

AN HIGH SPEED TWO’S COMPLEMENT MULTIPLIER
REALIZATION IN FPGA

Srihari C1,Anil Reddy G2, Sruthi L3

Abstract— This paper focuses Two’s complement multipliers with Short Bit-Width were used without any increase in the delay
of the partial product generation stage. This was done by reducing one row the maximum height of the partial product array
generated by a radix-4 Modified Booth Encoded multiplier, this reduction may allow for a faster compression of the partial
product array and regular layouts. This technique is of particular interest in all multiplier designs, but especially in short bit-
width two’s complement multipliers for high-performance embedded cores.By implementing this method , it will reduce the
Computation Time in Two’s Complement multipliers by Short Bit-Width concept. This method is general and can be extended
to higher radix encodings, as well as to any size square and m x n rectangular multipliers.

Index Terms— Multiplication, Modified Booth Encoding, partial product array.

INTRODUCTION

High processing performance and low power
dissipation are the most important objectives in
many multimedia and digital signal processing
(DSP) systems, where multipliers are always the
fundamental arithmetic unit and significantly
influence the system’s performance and power
dissipation. To achieve high performance, the
modified Booth encoding [3] which reduces the
number of partial products by a factor of two
through performing the multiplier recoding has been
widely adopted in parallel multipliers.

METHODOLOGY

The basic algorithm for multiplication is
based on the well-known paper and pencil approach
[1] and passes through three main phases: 1) partial
product (PP) generation, 2) PP reduction, and the
3)final (carry-propagated) addition. During PP
generation, a set of rows is generated where final
(carry-propagated) addition. During PP generation, a
set of rows is generated where each one is the result
of the product of one bit of the multiplier by the
multiplicand.

For example, if we consider the multiplication X x Y
with both X and Y on bits and of the form xn-1 . . .
x0 and yn-1 . . . y0, then the ith row is, in general, a
proper left shifting of yi x X, i.e., either a string of all
zeros when yi = 0, or the multiplicand X itself when
yi = 1. In this case, the number of PP rows generated
during the first phase is clearly n. a number of
strategies for preventing sign extension have been
developed. The array resulting from the application
of the sign extension prevention technique in [1] to
the partial product array of a 8 x 8 MBE multiplier

MODIFIED BOOTH MULTIPLIER

Let us consider the multiplication operation of

two bit signed numbers (multiplicand) and
(multiplier). Modified Booth Encoding (MBE) [3] is
a technique that has been introduced to reduce the
number of PP rows, still keeping the generation
process of each row both simple and fast enough.
One of the most commonly used schemes is radix-4
MBE, for a number of reasons, the most important
being that it allows for the reduction of the size of
the partial product array by almost half, and it is very
simple to generate the multiples of the multiplicand.

More specifically, the classic two’s
complement n x n bit multiplier using the radix- 4
MBE scheme, generates a PP array with a maximum

ISSN 2278-3091
International Journal of Advanced Trends in Computer Science and Engineering, Vol.5 , No.1, Pages : 65 -69 (2016)

 Special Issue of ICACEC 2016 - Held during 23-24 January, 2016 in Institute of Aeronautical Engineering, Quthbullapur, Telangana-43, India

65

height of (n/2)+1 rows, each row before the last one
being one of the following possible values: all zeros,
±X , ±2X. The last row, which is due to the negative
encoding, can be kept very simple by using specific
techniques integrating two’s complement and sign
extension prevention [1]. The PP reduction is the
process of adding all PP rows by using a
compression tree [4], [5]. Since the knowledge of
intermediate addition values is not important, the
outcome of this phase is a result represented in
redundant carry save form, i.e., as two rows, which
allows for much faster implementations. The final
(carry-propagated) addition has the task of adding
these two rows and of presenting the final result in a
non redundant form, i.e., as a single row.

In this work, an idea is introduced to overlap,
to some extent, the PP generation and the PP
reduction phases. Here, the aim is to produce a PP
array with a maximum height of n/2 rows that is then
reduced by the compressor tree stage.

In particular, ±2X can be simply obtained by single
left shifting of the corresponding terms ±X. It is clear
that the MBE can be extended to higher radices, but
the advantage of getting a higher reduction in the
number of rows is paid for by the need to generate
more multiples of X. In this paper, the attention is on
radix-4 MBE only. From an operational point of
view, it is well known that the radix-4 MBE scheme
consists of scanning the multiplier operand with a
three-bit window and a stride of two bits (radix-4).
For each group of three
bits (y2i+1, y2i, y2i-1), only one partial product row is
generated according to the encoding in Table 1. A
possible implementation of the radix-4 MBE and of
the corresponding partial product generation is
shown in Fig. 1a produces the one, two, and neg
signals. These signals are then exploited by the logic
in Fig. 1b, along with the appropriate bits of the
multiplicand, in order to generate the whole partial
product array. Other alternatives for the
implementation of the recoding and partial product
generation can be found in among others.

