
 
 
 

AN HIGH SPEED TWO’S COMPLEMENT MULTIPLIER           
REALIZATION IN FPGA 

 
Srihari C1,Anil Reddy  G2, Sruthi L3 

 
 
Abstract— This paper focuses Two’s complement multipliers with Short Bit-Width were used without any increase in the delay 
of the partial product generation stage. This was done by reducing one row the maximum height of the partial product array 
generated by a radix-4 Modified Booth Encoded multiplier, this reduction may allow for a faster compression of the partial 
product array and regular layouts. This technique is of particular interest in all multiplier designs, but especially in short bit-
width two’s complement multipliers for high-performance embedded cores.By implementing this method , it will reduce the  
Computation Time in Two’s Complement multipliers by Short Bit-Width concept. This method is general and can be extended 
to higher radix encodings, as well as to any size square and m x n rectangular multipliers. 
 
Index Terms— Multiplication, Modified Booth Encoding, partial product array. 
 
 

INTRODUCTION 
 

High processing performance and low power 
dissipation are the most important objectives in 
many multimedia and digital signal processing 
(DSP) systems, where multipliers are always the 
fundamental arithmetic unit and significantly 
influence the system’s performance and power 
dissipation. To achieve high performance, the 
modified Booth encoding [3] which reduces the 
number of partial products by a factor of two 
through performing the multiplier recoding has been 
widely adopted in parallel multipliers. 
 
METHODOLOGY 
 

The basic algorithm for multiplication is 
based on the well-known paper and pencil approach 
[1] and passes through three main phases: 1) partial 
product (PP) generation, 2) PP reduction, and the 
3)final (carry-propagated) addition. During PP 
generation, a set of rows is generated where final 
(carry-propagated) addition. During PP generation, a 
set of rows is generated where each one is the result 
of the product of one bit of the multiplier by the 
multiplicand. 

 
 
For example, if we consider the multiplication X x Y 
with both X and Y on bits and of the form xn-1 . . . 
x0 and yn-1 . . . y0, then the ith row is, in general, a 
proper left shifting of yi x X, i.e., either a string of all 
zeros when yi = 0, or the multiplicand X itself when 
yi = 1. In this case, the number of PP rows generated 
during the first phase is clearly n. a number of 
strategies for preventing sign extension have been 
developed. The array resulting from the application 
of the sign extension prevention technique in [1] to 
the partial product array of a 8 x 8 MBE multiplier 
 
MODIFIED BOOTH MULTIPLIER 

 
Let us consider the multiplication operation of 

two bit signed numbers (multiplicand) and 
(multiplier). Modified Booth Encoding (MBE) [3] is 
a technique that has been introduced to reduce the 
number of PP rows, still keeping the generation 
process of each row both simple and fast enough. 
One of the most commonly used schemes is radix-4 
MBE, for a number of reasons, the most important 
being that it allows for the reduction of the size of 
the partial product array by almost half, and it is very 
simple to generate the multiples of the multiplicand.  

More specifically, the classic two’s 
complement n x n bit multiplier using the radix- 4 
MBE scheme, generates a PP array with a maximum 
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height of (n/2)+1 rows, each row before the last one 
being one of the following possible values: all zeros, 
±X , ±2X. The last row, which is due to the negative 
encoding, can be kept very simple by using specific 
techniques integrating two’s complement and sign 
extension prevention [1]. The PP reduction is the 
process of adding all PP rows by using a 
compression tree [4], [5]. Since the knowledge of 
intermediate addition values is not important, the 
outcome of this phase is a result represented in 
redundant carry save form, i.e., as two rows, which 
allows for much faster implementations. The final 
(carry-propagated) addition has the task of adding 
these two rows and of presenting the final result in a 
non redundant form, i.e., as a single row. 
 

In this work, an idea is introduced to overlap, 
to some extent, the PP generation and the PP 
reduction phases. Here, the aim is to produce a PP 
array with a maximum height of n/2 rows that is then 
reduced by the compressor tree stage. 

