
 Ibrahim Rai and Fahad Al Qurashi, International Journal of Advances in Computer Science and Technology, 7(6), June 43-48, 2018

43

ABSTRACT

The limitation in traditional Database Management Systems to
process and analysis the growing data from various sources
has led to emergence of Big Data. A lot of tools have been
developed under Hadoop architecture to utilize the powerful
functionality provide by Hadoop. In this paper, we have
evaluated the performance of Big Data tools, Pig and Hive.
We have shown that Hive is 2.82 faster than Pig with respect
to data size ranging from one hundred thousand to one million
rows. Moreover, Hive achieved 3.95 faster performance over
Pig when more complex query is performed. However, the
learning curve of Pig is higher than Hive, but the last required
preparing the data warehouse before starting processing them.

Key words: Database, Big Data, Performance of Big Data.

1. INTRODUCTION

The limitation in traditional Database Management Systems to
process and analysis the growing data from various sources
has led to emergence of Big Data. Big Data is more capable in
analyzing and processing large collections of unstructured data
[1]. One common implementation of Big Data is Hadoop,
there are several tools used under Hadoop architecture for
processing data, some of these tools are Pig and Hive.

In this paper, we aim to evaluate the performance of Big Data
tools, Pig and Hive with respect to execution time needed to
process Data resided in HDFS. We performed our experiment
on CentOS 6.7, an open source Linux distribution and
Cloudera, an open source Hadoop distribution.

We have prepared the data in our experiment from a real
world example by gathering data from an SQL database of a
training institute, in this database we have seven tables
Employees, Areas, Locations, Groups, Main Categories, Sub
Categories and Enrollments. For enrollments table, we have
three different size of tables, one hundred thousand rows, five
hundred thousand rows and one million rows.

To manipulate data, we use scripts in Pig and queries in Hive,
in addition before processing data using Pig we have to load
them in relations despite Hive which directly deals with tables.
We started by computing the execution time needed to process
one relation/table to count number of record with data size
ranging from one hundred thousand to one million rows.

Then we calculated the execution time to process two joined
relations/tables with the same data size in order to count
number of enrolled employees per area.

We also computing the execution time to process three joined
relations/tables to count number of enrolled employees per
profession type per area.

We have also evaluated the impact of data size in addition to
language complexity used to retrieve data from HDFS on the
performance of both Pig and Hive.

2. RELATED WORK
Wlodarczyk et al. [2] analyze the performance of Hadoop
cluster in query processing for NoSQL, they found that the
performance limitation comes from IO disks. Carstoui et al.
[3] evaluate the performance of HBase different versions,
Hbase-0.20.0 and Hbase-0.20.20, they show that the later
version is superior. Huang et al. [4] propose an HBase design
with Remote Direct Access Memory capability to evaluate
HBase performance, the study finds that the new design
achieves 3 times faster than the traditional one. Khaliq et al.
[5] demonstrate performance of CPU both Dual Core and Core
i5 and power consumption when implementing Hadoop, the
result of this study shows that Core i5 has better performance
and less power consumption. Alshammari et al. [6] propose a
new design of Hadoop architecture, the new design shows a
performance improvement with respect to the traditional
design by reducing the size of the read and executed data.

These works papers address a single aspect of big data with
focus on evaluation.

Vora [7] evaluates a hybrid architecture that stores images in
HDFS located in HBase and compare it with MySQL, the
study concludes that HBase performs better and is more
scalable than traditional database. Xiao [8] proposes a design
that combines both structure and unstructured data, the study
shows an improvement in data processing.

These research papers focus on the evaluation of multiple
tools of big date with respect to the design, our work
complements these works as both have different approaches.
Jogi et al. [9] compare the performance of three databases,
MySQL, Cassandra and HBase, the authors find that
Cassandra is the most scalable database with fast read and
write performance while HBase is twice faster than MySQL.

Performance Analysis of Big Data Tools

Ibrahim Rai1, Fahad Al Qurashi2

1Department of Computer Science KAU, KSA, ir4group@gmail.com
2Department of Computer Science KAU, KSA, fahad@kau.edu.sa

 ISSN 2320 - 2602
Volume 7 No.6, June 2018

International Journal of Advances in Computer Science and Technology
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst05762018.pdf

https://doi.org/10.30534/ijacst/2018/05762018

 Ibrahim Rai and Fahad Al Qurashi, International Journal of Advances in Computer Science and Technology, 7(6), June 43-48, 2018

44

Harleen et al. [10] demonstrate performance of PostgreSQL as
structure data and Hadoop as unstructured data, the study
shows that the load time using Hadoop has less latency and
more capable in adopting new data.
Our work is similar to these works, but the big data tools we
have evaluated have not addressed by any of these works.

