
 Thasneema Mullappally et al ., International Journal of Advances in Computer Science and Technology, 9(7), July 2020, 172 – 176

172

ABSTRACT

Java is a class-oriented, general-purpose programming
language. Mapping Natural Language Text into Java source
code has become a growing demand for programmers. The
proposed method generates Java source code using in-build
methods in Java, from the problem statement. Java
Programming Language has a hierarchical structure of
Libraries, Classes, and In-build Methods. The hierarchical
structure and basic syntax of the in-build methods are
encoded in an Ontology. Ontology is the best way to
represent data, which is machine-interpretable as well as
human-readable. The Ontology created manually by using
Protégé, which is an open-source ontology editor and a
knowledge management system. NLP(Natural Language
Processing) Techniques applied to problem statements for
lexical, syntactic, and semantic analysis. The SPARQL query
can be used to retrieve appropriate in-build methods from the
Ontology. Based on the queried information from the
Ontology, sequences of code lines can be generated.

Key words: NLP, Protégé, Ontology, SPARQL

1. INTRODUCTION

Sometimes, the programmers may face a situation that, they
knows the logic of the program, but doesn’t know the proper
usage and syntax of the programming language constructs.
Mapping Natural Language Text to Java code is a system
that automatically transform a given statement to Java code
from in-build methods in Java. The statement or natural
language text should be a short description of code to be
generated. Suppose a Programmer wants to connect a client
to server in his application code, he can just write ”connect
to server”. The system suggest Java code for connecting to a
server. The programmer can reuse the generated code with
some alterations such as changing variable name, inputting
methods etc. This system reduce the programmers effort and
complexity while writing a complete code, and can develop
applications after making appropriate adjustments or
alteration in the generated code.

Java is a powerful general-purpose programming
language[1]. There are millions of applications across
multiple platforms that use java programming language such
as Desktop GUI Applications, Mobile Applications,

Embedded Systems, Web Application, Web Servers and
application Servers, Enterprise Applications, Scientific
Applications etc. According to Oracle, the company that
owns Java, Java runs on 3 billion devices worldwide, which
makes Java one of the most popular programming languages.
It contains a large number of in-build methods under
different classes. These classes are organized under Java
library packages. This hierarchical structure of Java
programming language can be encoded in an Ontology.

The proposed method is an ontology based work. An
ontology is a formal description of knowledge within a
domain, that represent knowledge as a set of concepts and
the relationships that hold between them [2]. To enable such
a description, ontology provides formally specifying
components such as individuals (instances of objects),
classes, attributes and relations as well as restrictions, rules
and axioms. The Knowledge represented in ontology is both
machine-interpretable as well human readable. One of the
main features of ontologies is that, by having the essential
relationships between concepts built into them, they enable
automated reasoning about data [3]. So the System can
retrieve most appropriate information from the Ontology. In
addition, ontologies provide a more coherent and easy
navigation as users move from one concept to another in the
ontology structure. Another valuable feature is that
ontologies are easy to extend as relationships and concept
matching are easy to add to existing ontologies. As a results,
ontologies can be modified without effecting the System
process. Ontologies also provide the means to represent any
data formats, including unstructured, semi-structured or
structured data, enabling smoother data integration, easier
concept and text mining, and data-driven analysis. The
Ontologies have some limitations too. One such limitation is
the available property constructs. The most recent version of
the Web Ontology Language (OWL2) has a somewhat
limited set of property constructs. Another limitation comes
from the way OWL employs constraints. The data imported
from a new source into the RDF triple-store would be
structurally inconsistent with the constraints set using OWL.

