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 
Abstract : The search for efficient image denoising methods is 

still a valid challenge at the crossing of functional analysis and 
statistics. In spite of the sophistication of the recently methods, most 
algorithms have not yet attained a desirable level of applicability. 
All the algorithms show a high outstanding Performance when the 
image model corresponds to the algorithm assumptions but it fails in 
general and create artifacts or change the main structures of the 
original image. De-noising of natural images corrupted by white 
Gaussian noise using wavelet techniques is very effective because of 
its ability to capture the energy of the signal in few energy transform 
values or coefficients. This method performs well under a number of 
applications because wavelet transform has the compaction property 
of having only a small number of large coefficients where the 
remaining wavelet coefficients are very small. The aim of this 
review paper is to examine all existing studies in the literature 
related to applying wavelet transformation for denoising images. 
However, to review various denoising algorithms using wavelet 
transform; those algorithms are discussed and showed how the 
appearance and quality of the noisy image can be improved. 
Algorithms such as SUREShrink, VisuShrink,BayesShrink,  
Bivariate shrink, Neigh Shrink and Normal shrink are presented in 
this paper.  In the part of the experimental results, different Gaussian 
white noise levels in PSNR are shown. 
 

Key words : Denoising, discrete wavelet transforms (DWT), 
hard and soft thresholding and peak signal to noise ratio (PSNR). 
 

INTRODUCTION 
The need for efficient image restoration methods has 

grown with the massive production in the field of digital 
images and movies, often taken in poor conditions. No matter 
how good cameras are, an image improvement is always 
desirable to extend their range of actions. Visual information 
transmitted in the form of digital images is becoming a major 
method of communication in the modern technology, 
unfortunately; the image obtained after transmission is often 
corrupted with different kinds of noise [1].  

 The received images need processing before it can be used 
in several applications. Image denoising involves the 
manipulation of the image data to produce a visually high 
quality image. Over the past decade, wavelet transforms have 
received a lot of attention from researchers in many different 
areas.  The discrete wavelet transform also provides 
multiscale spatial and frequency decomposition. The 
frequencies can be resolved in space and this is very useful 
for locating particular features of interest in an image. For 
this reason, it is preferred over other methods such as the 
Fourier transform, Gaussian lowpass filter and Wiener filter. 
 

 

This paper reviews wavelet based approach, where the 
additive noise form is present in an image, Gaussian noise is 
most commonly known as additive white Gaussian noise 
which is evenly distributed over the signal. Each pixel in the 
noisy image is the sum of the true pixel value and random 
Gaussian distributed noise value [2]. Simple denoising 
algorithms that use the wavelet transform consist of three 
steps. [3] Proposed the following wavelet denoising scheme:  

• Calculate the wavelet transform (w) of the noisy 
signal(y). 

• Modify the noisy wavelet coefficients according to 
threshold function T(.) (Hard or Soft) to obtain coefficients   
 ෨ߠ

• Compute the inverse transform using the modified 
coefficients to collect the original signal ݔ෤ 

Fig. 1 shows block diagram of Donoho algorithm [4]. 
 

 
Fig.1.The Basic Framework of the Wavelet Transform Based Image 

Denoising 

Bui and Chen [5] proposed a translation invariant 
multiwavelet denoising scheme that gave better results than 
[6]. Simoncelli and Adelson [7] propose Bayesian wavelet 
coring method to reduce the visual artifacts: Gibbs 
phenomena in the neighborhood of discontinuities. Spurious 
wavelets can also be seen in the restored image due to the 
cancelation of small coefficients; this artifact will be called 
wavelet outliers, as it is introduced in [8].Coifman and 
Donoho [9] improved the wavelet thresholding methods by 
averaging the estimation of all translations of the degraded 
signal the wavelet coefficients of the original and translated 
signals can be very different, and they are not related by a 
simple translation or permutation. Zhuang and Baras [10] 
studied the problem of choosing an image-based customized 
wavelet basis with compact support for image data 
compression and provided a general algorithm for computing 
the optimal wavelet basis.[11] Proposed an adaptive 
shrinkage denoising scheme by using neighbourhood 
characteristics. They claimed that their new scheme produced 
better results than Donoho’s methods [3]. 
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IMAGE FILTERING USING WAVELET 
TRANSFORMATION  