 
 
 
 
 
In particular, ±2X can be simply obtained by single 
left shifting of the corresponding terms ±X. It is clear 
that the MBE can be extended to higher radices, but 
the advantage of getting a higher reduction in the 
number of rows is paid for by the need to generate 
more multiples of X. In this paper, the attention is on 
radix-4 MBE only. From an operational point of 
view, it is well known that the radix-4 MBE scheme 
consists of scanning the multiplier operand with a 
three-bit window and a stride of two bits (radix-4). 
For each group of three  
bits (y2i+1, y2i, y2i-1), only one partial product row is 
generated according to the encoding in Table 1. A  
possible implementation of the radix-4 MBE and of 
the corresponding partial product generation is 
shown in Fig. 1a produces the one, two, and neg 
signals. These signals are then exploited by the logic 
in Fig. 1b, along with the appropriate bits of the 
multiplicand, in order to generate the whole partial 
product array. Other alternatives for the 
implementation of the recoding and partial product 
generation can be found in among others. 

 
 
 
 
 
 
 
 
 
 
 
 

TABLE 1 
Modified Booth Encoding (Radix-4) 

 
As the above reduction can lead to an 

implementation where the delay of the compressor 
tree is reduced by one XOR2 gate keeping a regular 
layout. Since focusing on small values of n and fast 
single-cycle units, this reduction might be important 
in cases where, for example, a high computation 
performance through the assembly of a large number 
of small processing units with limited computation  
capabilities is required, such as 8 x 8 or 16 x 16 
multipliers.   

As mentioned above, radix-4 MBE is 
particularly of interest since, for radix-4, it is easy to 
create the multiples of the multiplicand 0; ±X; ±2X. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Gate-level diagram for partial product generation using MBE(a) 
MBE signals generation. (b) Partial product generation.  

As introduced previously, the use of radix-4 
MBE allows for the (theoretical) reduction of the PP 
rows to n/2, with the possibility for each row to host 
a multiple of yi x X, with yi € {0, ±1, ±2}. While it 
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is straightforward to generate the positive terms 0, X, 
and 2X at least through a left shift of X, some 
attention is required to generate the terms -X and - 
2X which, as observed in Table 1, can arise from 
three configurations of the y2i+1, y2i, y2i-1 bits. To 
avoid computing negative encodings, i.e., -X and - 
2X, the two’s complement of the multiplicand is 
generally used. From a mathematical point of view, 
the use of two’s complement requires extension of 
the sign to the leftmost part of each partial product 
row, with the consequence of an extra area overhead. 
Thus, a number of strategies for preventing sign 
extension have been developed. The array resulting 
from the application of the sign extension prevention 
technique in [1] to the partial product array of a 8 x 8 
MBE multiplier [3] is shown in Fig. 2. 
 

The use of two’s complement requires a neg 
signal (e.g., neg0, neg1, neg2, and neg3 in Fig. 2) to 
be added in the LSB position of each partial product 
row for generating the two’s complement, as needed.  
Thus, although for a n x n multiplier, only n/2 partial 
products are generated, the maximum height the 
maximum height of partial product array is (n/2) + 1. 

 
 
 
 
 
multiplier’s critical path has to fit within the clock 
period of a high performance processor. For instance, 
in the design presented in [2], for n = 16, the 
maximum column height of the partial product array 
is nine, with an equivalent delay for the reduction of 
six XOR2 gates. For a maximum height of the partial 
product array of 8, the delay of the reduction tree 
would be reduced by one XOR2 gate. Alternatively, 
with a maximum height of eight, it would be possible 
to use 4 to 2 adders, with a delay of the reduction 
tree of six XOR2 gates, but with a very regular 
layout.To achieve the goal of eliminating the extra 
row before the PP reduction phase is based on 
computing the two’s complement of the last partial 
product, thus eliminating the need for the last neg 
signal, in a logarithmic time complexity. 
 
 

A special tree structure is used in order to 
produce the two’s complement (Fig. 3), by decoding 
the MBE signals through a 3-5 decoder (Fig. 4a). 
Finally, a row of 4-1 multiplexers with implicit zero 
output1 is used (Fig. 4b) to produce the last partial 
product row directly in two’s complement, without 
the need for the neg signal. The goal is to produce 
the two’s complement in parallel with the 
computation of the partial products of the other rows 
with maximum overlap. 

 
 
 
 
 
Fig. 2. Application of the sign extension prevention measure [1] on the 
partial product array of a 8 x 8 radix-4 MBE multiplier. 
 

When 4-to-2 compressors are used, which is 
a widely used option because of the high regularity 
of the resultant circuit layout for n power of two, the 
reduction of the extra row may require an additional 
delay of two XOR2 gates. By properly connecting 
partial product rows and using a Wallace reduction 
tree [5], the extra delay can be further reduced to one 
XOR2.  

