.nonKeyAttrib[i] where
NonKeyAttrib[i] is the attribute name for the ith non key
attribute node.

1.1.3 ANALYSIS
The running time for the algorithm to convert the

relational database into a directed labeled graph is
 (4). Θ(n^3).
Since n is bound to the total rations in the database U,

the running time is therefore

 (5). Θ(|R|^3).
As the number of relations R in a database increases,

the running time of the algorithm increases by power of 3.

Conversion of a Query Q, Into a Directed Labelled
Graph.

1.1.4 THE ALGORITHM
The algorithm involves the pruning of the database d into
smaller database (Subset of d) being the representation of
the solution space relevant to the Query,
 (6). q={Q1, Q2, ...Q|q| }
The algorithm requires that:
 The database has a set of relations R Where
 (7). R = Ri;for i=1, ..,|R|
 A query q,
 (8). q= {Q1,Q2,... Q|q| }
 Minimal database R’ Where
 (9). R’ = ri;for i=1, ..,|q|
 The resultant graph Gq, is a labelled directed graph

Gq
 (10). Gq=(Vq, Eq, µq)

1. Procedure PRUNEDATABASEGRAPH(R, q);
2. For i ε 1,|q| do
3. [Attribs, Vals] GROUND(Qi);
4. ri GETTABLE(Qi);
5. ri SELECTANDPROJECT(ri,Qi,Attribs,Vals);
6. End for
7. End Procedure

1.1.5 DESCRIPTION
For each table (Qi) entering into the query the set of

attributes (attribs) which are grounded is determined, and
as is the value (vals) to which each attribute is con-
strained. In line 4 the table referenced by Qi retrieved
from the database.

In SELECTANDPROJECT a row is eliminated from
the table by selecting down to include only the rows
which have the assigned values for the attributes and
which are then projected out to include only those
columns of Qi involving variables.

1.1.6 ANALYSIS
The running time for the algorithm to convert the

Query into a directed labeled graph is O(n^2).
Since n is bound to the query attributes in the query Q,

the running time is therefore O(|q|^2).

Generation of Association Graph (Ga) From the
Pruned Query (Gq) and Database (Gb)

1.1.7 THE ALGORITHM
The algorithm requires that:
 A set of pruned relations R; Where
 (11). R = ri;for i=1, ..,r|R|
 A pruned query q’; Where q’
 (12). q’ = Q’i for i = 1,..,|q|
 The association graph Ga
 (13). Ga=(Va, Ea)
is formed from the query and the database graph

1. Procedure FORMASSOCIATIONGRAPH(R,q’);
2. Va []; Ea[]; //Initialize the graph
3. For Q’i ε q’ do //Generate and store graphs for

each query subgoal
4. [Vqi,Eqi, µqi]ROWGRAPH(Q’i);
5. Endfor

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 22-30 (2013)
Special Issue of ICACET 2013 - Held during October 14-15, 2013, Kuala Lumpur, Malaysia

28

 ISSN 2278 - 3091

6. For ri ε R do
7. TableName:=RELNAME(ri);
8. AttribNames:=ATTRIBNAMES(ri);
9. For t ε ROWS(ri) do
10. VtROWNODES(t)
11. EtROWEDGES(t)
12. For i ε1 to |q| Do
13. V’a:=ASSOCIATENODES(Va,Vt,,Vqi, µqi,TableName)
14. E’a:= ASSOCIATEEDGES(V’a,Et,Eqi, µqi,TableName,

AttribNames)
15. VaROWNODES(Va,V’a)
16. EaROWEDGES(Ea,E’a)
17. End for
18. End for
19. End For
20. End Procedure

1.1.8 DESCRIPTION
An Association graph is generated from the pruned
database and the Query as follows:

The graph for the pruned query is constructed and
stored (line 4). Then looping over all pruned relations and
all rows in each relation is performed. For each row t the
nodes V, and edges E, for the row are determined (lines
10 and 11). The nodes are simply the elements in the
attributes of the table and an additional key node if
required. The edges connect all attributes to the key node.

Once the graph for the row has been defined, it may
then compared with the graphs for each of the |q| query
subgoals. For each subgoal, the association graph vertices
may be defined by pairing variable nodes from the query
with compatible row nodes.

Compatible nodes have the same labeled loops which
can be determined from the relation name (stored in
TableName). Note that some of these a-vertices may have
previously been generated. Even in such cases V’a
includes all a-vertices generated by the tuple and the
subgoal graphs. However, when these a-nodes are added
to the set Va, of a-vertices duplicates are not permitted
(line 15).