Filtering operations in the wavelet domain can be 
subdivided into linear and nonlinear methods,the main 
principle in wavelet technique is using decomposition and 
reconstruction algorithm of signal, wavelet function 
processes the high-frequency signal according to a filtering 
scheme. The algorithm starts with a wavelet decomposition 
applied over the time series. The result, the coefficient array, 
is divided into two parts: an approximation coefficient vector 
and a detail coefficient vector, in a rough scale [12]. The 
following subsections show different types of wavelet filters. 

Linear Filters 
Linear filters such as Wiener filter in the wavelet domain 
yield optimal results when the signal corruption can be 
modeled as a Gaussian process and the accuracy criterion is 
the mean square error “MSE” [13],[14]. However, designing 
a filter based on this assumption frequently results in a 
filtered image that is more visually displeasing than the 
original noisy signal, even though the filtering operation 
successfully reduces the MSE. In [15] a wavelet-domain 
spatially adaptive FIR Wiener filtering for image denoising is 
proposed where Wiener filtering is performed only within 
each scale and intrascale filtering is not allowed. 
 
Non-Linear Threshold Filtering 
 
The most investigated domain in denoising using wavelet 
transform is the non-linear coefficient thresholding based 
methods. The procedure exploits sparsity property of the 
wavelet transform and the fact that the wavelet transforms 
maps white noise in the signal domain to white noise in the 
transform domain. Thus, while signal energy becomes more 
concentrated into fewer coefficients in the transform domain, 
noise energy does not. It is this important principle that 
enables the separation of signal from noise [16]. The 
procedure in which small coefficients are removed while 
others are left untouched is called hard thresholding. But the 
method generates spurious blips, better known as artifacts, in 
the images as a result of unsuccessful attempts of removing 
moderately large noise coefficients. In order to overcome the 
demerits of hard thresholding, wavelet transform using soft 
thresholding was introduced in[17]. In this scheme, 
coefficients above the threshold are shrunk by the absolute 
value of the threshold itself. Similar to soft thresholding, 
other techniques of applying thresholds are semi-soft 
thresholding and Garrote thresholding [18]. Most of 
thewavelet shrinkage literature is based on methods for 
choosing the optimal threshold which can be adaptive or 
non-adaptive to the image. 

Non-Adaptive Thresholds 
One of the most known algorithms in non–adaptive 

threshold is VisuShrink [17] which depends only on number 
of data points. It has asymptotic equivalence suggesting best 
performance in terms of “MSE” when the number of pixels 
reaches infinity. VISUShrink is known to yield overly 
smoothed images because its threshold choice can be 
unwarrantedly large due to its dependence on the number of 
pixels in the image. In the paper detailed explanations will be 
presented about VisuShrink. 

 

Adaptive Thresholds 
SUREShrink uses a hybrid of the universal threshold and 

the “SURE” (Stein’s Unbiased Risk Estimator) threshold and 
performs better than VISUShrink.  BayesShrink [18], [19] 
minimizes the Bayes’ Risk Estimator function assuming 
Generalized Gaussian prior and thus yielding data adaptive 
threshold. BayesShrink outperforms SUREShrink most of 
the times. Cross validation [20] replaces wavelet coefficient 
with the weighted average of neighborhood coefficients to 
minimize generalized cross validation “GCV” function 
providing optimum threshold for every coefficient. 

There are two primary thresholding methods: hard 
thresholding and soft thresholding [14]. Hardthresholding 
operator is defined as: 
 
D(U,λ) = U     if |U| ˃ λ                                     (1) 
D(U,λ) = 0     otherwise 
 
Soft thresholding operator is defined as: 
 

D(U,λ) = (sgn(U)*max(0, |U|≥ λ))    (2) 

The Method Noise 
All denoising methods depend on a filtering parameter (h). 