TABLE 1
Modified Booth Encoding (Radix-4)

As the above reduction can lead to an

implementation where the delay of the compressor
tree is reduced by one XOR2 gate keeping a regular
layout. Since focusing on small values of n and fast
single-cycle units, this reduction might be important
in cases where, for example, a high computation
performance through the assembly of a large number
of small processing units with limited computation
capabilities is required, such as 8 x 8 or 16 x 16
multipliers.

As mentioned above, radix-4 MBE is
particularly of interest since, for radix-4, it is easy to
create the multiples of the multiplicand 0; ±X; ±2X.

Fig. 1. Gate-level diagram for partial product generation using MBE(a)
MBE signals generation. (b) Partial product generation.

As introduced previously, the use of radix-4
MBE allows for the (theoretical) reduction of the PP
rows to n/2, with the possibility for each row to host
a multiple of yi x X, with yi € {0, ±1, ±2}. While it

66

ISSN 2278-3091
International Journal of Advanced Trends in Computer Science and Engineering, Vol.5 , No.1, Pages : 65 -69 (2016)

 Special Issue of ICACEC 2016 - Held during 23-24 January, 2016 in Institute of Aeronautical Engineering, Quthbullapur, Telangana-43, India

is straightforward to generate the positive terms 0, X,
and 2X at least through a left shift of X, some
attention is required to generate the terms -X and -
2X which, as observed in Table 1, can arise from
three configurations of the y2i+1, y2i, y2i-1 bits. To
avoid computing negative encodings, i.e., -X and -
2X, the two’s complement of the multiplicand is
generally used. From a mathematical point of view,
the use of two’s complement requires extension of
the sign to the leftmost part of each partial product
row, with the consequence of an extra area overhead.
Thus, a number of strategies for preventing sign
extension have been developed. The array resulting
from the application of the sign extension prevention
technique in [1] to the partial product array of a 8 x 8
MBE multiplier [3] is shown in Fig. 2.

The use of two’s complement requires a neg
signal (e.g., neg0, neg1, neg2, and neg3 in Fig. 2) to
be added in the LSB position of each partial product
row for generating the two’s complement, as needed.
Thus, although for a n x n multiplier, only n/2 partial
products are generated, the maximum height the
maximum height of partial product array is (n/2) + 1.

multiplier’s critical path has to fit within the clock
period of a high performance processor. For instance,
in the design presented in [2], for n = 16, the
maximum column height of the partial product array
is nine, with an equivalent delay for the reduction of
six XOR2 gates. For a maximum height of the partial
product array of 8, the delay of the reduction tree
would be reduced by one XOR2 gate. Alternatively,
with a maximum height of eight, it would be possible
to use 4 to 2 adders, with a delay of the reduction
tree of six XOR2 gates, but with a very regular
layout.To achieve the goal of eliminating the extra
row before the PP reduction phase is based on
computing the two’s complement of the last partial
product, thus eliminating the need for the last neg
signal, in a logarithmic time complexity.

A special tree structure is used in order to
produce the two’s complement (Fig. 3), by decoding
the MBE signals through a 3-5 decoder (Fig. 4a).
Finally, a row of 4-1 multiplexers with implicit zero
output1 is used (Fig. 4b) to produce the last partial
product row directly in two’s complement, without
the need for the neg signal. The goal is to produce
the two’s complement in parallel with the
computation of the partial products of the other rows
with maximum overlap.

Fig. 2. Application of the sign extension prevention measure [1] on the
partial product array of a 8 x 8 radix-4 MBE multiplier.

When 4-to-2 compressors are used, which is
a widely used option because of the high regularity
of the resultant circuit layout for n power of two, the
reduction of the extra row may require an additional
delay of two XOR2 gates. By properly connecting
partial product rows and using a Wallace reduction
tree [5], the extra delay can be further reduced to one
XOR2.

However, the reduction still requires
additional hardware, roughly a row of n half adders.
This issue is of special interest when n is a power of
two, which is by far a very common case, and the

Fig. 3. Two’s complement computation

67

ISSN 2278-3091
International Journal of Advanced Trends in Computer Science and Engineering, Vol.5 , No.1, Pages : 65 -69 (2016)

 Special Issue of ICACEC 2016 - Held during 23-24 January, 2016 in Institute of Aeronautical Engineering, Quthbullapur, Telangana-43, India

Fig. 4. Gate-level diagram for the generation of two’s complement partial

product rows (a) 3-5 decoder. (b) 4-1 multiplexer.

SQUARE MULTIPLIERS

For all the partial product rows except the
first one. As depicted in Fig. 5a, the first row is
temporarily considered as being split into two sub
rows, the first one containing the partial product bits
(from right to left) from pp00 to pp80 and the second
one with two bits set at “one” in positions 9 and 8.
Then, the bit neg3 related to the fourth partial
product row, is moved to become a part of the
second sub row. The key point of this “graphical”
transformation is that the second sub row containing
also the bit neg3, can now be easily added to the first
sub row, with a constant short carry propagation of
three positions (further denoted as “3-bits addition”),
a value which is easily shown to be general, i.e.,
independent of the length of the operands, for square
multipliers. In fact, with reference to the notation of
Fig. 5, we have that qq90 qq90 qq80 qq70 qq60 = 0 0
pp80 pp 70 pp60 + 0 1 1 0 neg3.