An ontology for java programming language can be build
manually by using Protégé. The Protégé is a free, open
source ontology editor and framework for building

Mapping Natural Language Text to Java Code
Thasneema Mullappally1, Shibily Joseph2

1Computer Science and Engineering, GEC Palakkad, India, thasneema93@gmail.com
2Computer Science and Engineering, GEC Palakkad, India, shibilyj@gmail.com

 ISSN 2320 - 2602
Volume 9 No.7, July 2020

International Journal of Advances in Computer Science and Technology
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst24972020.pdf

https://doi.org/10.30534/ijacst/2020/24972020

 Thasneema Mullappally et al ., International Journal of Advances in Computer Science and Technology, 9(7), July 2020, 172 – 176

173

intelligent systems. This manually created Java ontology can
be used for Java code sequence generation. Since Java
language contains a large number of classes and in-build
methods, Ontology construction for Java language is a labor
intensive and complex process. But once the ontology is built
the major task is complete. It can easily used for code
sequence generation.

2. RELATED WORK

The Natural Language can be used to define complex
computations tasks. There are different approaches for
automatically mapping natural language (NL) to executable
code. Some approaches assume fixed code templates [2], that
generate only parts of a method with a predefined structure
[4], some consider a fixed context can generate the body of
the same method within a single fixed class [5] and some
doesn’t consider any context at all, that generate code tokens
from the text alone as in [6].

There are also different approaches for code generation.
Many works are based on neural network model. The [7] is a
Encoder-Decoder model with a supervised copy mechanism
for Java code generation, that also consider the
programmatic context. A neural architecture powered by a
probabilistic grammar model is used in [8] for general
purpose programming language code generation. The [5] is
also a general framework for general purpose code
generation. Some approaches use language and task specific
rules as in [9], [10] for code generation. Finally, there are
probabilistic models for source code generation as in [11],
[12]. The most relevant work [13], which uses a factorized
model to measure semantic relatedness between NL and
Abstract Syntax Trees (ASTs) for code retrieval.

There is also reverse approaches, that is to generate Natural
Language summaries from source code has also been
explored in [14] and [6].

3. PROBLEM DEFINITION

The Problem can be stated as:
Design and Develop a System that transform Natural
Language Text to Java Code which use in-build methods
present in Java Programming Language.

Mathematically, Given an NL description N , the task is to
generate the Java code sequence J, which uses in-build
methods i, with the help of an Ontology O in Java
programming language domain.

4. SYSTEM ARCHITECTURE

This section gives detail explanation about the architecture of
the System and working as shown in Figure 1. NL Text
preprocessing, Ontology Creation, SPRQL Query

Generation, Method Syntax Extraction, and Code Sequence
Generation are the major step of this Architecture.

Figure 1: System Architecture

Figure 2: NL Text Pre-rocessing
4.1. Text Pre-Processing

Initially, the system needs to understand the Natural Lan
guage(NL) Text. So it analyses text both syntactically and
semantically using NLTK module [2]. The Figure 2 shows

 Thasneema Mullappally et al ., International Journal of Advances in Computer Science and Technology, 9(7), July 2020, 172 – 176

174

the major pre-processing tasks, that are done during this
stage.

1)Tokenization: The Natural Language Text is tokenized by
word Tokenizer. Word Tokenizer generates a sequence of
words using NLTK module, which is implemented in
python.

2) Stopword Removal: The Natural Language Text that can
be processed by this System should be in English. The
stopwords such as ”the”, ”is”, ”on” etc doesn’t play any role
to identify correct in-build Java method from Ontology. So
the stopwords can be eliminated by using NLTK.

3) Synset Generation: The Synset of every tokenized word
is generated and added to a list. Because the System needs to
identify ”gets” and ”returns” are similar.

4) Hypernym Generation: Hypernym of every word is also
added to the list using NLTK module. Since whenever the
user enter text as ”integer” or ”digit”, the system needs to
identify it as ”number”.

5) Morphological Variant Generation: The morphological
variants of each word are generated and added to the same
list. For a plural noun words its singular form added and for
a singular noun its plural added. For a verbs, its different
form such as past, present etc also added to list. The system
need to treat ”get”, ”gets”, ”getting” etc are same.