However, the reduction still requires 
additional hardware, roughly a row of n half adders. 
This issue is of special interest when n is a power of 
two, which is by far a very common case, and the 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Two’s complement computation 
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Fig. 4. Gate-level diagram for the generation of two’s complement partial 

product rows (a) 3-5 decoder. (b) 4-1 multiplexer. 
 
SQUARE MULTIPLIERS 
 

For all the partial product rows except the 
first one. As depicted in Fig. 5a, the first row is 
temporarily considered as being split into two sub 
rows, the first one containing the partial product bits 
(from right to left) from pp00 to pp80 and the second 
one with two bits set at “one” in positions 9 and 8.  
Then, the bit neg3 related to the fourth partial 
product row, is moved to become a part of the 
second sub row. The key point of this “graphical” 
transformation is that the second sub row containing 
also the bit neg3, can now be easily added to the first 
sub row, with a constant short carry propagation of 
three positions (further denoted as “3-bits addition”), 
a value which is easily shown to be general, i.e., 
independent of the length of the operands, for square 
multipliers. In fact, with reference to the notation of  
Fig. 5, we have that qq90 qq90 qq80 qq70 qq60 = 0 0 
pp80 pp 70 pp60 + 0 1 1 0 neg3. 
 

As introduced above, due to the particular 
value of the second operand, i.e., 0 1 1 0 neg3, have 
observed that it requires a carry propagation only 
across the least-significant three positions, a fact that 
can also be seen by the implementation shown in 
Fig. 6. It is worth observing that, in order not to have 
delay penalizations, it is necessary that the 
generation of the other rows is done in parallel with 
the generation of the first row cascaded by the  
computation of the bits qq90 qq90 qq80 qq70 qq60 in 
Fig. 5b. In order to achieve this, simplify and  
differentiate the generation of the first row with 
respect to the other rows. 

  
 
 
 
 

In particular, by direct comparison of Figs. 1 
and 7, the generation of the MBE signals for the first 
row is simpler, and theoretically allows for the 
saving of the delay of one NAND3 gate. In addition, 
the implementation in Fig. 8 has a delay that is 
smaller than the two parts of Fig. 7, although it could 
require a small amount of additional area, since this 
extra hardware is used only for the three most 
significant bits of the first row, and not for all the 
other bits of the array. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Partial product array after adding the last neg bit to the first row  
(a) Basic idea. (b) Resulting array. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Gate-level diagram of the proposed method for adding the last neg 

bit in the first row. 
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Fig. 7. Gate-level diagram for first row partial product 
generation.(a)MBE signals generation. (b) Partial product generation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Combined MBE signals and partial product generation for the first 

row (improved for speed). 
 

1. generation of the three most significant bit 
weights of the first row, plus addition of the last neg 
bit: possible implementations can use a replication of 
three times the circuit of Fig. 8 (each for the three 
most significant bits of the first row), cascaded by 
the circuit of Fig. 6 to add the neg signal.  
 

2. parallel generation of the other bits of the 
first row: possible implementations can use instances 
of the circuitry depicted in Fig. 7, for each bit of the 
first row, except for the three most significant  
 

3. parallel generation of the bits of the other 
rows: possible implementations can use the circuitry 
of Fig. 1, replicated for each bit of the other rows.   
All items 1 to 3 are independent, and therefore can 
be executed in parallel. Clearly if, as assumed and 
expected, item 1 is not the bottleneck (i.e., the 
critical path), then the implementation of the 
proposed idea has reached the goal of not 
introducing time penalties.  

 
 
 
 
 

CONCLUSIONS 
 

Two’s complement n x n multipliers using 
radix-4 Modified Booth Encoding produce n/2 
partial products but due to the sign handling, partial 
product array has a maximum height of (n/2)+1. 
Here the partial product array is reduced with a 
maximum height of n/2 , without introducing any 
extra delay in the partial product generation stage. 
With the extra hardware of a (short) 3-bit addition, 
and the simpler generation of the first partial product 
row, a delay for the proposed scheme within the 
bound of the delay of a standard partial product row 
generation is achieved. The outcome of the above is 
that the reduction of the maximum height of the 
partial product array by one unit may simplify the 
partial product reduction tree, both in terms of delay 
and regularity of the layout. This is of special interest 
for all multipliers, and especially for single-cycle 
short bit-width multipliers for high performance 
embedded cores, where short bit-width 
multiplications are common operations.By using this 
multiplication MAC application is developed. 
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