The ASSOCIATEEDGES routine then generates the a-
edges that are generated between the a-vertices stored in
V’a. Compatible edges can be identified by knowing µqi
the relation name (TABLENAME) and the attribute
names (AttribNames). Some of these edges may have
previously been generated, but some will be new (for
example those nodes connected to the key). ADDEDGES
appends only the new edges to the a-edge set Ea.

1.1.9 ANALYSIS
The Construction of the Association Graph (Ga) from the
pruned query and Database is similar to the conversion of
the database into a directed graph only that this time
around, the graph is created from the pruned database to
reflect the query solution space.
The running time for the algorithm to generate the
association is Θ(n^3).
Since n is bound to the number of vertices v in the
database graph, the running time is therefore Θ (|v|^3).

 Maximum Clique of the Association Graph Ga.
1.1.10 THE ALGORITHM

The algorithm requires that:
 Association Graph Ga,
 (14). Ga = (Va,Ea),

 Lower bound on clique lb (default, 0).
 The result is the size of the maximum clique in the

graph

1. procedure MAXCLIQUE(Ga,lb)
2. max lb
3. for i ε 1 to n do
4. if d(vi) >= max then // Pruning 1
5. U 0;
6. for each vj ε N(vi) do
7. if j > i then // Pruning 2
8. if d(vj) >= max then // Pruning 3
9. U U U{vj}
10. CLIQUE(Ga , U, 1)
11.
12. CLIQUE Recursive Subroutine
13. procedure CLIQUE(Ga U, size)
14. if U = 0 then
15. if size > max then
16. max size
17. return
18. while |U| > 0 do
19. if size + |U| <= max then //Pruning 4
20. return
21. Select any vertex u from U
22. UU \{u}
23. N’(u) := {w|w ε N(u) ^ d(w) >= max // Pruning 5
24. CLIQUE(Ga,U ∩N’(u), size + 1)

1.1.11 DESCRIPTION

The maximum clique for the association graph is found
by computing the largest clique containing each vertex
and picking the largest among them. A key element of the
algorithm is that during the search for the largest clique
containing a given vertex, vertices that cannot form
cliques larger than the current maximum clique are
pruned, in a hierarchical fashion.

The subroutine CLIQUE goes through every relevant
clique containing vi in a recursive fashion and returns the
largest. The subroutine is similar to the Carraghan-
Pardalos algorithm [19].

Our algorithm consists of several pruning steps. The
pruning in Line 4 of MAXCLIQUE (Pruning 1) filters
vertices having strictly fewer neighbors than the size of
the maximum clique already computed. These vertices
can be safely ignored, since even if a clique were to be
found, its size would not be larger than max.

While forming the neighbor list U for a vertex vi, we
include only those of vi’s neighbors for which the largest
clique containing them has not been found (Line 7,
Pruning 2), to avoid recomputing previously found
cliques. Furthermore, the pruning in Line 8 (Pruning 3)
excludes vertices vj ε N(vi) that have degree less than the
current value of max, since any such vertex could not
form a clique of size larger than max.

The pruning strategy in Line 7 of subroutine CLIQUE
(Pruning 4) checks for the case where even if all vertices
of U were added to get a clique, its size would not exceed
that of the largest clique encountered so far in the search,
max.

The pruning in Line 11 of CLIQUE (Pruning 5)
reduces the number of comparisons needed to generate
the intersection set in Line 12. Pruning 4 is used in most
existing algorithms, whereas pruning steps 1, 2, 3 and 5
are new.

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 22-30 (2013)
Special Issue of ICACET 2013 - Held during October 14-15, 2013, Kuala Lumpur, Malaysia

29

 ISSN 2278 - 3091

1.1.12 ANALYSIS
First inner while loop, and let n = Size

The while loop loops for log(i) times, so inside one
iteration of the for i loop, c * log(i) operations are done.
In total

 (15). c*log(1) + c*log(2) + c*log(3) + ... + c*log(n)
The two nested for loops and the recursive Clique

procedure call would introduce the exponential growth on
the n of order 2, as the number of vertices grows

The running time for this algorithm to find the
maximum clique is Θ(2^n).

Since n is bound to the total vertices in the database U,
the running time is therefore Θ(2^|u|).

This represents an exponential growth of order 2 as the
number of vertices increases.