This parameter measures the degree of filtering applied to the 
image. For most methods, the parameter (h) depends on an 
estimation of the noise variance σ2. One can define the result 
of a denoising method Dh as a decomposition of any image v 
as: 
v = Dhv + n(Dh, v)        (3) 

 
Where Dhv is smoother than v, and n(Dh, v) is the noise 
guessed by the method. 

It is not enough to smoothv to ensure that n(Dh, v) will look 
like a noise. More methods are actually not content with a 
smoothing but try to recover lost information in n(Dh, v) [21], 
[22]. So the focus is on n(Dh, v).  Let u be a not necessarily 
noisy image and Dh a denoising operator depending on h. 
Then method noise can be defined as the image difference 

n(Dh, u) = u − Dh(u)         (4) 

This method noise should be as similar to a white noise as 
possible. In addition, since the original image u should not to 
be altered by denoising methods, the method noise should be 
as small as possible for the functions with the right regularity. 
According to the preceding discussion, four criteria will be 
taken into account in the comparison of denoising methods: 
 
 A display of typical artifacts in denoised images. 
 A formal computation of the method noise on smooth 

images, evaluating how small it is in accordance with 
image local smoothness. 

 A comparative display of the method noise of each 
method on real images with σ = 2.5. The noise 
standard deviation smaller than 3 are subliminal, 
and it is expected that most digitization methods 
allow themselves this kind of noise. 

 A classical comparison receipt based on noise 
simulation: it consists of taking a good quality 
image, adding Gaussian white noise with known σ, 
and then computing the best image recovered from 
the noisy one by each method.  
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On top of this, in two cases, a proof of asymptotic recovery 
of the image can be obtained by statistical arguments. 

Soft and Hard Thresholding  
The threshold plays an important role in the denoising 

process. Fig. 2 demonstrates the hard and soft thresholding 
functions. Finding an optimum threshold is a tedious process. 
A small threshold value will retain the noisy coefficients 
whereas a large threshold value leads to the loss of 
coefficients that carry image signal details. Normally, hard 
thresholding and soft thresholding techniques are used for 
such de-noising process. Hard thresholding is a keep or kill 
rule whereas soft thresholding shrinks the coefficients above 
the threshold in absolute value. It is a shrink or kill rule. 
Famous algorithms will be presented and explained in details 
in the next section [23]. 

 

Fig.2. (a) Hard Thresholding, (b) Soft Thresholding Functions 

WAVELET DENOISING ALGORITHMS 

Bayes Shrink 

The Bayes Shrink method is effective for images including 
Gaussian noise [24]. The observation model is expressed as 
follows:   

ܻ = ܺ + ܸ (5) 
 
Here Y is the wavelet transform of the degraded image, X 

is the wavelet transform of the original image, and V denotes 
the wavelet transform of the noise components following the 
Gaussian distribution N (0, σv2). Here, since X and V are 
mutually independent, the variances σy2 , σx2 and σv2 of y, x 
and v are given by: 

 
σy2= σx2 +σv2   (6) 
 
It has been shown that the noise variance σy2 can be 

estimated from the first decomposition level diagonal 
sub-band “HH1” by the robust and accurate median estimator 
[25].    
^ߪ

௩ = ௠௘ௗ௜௔(|ுுభ |)
଴.଺଻ସହ

   (7) 
 

The variance of the sub-band of degraded image can be 
estimated as: 

σy2=ଵ
ெ
∑ ௠ܣ 

ଶெ
௠ୀଵ         (8) 

Where  ܣ௠ are wavelet coefficients of sub-band under 
consideration, mis the total number of wavelet coefficient in 
that sub-band. The Bayes shrink thresholding technique 
performs soft thresholding, with adaptive data driven, 
sub-band and level dependent near optimal threshold given 
by [6]: 

 

TBS= 

⎩
⎪
⎨

⎪
⎧ ఙ௩మ

ఙ௫మ
௩ଶߪ              ݂݅        < ௬ଶߪ

{|௠ܣ |}ݔܽ݉ ݁ݏ݅ݓݎℎ݁ݐ݋     

⎭
⎪
⎬

⎪
⎫

    (9) 

 