As introduced above, due to the particular
value of the second operand, i.e., 0 1 1 0 neg3, have
observed that it requires a carry propagation only
across the least-significant three positions, a fact that
can also be seen by the implementation shown in
Fig. 6. It is worth observing that, in order not to have
delay penalizations, it is necessary that the
generation of the other rows is done in parallel with
the generation of the first row cascaded by the
computation of the bits qq90 qq90 qq80 qq70 qq60 in
Fig. 5b. In order to achieve this, simplify and
differentiate the generation of the first row with
respect to the other rows.

In particular, by direct comparison of Figs. 1
and 7, the generation of the MBE signals for the first
row is simpler, and theoretically allows for the
saving of the delay of one NAND3 gate. In addition,
the implementation in Fig. 8 has a delay that is
smaller than the two parts of Fig. 7, although it could
require a small amount of additional area, since this
extra hardware is used only for the three most
significant bits of the first row, and not for all the
other bits of the array.

Fig. 5. Partial product array after adding the last neg bit to the first row
(a) Basic idea. (b) Resulting array.

Fig. 6. Gate-level diagram of the proposed method for adding the last neg

bit in the first row.

 68

ISSN 2278-3091
International Journal of Advanced Trends in Computer Science and Engineering, Vol.5 , No.1, Pages : 65 -69 (2016)

 Special Issue of ICACEC 2016 - Held during 23-24 January, 2016 in Institute of Aeronautical Engineering, Quthbullapur, Telangana-43, India

Fig. 7. Gate-level diagram for first row partial product
generation.(a)MBE signals generation. (b) Partial product generation

Fig. 8. Combined MBE signals and partial product generation for the first

row (improved for speed).

1. generation of the three most significant bit
weights of the first row, plus addition of the last neg
bit: possible implementations can use a replication of
three times the circuit of Fig. 8 (each for the three
most significant bits of the first row), cascaded by
the circuit of Fig. 6 to add the neg signal.

2. parallel generation of the other bits of the
first row: possible implementations can use instances
of the circuitry depicted in Fig. 7, for each bit of the
first row, except for the three most significant

3. parallel generation of the bits of the other
rows: possible implementations can use the circuitry
of Fig. 1, replicated for each bit of the other rows.
All items 1 to 3 are independent, and therefore can
be executed in parallel. Clearly if, as assumed and
expected, item 1 is not the bottleneck (i.e., the
critical path), then the implementation of the
proposed idea has reached the goal of not
introducing time penalties.

CONCLUSIONS

Two’s complement n x n multipliers using
radix-4 Modified Booth Encoding produce n/2
partial products but due to the sign handling, partial
product array has a maximum height of (n/2)+1.
Here the partial product array is reduced with a
maximum height of n/2 , without introducing any
extra delay in the partial product generation stage.
With the extra hardware of a (short) 3-bit addition,
and the simpler generation of the first partial product
row, a delay for the proposed scheme within the
bound of the delay of a standard partial product row
generation is achieved. The outcome of the above is
that the reduction of the maximum height of the
partial product array by one unit may simplify the
partial product reduction tree, both in terms of delay
and regularity of the layout. This is of special interest
for all multipliers, and especially for single-cycle
short bit-width multipliers for high performance
embedded cores, where short bit-width
multiplications are common operations.By using this
multiplication MAC application is developed.

REFERENCES

[1] Fabrizio Lamberti, Nikos Andrikos, Elisardo
Antelo, and Paolo Montuschi, “ Reducing the
Computation Time in (Short Bit-Width) Two’s
Complement Multipliers,” IEEE transactions on
computers, vol. 60, no. 2, Feb. 2011.
[2] S.K. Hsu, S.K. Mathew, M.A. Anders, B.R.

Zeydel, V.G.Oklobdzija, R.K. Krishnamurthy, and
S.Y. Borkar, “A 110GOPS/W 16-Bit Multiplier and
Reconfigurable PLA Loop in 90-nm CMOS,” IEEE
J. Solid State Circuits, vol. 41, no. 1, pp. 256-264,
Jan.2006.
[3] O.L. MacSorley, “High Speed Arithmetic in
Binary Computers,” Proc. IRE, vol. 49, pp. 67-91,
Jan. 1961.
[4] L. Dadda, “Some Schemes for Parallel
Multipliers,” Alta Frequenza, vol. 34, pp. 349-356,
May 1965.
[5] C.S. Wallace, “A Suggestion for a Fast
Multiplier,” IEEE Trans.Electronic Computers, vol.
EC-13, no. 1, pp. 14-17, Feb. 1964.

69

ISSN 2278-3091
International Journal of Advanced Trends in Computer Science and Engineering, Vol.5 , No.1, Pages : 65 -69 (2016)

 Special Issue of ICACEC 2016 - Held during 23-24 January, 2016 in Institute of Aeronautical Engineering, Quthbullapur, Telangana-43, India