Clearly, the modified maximum clique algorithm still
exhibits exponential tendencies making a perfect NP-
Complete problem

Maximum Clique on Quantum Computation
A Quantum Algorithm for finding the maximum Clique
on a graph is given by Allan Bojic [27] , A Quantum
Algorithm for finding the maximum Clique on a graph.
Bojic algorithm gives the complexity of the worst case

scenario as). If |v| = n, the running time is

therefore
This is a tremendous improvement compared to the
Θ(2^n) of the classical implementation of the maximum
clique described in section 4.4 above

DISCUSSION OF THE RESULTS
From the results of algorithm analysis in section 4, we

have been able to show that:
A method does exist that can transform a relation

database into a directed labeled graph. The running time
complexity of the algorithm is Θ(n^3). As n increase,
the performance degrades rapidly. However in normal
database implementation, n is tightly bound by the
number tables and relations therein. The running time is
there limited to the number of relations R. This yields a
running time complexity Θ(|n|^3) for n=R

A method exists that can transform the query into a
query database graph being a representation of the
database solution space. The running time complexity of
the algorithm is Θ(n^2). As n increase, the
performance degrades rapidly. However in normal
database implementation, n is tightly bound by the
number variables and table relations in the query. The
running time is therefore limited to the number of
relations q. This yields a running time complexity Θ
(|n|^2) for n=q

A method exists that generate an association graph of
the database and query graph. The running time
complexity of the algorithm is Θ(n^3). As n increase,
the performance degrades rapidly. However in normal
database implementation, n is tightly bound by the

number of tables and relations therein. The running time
is there limited to the number of relations R. This yields a
running time complexity Θ (|n|^3) for n=R

The maximum clique of the association graph yields
the solution to the query. The algorithm running
complexity is Θ(2^n). Since n is bound to the total
vertices in the database U, the running time is therefore Θ
(2^|u|). The algorithm has an exponential growth of order
2 on the number of vertices in the association graph. This
reinforces the fact that maximum clique is a NP-Complete
problem.

A method exists that transforms the maximum clique
into a quantum computation paradigm. The time

complexity of the algorithm is)The
algorithm has greatly improved on the quantum
computation by 2-order square root.

The relationship between the generation of the query
graph and the database graph is interesting. While running
time complexity for the generation of the database graph
is in order of 3 of the input size, the query is in order of 2
of the query input size i.e Number of relations within the
query. Instead of generating the database graph and the
query graph separately, the association graph could be
generated directly by pruning the database query
representation. By directly generating the association
graph this way, the running time complexity can be
significantly reduced to the order of 2/3 of the database
table relation Θ (n^2/3).

Of greatest interest is the relationship between the
maximum clique algorithm on a classical computation
paradigm (Turing) and the quantum computational
paradigm. On quantum computation, the performance
improves by the root of the input. This improvement can
be attributed to the extra state of the Qbits
superimposition in the quantum mechanics.

CONCLUSION
From the hypothesis, it suffices to conclude that there

is a high likelihood of the N =NP. However the
relationship between the maximum clique algorithm on a
classical computation paradigm (Turing) and the quantum
computational paradigm has opened a new thought into
the relationship between P and NP problems.

As mentioned earlier, the improvement of the
maximum clique problem on quantum computation
paradigm may be attributed to the extra bit, Qubit that can
be superimposed to give 4 state (0,1,0’, 1’) as opposed to
the normal classical computing paradigm of 2 states (1,0).

The limitation of the classical computation paradigm is
by itself hedged on the current representation of the states
by use of electric current (Electrons) flow as medium of
realizing the implementation.

Moreover, many of the quantum algorithms are
likewise based on the classical implementation.

International Journal of Advanced Trends in Computer Science and Engineering (IJATCSE), Vol.2 , No.5, Pages : 22-30 (2013)
Special Issue of ICACET 2013 - Held during October 14-15, 2013, Kuala Lumpur, Malaysia

30

 ISSN 2278 - 3091

Conjecture
Supposing we had a new element Oracle Ω in the

periodic table, that can yield N different states. It suffices
to say that it would be possible reduce the computational
time complex of many NP-Complete problems by root of
N. This would be sufficient to solve many of the NP
problems hopefully in polynomial time

Since the Oracle Ω element does not exist at the
moment, then it suffices to say that the P vs NP problem
cannot be resolved under the current computational
paradigm. A new, Ω computational paradigm is required
to resolve the problem.

Further work
Further research can be carried out to enable:-
The algorithms presented are independent of the

implementation platform. Further work is required to
implement the algorithms and run tests to derive actual
computation complexity in both time and space.

The maximum clique problem on quantum
computation is based on the Alan Jobic algorithm [2]
which is an improvement of the Grower’s database search
algorithm. Further research is required on the effect of
using Shor’s fourier transformation quantum computation
algorithm

CERN, has announced the possibility of the Boson
particle identified by the Large Hydron Collider (LHC)
experiment as being the elusive Higgs Boson. Further
research on what value the Boson can add.