Where ݔߪ= ට݉ܽݔ൫ߪ௬ଶ − ,௩ଶߪ 0൯(10) 

Normal Shrink  
The optimum threshold value for the Normal Shrink 

“TN”is given by [26]: 

TN=ఒఙೡ
మ

ఙೡ
(11) 

Where, the parameter λ is given by the following equation: 
 

λ   =ට݈݃݋ (௅ೖ
௃

) (12) 

 
 ௞is the length of the sub-band at kth scale. And, J is the totalܮ
number of decomposition. σv is the estimated noise variance, 
calculated by equation (7) and σy is the standard deviation of 
the sub-band of noisy image, calculated by using equation 
(8).Normal Shrink also performs soft thresholding with the 
data driven sub-band dependent threshold “TN”, which is 
calculated by equation (11). 

Neigh Shrink  
Let g= {gij} will denote the matrix representation of the 

noisy signal [23] Then, w(Wg) denotes the matrix of wavelet 
coefficients of the signal under consideration. For every 
value of wij, letBij is a neighboring window around wij, wij 
denotes the wavelet coefficient to be shrinked. The 
neighboring window size can be represented as LxL, where L 
is a positive odd number. A3x3 neighbouring window 
centered at the wavelet coefficient to be shrinked is shown in 
Fig. 3. 
 

 
 

Fig. 3.An Illustration of theNeighbouring Window of Size 3 3 
Centered at The Wavelet Coefficient to be Shrinked [28] 
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Let 
sij=∑ ௞௟(௞,௟)ఢ஻೔ೕݓ (13) 
 

The corresponding terms will be omitted in the summation 
when the above summation has pixel indexes out of the 
wavelet sub-band range. The shrinked wavelet coefficient 
according to the Neigh shrink is given by this formula [29]. 

 
 ᇱݓ

௜௝ =  ௜௝(14)ߚ ௜௝ݓ
 

The shrinkage factor β୧୨ can be defined as: 
 

௜௝ߚ = ൬1 − ்ೆಿ಺ 
మ 

ௌ೔ೕమ
൰
ା

(15) 

 
Here, the + sign at the end of the formula means to keep 

the positive value while set it to zero when it is negative and   
is the universal threshold, which is defined as [4]: 

 
௎ܶேூ  = ඥ2ߪଶ݈݊ (݊)(16) 

 
Different wavelet coefficient sub-bands are shrinked 

independently, but the universal threshold ௎ܶேூ and 
neighboring window size L kept unchanged in all sub-bands. 
The estimated denoised signal f ᇱ = f ᇱ ୧୨  is calculated by 
taking the inverse wavelet transform of the shrinked wavelet 
coefficients ݓ` 

௜௝  i.e݂ᇱ = ܹିଵ  (ݓᇱ). 

SureShrink 
A threshold chooser based on Stein’s Unbiased Risk 

Estimator “SURE” was proposed by Donoho and Johnstone 
[15] and is called as SureShrink. It is a combination of the 
universal threshold and the “SURE” threshold. This method 
specifies a threshold value tj for each resolution level j in the 
wavelet transform which is referred to as level dependent 
thresholding [27]. The goal of SureShrink is to minimize the 
mean squared error, defined as [28]. 

MSE= ଵ
௡మ
∑ ,ݔ)ݖ) (ݕ − ଶ௡((ݕ,ݔ)ݏ
௫,௬ୀଵ (17) 

Where z(x,y) is the estimate of the signal while s(x,y) is the 
original signal without noise and n is the size of the signal. 
SureShrink suppresses noise by thresholding the empirical 
wavelet coefficients. The SureShrink threshold t* is defined 
as: 
t*=݉݅݊൫ݐ,  ൯(18)  ݊݃݋ඥ2݈ߪ
 

Where t denotes the value that minimizes Stein’s Unbiased 
Risk Estimator, σ is the noise variance computed from 
Equation (7), and n is the size of the image. SureShrink 
follows the soft thresholding rule. The thresholding 
employed here is adaptive, i.e., a threshold level is assigned 
to each dyadic resolution level by the principle of minimizing 
the Stein’s Unbiased Risk Estimator for threshold estimates. 
It is smoothness adaptive which means that if the unknown 
function contains abrupt changes or boundaries in the image, 
the reconstructed image also does. 