 4.2 Ontology Creation

The major part of this System is a Java Ontology. Java
ontology contains Knowledge about Java programming
language constructs. This Java ontology is used later by the
System for information retrieval. Java programming
language has a Hierarchical structure. That is Java contains
libraries. Each library contains a large number of classes.
Each class contains a large number of in-build methods. The
Figure 3 shows the Hierarchical structure of Java
programming language [2].

Figure 3: Hierarchical Structure of Java Language

Java Ontology contains following elements:

1) Hierarchical Structure of Java
2) Class Constructor: if class has constructor,then default
class constructor syntax encoded
3) Method Description: A short natural language text
describing what the method do.
4) Method Syntax: Syntax of in-build method

The Figure 4 shows a small part of ontology, which represent
in-build method syntax and method description.

Figure 4. Description of a Method

Protégé is a free, open-source ontology editor and
framework, that is used to build Java ontology [15]. The
class concepts and relationship among them can be easily
insert in to ontology using Protégé. It generate syntactically
correct ontology and save the ontology as .rdf format.

4.3 SPARQL Query Generation

SPARQL (SPARQL Protocol and RDF Query Language) is
an RDF query language, that is, a semantic query language
for databases. SPARQL has ablility to retrieve and
manipulate data stored in Resource Description Framework
(RDF) format. SPARQL Query generated in two phases of
the System.
1) To get Method Syntax
2) To get Class constructor Syntax and Java Library at the
time of code sequence generation

For Example below SPARQL query extract all java class of
java.util and its corresponding comment.

SELECT ?v ?c
WHERE {
 ?v rdf s : subClassOf ‘java.util’.
 ?v rdf s : comment ?c.
}

4.4 Method Syntax Extraction

Based on the Pre-processed Natural Language Text, queried
the Java ontology to in-build method syntax corresponds to
NL Text. Method syntax extraction is used to identify what
are the inputs and outputs needed for this in-build method.

 Thasneema Mullappally et al ., International Journal of Advances in Computer Science and Technology, 9(7), July 2020, 172 – 176

175

4.5 Code Sequence Generation

In this phase Java code sequences is generated based on
identified in-build method from method Syntax Extraction
phase. Inorder to generate Java code sequence, some
additional information also needed, the are, in which class
the method resides, corresponding java library and if class
has constructor, then its constructor syntax. SPARQL Query
again used this phase to get these information from ontology.
After extracting these information, the System generate Java
code sequences through straight-line programming.

5. RESULT AND ANALYSIS

The result of the system through different stage is given
below:

1) The input to the system is a Natural Language Text
indicating code to be generated. This NL Text is entered by a
programmer or user.
Example:
• System: ”Enter Natural Language Text description of code
to be generated”
• User: ”Get length of a String

2) The next step produces a list of words after pre-
processing of user input. This list of words contains major
words of input text, its different morphological forms,
syntactic and semantic variants etc.
Example: For the above NL Text, the word list contains get,
gets, return, returns, length, distance, long, string, sequence,
sequences etc.

3) This step is most challenging one. Based on the generated
word list query the ontology, identify most matching in-build
method syntax from ontology and extract it. Java
programming language contains in-build method having
same name indifferent classes. These methods have
functionality that is almost similar. For example, the in-build
method read() is present under the following classes.
FileReader, InputStream, FileInputStream etc. The read()
method in each class do same or different function. So
identifying which read() method user wants is a challenging
task. So the System suggest three Java code sequences for a
particular NL Text. The user can select most appropriate
Java code from the suggested code sequences.

4) After querying and retrieving some more information such
as class constructor, library etc. Java code sequences
generated by straight-line programming. Python is a high
level programming language, which allow string processing
quit easy.
Example: The Java code sequence corresponds to the NL
Text ”get length of a string” is as shown in Figure 5 .

The systems suggest three code sequences in which one code
is most appropriate. Most probably it is the first code
sequence. The system provides a user friendly GUI as shown
in Figure 6.