3. BIG DATA
The limitation in traditional Database Management Systems to
process and analysis the growing data from various sources
has led to emergence of Big Data, which is more capable in
analyzing and processing large collections of unstructured data
[1]. Big Data has four characteristics; volume, velocity,
variety, veracity and value [11]. Volume represents the large
data generated by organization activities and users’
interactions, while velocity means fast growth of data with
respect to the time, variety refers to diverse formats of
collected data, veracity reflects the quality of data, hence only
valid data need to be processed after extracting the noise and
value means the usefulness of the collected data when it is
converted to information [11].

3.1. HADOOP
The concept of Hadoop is based on distributed storage and
computation, it consists of HDFS (Hadoop Distributed File
System), YARN (Yet Another Resource Negotiator) and
MapReduce [12]. Figure 1 shows Hadoop architecture.

The main function of HDFS is to process large files and it has
three components: NameNode, Secondary NameNode and
DataNode [13]. NameNode is the master node that manages
DataNodes, in addition the metadata of each files in the HDFS
is stored in the NameNode while the Secondary NameNode is
dedicated for additional functions that support the NameNode
[13]. Large files in HDFS is divided into several blocks, those
blocks are stored in the DataNodes, hence DataNode
considered an identical nodes that reside on Hadoop cluster
[13].
When working with Hadoop cluster means several nodes are
bound together to perform tasks, this cluster has resources
such as NameNode and DataNode. YARN is responsible for
managing those resources and allocate them to a particular
application [14].

The traditional method of dealing with data is storing them in
a database to be processed through an SQL queries, however,
this approach becomes inefficient when dealing with large and
unstructured data, the MapReduce, as in Figure 2 developed to
address this problem and provide a mechanism to divide large
data into smaller units to be processed by the map function
passing the result to the reduce function to produce the output
[15].

Figure 1 Hadoop Architecture [12]

Figure 2 MapReduce Execution [15]

3.2. PIG
Pig is a dataflow language which allow the user to describe
how the data would be read, in addition it takes advantage of
Hadoop MapReduce functionality by providing an engine to
the user to execute parallel operations by writing scripts using
Pig Latin language [16]. HDFS stores the blocks of data on all
nodes of the Hadoop cluster and Pig reads and processes the
data from HDFS and writes the result back to HDFS [17].

3.3. HIVE
Hive is an SQL abstraction tool that provides data access
through queries that run MapReduce jobs [18]. Hive relies on
several components as shown in Figure 3.

Implementing Hive implies importing data to Hive warehouse
and before this process a user should create a database and its
tables, all these functionalities are facilitated by HCatalog,
however, the metadata that define the schema of Hive tables
reside on HCatalog while the data themselves are stored in
HDFS [18]. Hive also offers an ODBC connectivity provided
by Hiveserver2 to allow users access the data resides in Hive
warehouse using business intelligence applications such as
Microsoft Excel [18].

 Ibrahim Rai and Fahad Al Qurashi, International Journal of Advances in Computer Science and Technology, 7(6), June 43-48, 2018

45

Figure 3 Hive Components [18]

4. EXPERIMENT

4.1. PIG TEST CASES

A. LOADING DATA FOR PIG TESTS
There are two ways to load the data to HDFS, CLI (Command
Language Interface) and HUE (Hadoop User Experience) the
free open source interface. In this experiment, we used the
second method and loaded the only Enrollments table in the
three different size as described in the previous section. In
fact, it is a file that contains an unstructured data rather than a
table because it has no rows and columns; it is just pieces of
data in tab separated value.

B. QUERY DATA
We switch to Pig editor, then run the scripts and record the
results of the query scripts of one relation, two joined relations
and three joined relations. All query scripts were performed on
the three different size files, one hundred thousand rows, five
hundred thousand rows and one million rows.

i. ONE RELATIONS QUERY SCRIPT
Here we run the first script to count number of records insides
Enrollments file.

Script 1 One relation query script

Courses = LOAD
'/user/Ibrahim_Experiment/Enrollments_HDF_100K.tsv';
Courses_GROUP = GROUP Courses ALL;
Courses_COUNT = FOREACH Courses_GROUP GENERATE
COUNT(Courses);
Store Courses_COUNT into
'/user/Ibrahim_Experiment/Pig_Output/Result1.out';

ii. TOW JOINED RELATIONS QUERY SCRIPT
Here we run the second script to count number of enrolled
employees per area.

Script 2 Pig Tow joined relations query script

Courses = LOAD
'/user/Ibrahim_Experiment/Enrollments_HDF_100K.tsv'
as (EmpID:chararray, EmpName:chararray,
courseName:chararray,
sDate:datetime, eDate:datetime, location:chararray,
subCat:chararray,
mCat:chararray, costSR:float, Area:chararray,
empCat:chararray);
GroupedByArea = GROUP Courses by Area;
countByArea = FOREACH GroupedByArea GENERATE group,
COUNT(Courses) as countArea;
Store countByArea into
'/user/Ibrahim_Experiment/Pig_Output/Result2.out';

iii. THREE JOINED TABLES QUERY SCRIPT
Here we run the third script to count number of enrolled
employees per profession type per area.