VisuShrink 
Visushrink is thresholding by applying the Universal 
threshold proposed by Donoho and Johnstone [13]. This 
threshold is given by: 
 

 (19)               ܯ ݃݋݈ ඥ2ߪ
 

where σ is the noise variance and M is the number of pixels 
in the image.It is proved in [3] that the maximum of any M 
valuesindependent and identically distributed“i.i.d” as N(0, 
σ2) will be smaller than the universal threshold with high 
probability, with the probability approaching 1 as M 
increases. Thus, with high probability, a pure noise signal is 
estimated as being identically zero. However,for denoising 
images, Visushrink is found to yield an overly smoothed 
estimate. This is because the universal threshold “UT” is 
derived under the constraint that with high probability the 
estimate should be at least as smooth as thesignal. So the 
“UT” tends to be high for large values of M, killing many 
signal coefficients along with the noise. Thus, the threshold 
does not adapt well to discontinuities in the signal. 
 

Bivariate Shrink 
New shrinkage function which depends on both coefficient 

and its parent yield improved results for wavelet based image 
denoising [29]. Here, then modify the Bayesian estimation 
problem as to take into account the statistical dependency 
between a coefficient and its parent. Let w2 represent the 
parent of w1 (w2 is the wavelet coefficient at the same 
position as w1, but at the next coarser scale.) Then 
 
y1=w1+n1       (20) 
 
y2=w2+n2                                  (21) 
 

Where y1 and y2 are noisy observations of w1 and w2 and 
n1 and n2 are noise samples, it can be written as: 
 
y=w + n              (22) 
 
y= (y1, y2)         (23) 
 
w= (w1, w2)                 (24) 
 
n= (n1, n2)                   (25) 
 
According to bays rule allows estimation of coefficient can 
be found by probability densities of noise and prior density of 
wavelet coefficient. Assume that noise is Gaussian then it can 
be written as: 
pn(n)= ½*π*(σn

2 )*exp(-n1
2+n2

2/2σn
2)  (26) 

 
This equation is equivalent to solving following equations 
−   ଵݕ

௪`  
భ   

ఙ೙మ
+ ଵ݂൫ݓ` ൯ = 0             (27) 

−   ଶݕ
௪`  

మ   
ఙ೙మ

+ ଶ݂൫ݓ` ൯ = 0(28) 
 
Here f1and f2 represent the derivative of f(w) with respect to 
w1and w2 respectively. It is clear to know f(w) can be written 
as: 
f (w)=log(pw(w)) (29) 

 
 

`ݓ
ଵ =

൭൬ට௬మభା௬మమି√ଷ
഑మ೙
഑ ൰ା௬భ൱

ට௬మభା௬మభ
(30) 
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EXPEREMINTAL RESULTS 
Experiments have been conducted using Matlab. The 

testing images are Lena andMRIScan of size 256 × 256 at 
different noise levels σ=10, 20, 30 and 35. Fig. 4 and Fig. 5 
show the free noisy images and the relative images with 
different denoising techniques. Softthresholding has been 
used over hard thresholding because it gives more visually 
pleasant images as compared to hard thresholding; reason 
being the latter is discontinuous and yields abrupt artifacts in 
the recovered images especially when the noise energy is 
significant. For comparison, VisuShrink, NeighShrink, 
NormalShrink, Bivariate shrink, SureShrink are implemented 
to denoise the noisy images. Using 
soft-thresholdingdenoising technique [30]. The wavelet filter 
length in these experiments is set to 8. The wavelet transform 

employs Daubechies’ least asymmetric compactly supported 
wavelet with eight vanishing moments. Table1and 
Table2present the PSNR and resulting images of different 
algorithms as mentioned earlier forLena andMARIScan at 
different noise levels. 

 

ܴܲܵܰ = ଵ଴݃݋݈ 10−
∑ ൫஻(௜,௝)൯ି஺(௜,௝))మ೔ೕ

௡మଶହ଺మ
(31) 

 
Where A (i, j) be the noise-free image and B (i, j) the image 

corrupted with white noise, 256 is the image size. 
 