Further research on use of labeled directed graph
embodiment as way to improve database query problems
using the methods presented

ACKNOWLEDGMENT
Thanks to Prof. Rodriquez for the useful discussions

and guidance on relevant journals on computational
complexity.

REFERENCES
[1] Cook, Stephen,1971. The complexity of theorem proving

procedures. Proceedings of the Third Annual ACM
Symposium on Theory of Computing. pp. 151–158.

[2] Clay Math Institute of Mathematics, Official Problem
Description, Retrieved from
http://www.claymath.org/millennium/P_vs_NP/pvsnp.pdf)

[3] Downey, R. and Fellows, M. Parameterized Complexity.
Springer, 1999.

[4] Goemans, M. and Williamson, D. Improved approximation
algorithms for maximum cut and satisfiability problems using
semidefinite programming. Journal of the ACM 42, 6 (1995),
1115–1145.

[5] M. Turing,1939, Systems of Logic Based on Ordinals (Ph.D.
thesis). Princeton University. Retrieved from
https://webspace.princeton.edu/users/jedwards/Turing
Centennial 2012/Mudd Archive
files/12285_AC100_Turing_1938.pdf

[6] A. Turing, 1936, On computable numbers with an application
to the entscheidnungsproblem, Proc. London Math. Soc. 42
230–265.

[7] Edmonds, J. Paths, trees and owers. Canadian Journal of
Mathematics 17, (1965), 449–467.

[8] Arora, S. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric problems.
J. ACM 45, 5 (Sept. 1998), 753–782.

[9] Karp, R. Reducibility among combinatorial problems.
Complexity of Computer Computations. R. Miller and J.
Thatcher, Eds. Plenum Press, 1972, 85–103.

[10] Levin, L. Universal'nyie perebornyie zadachi (Universal
search problems: in Russian). Problemy Peredachi
Informatsii 9, 3 (1973), 265–266. Corrected English
translation.

[11] Garey, M. and Johnson, D. Computers and Intractability. A
Guide to the Theory of NP-Completeness. W. H. Freeman
and Company, NY, 1979.

[12] Lance Fortnow, 2000, The status of the P versus NP problem,
Communications of the ACM 52 no. 9, pp. 78–86.

[13] Cantor, G. Ueber eine Eigenschaft des Inbegriffes aller
reellen algebraischen Zahlen. Crelle's Journal 77 (1874),
258–262 – Translated by Google translator .

[14] Turing, A. On computable numbers, with an application to
the Etscheidungs problem. Proceedings of the London
Mathematical Society 42 (1936), 230–265.

[15] Baker, T., Gill, J., and Solovay, R. Relativizations of the P =
NP question. SIAM Journal on Computing 4, 4 (1975), 431–
442.

[16] van Melkebeek, D. A survey of lower bounds for satisfiability
and related problems. Foundations and Trends in Theoretical
Computer Science 2, (2007), 197–303.

[17] Furst, M., Saxe, J., and Sipser, M. Parity, circuits and the
polynomial-time hierarchy. Mathematical Systems Theory 17
(1984), 13–27.

[18] Razborov, A. Lower bounds on the monotone complexity of
some Boolean functions. Soviet Mathematics-Doklady 31,
(1985) 485–493.

[19] Razborov, A. On the method of approximations. In
Proceedings of the 21st ACM Symposium on the Theory of
Computing. ACM, NY, 1989, 167–176.

[20] Razborov, A., and Rudich, S. Natural proofs. Journal of
Computer and System Sciences 55, 1 (Aug. 1997), 24–35.

[21] Haken, A. The intractability of resolution. Theoretical
Computer Science, 39 (1985) 297–305.

[22] Applegate, D., Bixby, R., Chvátal, V., and Cook, W. On the
solution of traveling salesman problems. Documenta
Mathematica, Extra Volume ICM III (1998), 645–656.

[23] Agrawal, M., Kayal, N., and Saxena, N. PRIMEs. In
Annals of Mathematics 160, 2 (2004) 781–793.

[24] Levin, L. Average case complete problems. SIAM Journal on
Computing 15, (1986), 285–286.

[25] Shor. P. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM
Journal on Computing 26, 5 (1997) 1484–1509.

[26] Grover, L. A fast quantum mechanical algorithm for database
search. In Proceedings of the 28th ACM Symposium on the
Theory of Computing. ACM, NY, 1996, 212–219.

[27] Alan Jobic, 2012, A Quantum Algorithm for finding the
maximum Clique on a undirected graph – Jios, Vol 36 No.