Figure 5. Java code sequence Output Exampl

Figure 6. GUI of the System

6. CONCLUSION

Mapping Natural Language Text to Java Code is very helpful
for Java programmers, who may stuck because of unaware of
proper programming language constructs. This System
automatically generates Java code by using Java Ontology. It
can only generate Java code using in-build methods present
in Java. Java Ontology, is main part of the System, which is

 Thasneema Mullappally et al ., International Journal of Advances in Computer Science and Technology, 9(7), July 2020, 172 – 176

176

a Knowledge base in Java domain, contains knowledge about
Java in-build methods. The System uses a manually created
Java Ontology, which is a time consuming process. The first
phase of the System is some of the Natural Language
Processing (NLP) techniques, which are done using NLTK
module in Python. SPARQL Query Language is used for the
information retrieval phase from Java Ontology. Protégé , is
another tool used for the creation of Java Ontology which is
a major contribution of this work.

7. FUTURE SCOPE

In the future, I plan to modify or include the following
advancements to the System.

• Some classes are inherits some methods from the other
classes. This information doesn’t included in Java Ontology.
So it is not possible to generate a code sequence, that use
inherited in-build methods of a class. In future needs to add
these information to Java Ontology to produce a more useful
Java code sequences.
• In the Preprocessing step, need to try some other existing
NLP models to find semantic similarity of two texts and
compare the performance of the System.
• Since manual creation of Ontology is a time consuming
process, need to try to create Java Ontology automatically
from Java programming language documentation or from
some other source.

REFERENCES

1. K. Arnold, J. Gosling, D. Holmes, and D. Holmes, The

Java programming language, vol. 2. Addison-wesley
Reading, 2000.

2. A. Kulkarni, S. Karandikar, P. Bamhore, S. Gawade,
and D. Medhane, Computational intelligence model for
code generation from natural language problem
statement, Fourth International Conference on
Computing Communication Control and Automation
(ICCUBEA), pp. 1–6, IEEE, 2018.

3. Y. Shu, Y. HaiLun, Y. XiangRun, and W. Ye, An
automated method for constructing ontology, 7th IEEE
International Conference on Software Engineering and
Service Science (ICSESS), pp. 538–541, IEEE, 2016.

4. I. Beltagy and C. Quirk, Improved semantic parsers for
if-then statements, in Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 726–736,
2016.

5. W. Ling, E. Grefenstette, K. M. Hermann, T. Kočiskỳ,
A. Senior, F. Wang, and P. Blunsom, Latent predictor
networks for code generation, arXiv preprint
arXiv:1603.06744, 2016.

6. Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T.
Toda, and S. Nakamura, Learning to generate
pseudocode from source code using statistical machine
translation, in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
pp. 574–584, IEEE, 2015.

7. S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer,
Mapping language to code in programmatic context,
arXiv preprint arXiv:1808.09588, 2018.

8. P. Yin and G. Neubig, A syntactic neural model for
general-purpose code generation, arXiv preprint
arXiv:1704.01696, 2017.

9. T. Lei, F. Long, R. Barzilay, and M. Rinard, From
natural language specifications to program input
parsers, in Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1294–1303, 2013.

10. M. Raghothaman, Y. Wei, and Y. Hamadi, Swim:
Synthesizing what I mean-code search and idiomatic
snippet synthesis, in 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pp. 357–
367, IEEE, 2016.

11. C. Maddison and D. Tarlow, Structured generative
models of natural source code, in International
Conference on Machine Learning, pp. 649–657, 2014.

12. T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N.
Nguyen, A statistical semantic language model for
source code, in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pp.
532–542, 2013.

13. M. Allamanis, D. Tarlow, A. Gordon, and Y. Wei,
Bimodal modelling of source code and natural
language, in International conference on machine
learning, pp. 2123–2132, 2015.

14. S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer,
Summarizing source code using a neural attention
model, in Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pp. 2073–2083, 2016.

15. N. F. Noy, M. Sintek, S. Decker, M. Crubézy, R. W.
Fergerson, and M. A. Musen, Creating semantic web
contents with protege-2000, IEEE intelligent systems,
vol. 16, no. 2, pp. 60–71, 2001.