 
 
 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig.4. Image Denoising by Using Different Methods on a Noisy Image (MRIScan)With PSNR = 22 dB. 
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Fig.4. Image denoising by Using Different Methods on a NoisyImage (Lena) with PSNR = 22 dB. 

 
 
 
 

Table 2.The PSNR (dB) of the noisy images of MRIScan and the denoised images withdifferent denoising methods 
 

Noisy 
image 

VisuShrink NeighShrink Bayes 
Shrink 

NormalShrink SureShrink Bivariate 
Shrink 

28.14 26.85 32.41 33.05 30.74 33.46 33.51 
22.12 24.08 31.07 28.97 25.05 29.34 31.38 
18.60 22.74 29.41 26.77 21.60 27.20 28.60 
16.10 21.91 30.55 25.33 19.11 25.92 27.94 
14.14 21.34 28.22 24.26 17.17 24.79 26.51 
12.58 20.90 24.01 23.40 15.58 23.68 25.09 
11.24 20.50 22.12 22.68 14.23 22.90 23.89 
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Table 1.  The PSNR (dB) of the noisy images of Lena and the denoised images with different denoising methods 

Noisy 
image 

VisuShrink NeighShrink Bayes 
Shrink 

NormalShrink SureShrink Bivariate 
Shrink 

28.14 26.35 33.80 32.34 33.53 33.47 33.61 
22.12 23.88 28.90 28.26 30.35 30.07 30.38 
18.60 22.87 26.62 26.06 28.53 28.39 28.60 
16.10 22.31 25.08 24.64 27.89 27.63 27.94 
14.14 21.90 24.14 23.68 26.37 26.29 26.50 
12.58 21.53 23.30 22.94 25.32 25.09 25.40 
11.24 21.23 22.74 22.36 23.22 24.42 24.22 

 
 
 

Potential for Future Research 

After seeing all the above discussions and explanations, 
we can summarize some points about the type of thresholding 
(hard, soft). Hard wavelet threshold method noise is 
concentrated on the edges and high frequency features where 
the wavelet coefficient processed by the threshold value have 
discontinuous point on the threshold λ and - λ, which may 
cause Gibbs shock to the useful reconstructed signal. These 
structures lead to coefficients of large enough value but lower 
than the threshold, they are removed by the algorithm. On the 
other hand, the soft wavelet threshold method noise presents 
much more structure than the hard thresholding, but when the 
wavelet coefficients are greater than the threshold value, 
there will be a constant bias between the wavelet coefficients 
that have been processed and the original wavelet 
coefficients, making it impossible to maintain the original 
features of the images effectively. The literature search 
revealed that a lot of research has gone into using deferent 
imaging techniques using wavelet approaches via hard and 
soft thresholding. A lack of integration of these two 
techniques as mentioned above, however, is evident from the 
fact that the noise difficult to be eliminated completely from 
the noisy image, but on the other side of this fact we can 
minimize it as much as we can. The promising results of the 
new proposed method that depends on the semi soft threshold 
can reduce the noise and improve the quality and the quantity 
of the image, furthermore, in this algorithm a compromise 
has to be found between noise reduction and preserving 
significant signal details. In order to achieve a good 
performance in this respect, a denoisingalgorithm has to 
adapt to signal discontinuities especially in non-repeated, 
contours, texture and flat object structures.  

CONCLUSION  
Usually there will be various noises in the process of 

image acquisition. Image denoisingis paid more and more 
attention of scholars based on the theory of wavelet because 
wavelet transform has good local time-frequency, multi-scale 
and multi-resolution characteristics. This paper summarized 
and reviewed some algorithms and techniques that used to 
improve the image and found compromise between noise 
reduction and preserving significant signal details. 
Experimental results showed that in most cases Bivariate 
Shrink method gives better results than VisuShrink, 
NormalShrink, It should be mentioned that NeighShrink 
method presented outperformance in some cases especially 
with average of noise image “PSNR” in range between 14-17 
dB. 
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