Script 3 Pig Three joined relations query script

Courses = LOAD
'/user/Ibrahim_Experiment/Enrollments_HDF_100K.tsv'
as (EmpID:chararray, EmpName:chararray,
courseName:chararray,
sDate:datetime, eDate:datetime, location:chararray,
subCat:chararray,
mCat:chararray, costSR:float, Area:chararray,
empCat:chararray);
GroupedByArea_empCat = GROUP Courses by
(Area,empCat);
GroupedByArea_empCat_count = foreach
GroupedByArea_empCat generate group.Area as
Area, group.empCat as empCat, COUNT(Courses) as
empCatCount;
GroupedByArea = group GroupedByArea_empCat_count by
Area;
result = foreach GroupedByArea{
startedArea = order GroupedByArea_empCat_count by
empCatCount desc;
Generate FLATTEN(startedArea);
};
Store result into
'/user/Ibrahim_Experiment/Pig_Output/Result3.out';

The elapsed time of all three Pig scripts are shown in table 1.

4.2. HIVE TEST CASES

A. LOADING DATA FOR HIVE TESTS
To query the data using Hive we have to first create the
database, within Hue interface we have navigated to Metastore
Manager, then created the database. After that we have created
the tables and loaded the data to each. When performing this
process, we have to carefully choose the schema of the data
base by designing the tables with respect to keys that should
be matched between tables. The Metastore does not impose
any constrains between tables as the relations will be created
during execution.

B. QUERY DATA
We switch to Hive editor, then run the queries and record the
results of the one table query, two joined tables and three
joined tables. All queries were performed on the three
different size tables, one hundred thousand rows, five hundred
thousand rows and one million rows.

 Ibrahim Rai and Fahad Al Qurashi, International Journal of Advances in Computer Science and Technology, 7(6), June 43-48, 2018

46

i. ONE TABLE QUERY
Here we run the first query to count number of records insides
Enrollments file.

Table 1 Pig scripts elapsed time

Rows Script Test 1 Test 2 Test 3 Average

100K

Script 1 29 29 30 29

Script 2 36 35 30 34

Script 3 57 57 57 57

500K

Script 1 29 29 30 29

Script 2 35 35 34 35

Script 3 61 60 60 60

1000K

Script 1 34 35 35 35

Script 2 45 40 39 41

Script 3 66 66 65 66

Query 1 Hive One table query

Insert overwrite directory
'/user/Ibrahim_Experiment/Hive_Output/Result1.out'
row format delimited fields terminated by '\t'
stored as textfile
select count(enrollment_course_name) as
NumberOfRecords from enrollments_100k;

ii. TOW JOINED RELATIONS QUERY
Here we run the second query to count number of enrolled
employees per area.

Query 2 Hive Tow joined relations query

Insert overwrite directory
'/user/Ibrahim_Experiment/Hive_Output/Result1.out'
row format delimited fields terminated by '\t'
stored as textfile
select a.location_name,
count(enrollment_course_name) as
number_of_participant
from areas a inner join enrollments_100k en on
a.location_id = en.enrollment_area_id group by
a.location_name;

iii. THREE JOINED TABLES QUERY
Here we run the third query to count number of enrolled
employees per profession type per area.

Query 3 Hive Three joined relations query

Insert overwrite directory
'/user/Ibrahim_Experiment/Hive_Output/Result3.out'
row format delimited fields terminated by '\t'
stored as textfile
select a.location_name, g.group_name, count
(enrollment_course_name) as number_of_participant
from
areas a inner join enrollments_100k en on
a.location_id = en.enrollment_area_id inner join
groups g on g.group_id = en.enrollment_group_id
group by a.location_name, g.group_name;

The elapsed time of all three Hive queries are shown in table
2.

5. EVALUATION
In this section, we evaluate the performance of Pig and Hive
with respect to execution time needed to process one
relation/table to count number of record with data size ranging
from one hundred thousand to one million rows.

As shown in Figure 4, we found that Pig created two jobs to
perform this action and the execution time is directly
proportional to the size of data while the size of data has no
impact on the execution time when performing the same
action using Hive.

Figure 5 shows that there was slight increase in execution time
for Hive while Pig continued demanding more time and
creating two jobs when processing two joined relations/tables
with data size ranging from one hundred thousand to one
million rows to count number of enrolled employees per area.

Table 2 Hive Query elapsed time

Rows Query Test 1 Test 2 Test 3 Average

100K

Query 1 11 11 11 11

Query 2 11 11 11 11

Query 3 12 11 11 11

500K

Query 1 10 11 11 11

Query 2 12 12 12 12

Query 3 12 13 13 13

1000K

Query 1 11 11 12 11

Query 2 12 12 12 12

Query 3 13 13 13 13

Figure 4 Elapsed Time for Processing 1 Table/Relation

 Ibrahim Rai and Fahad Al Qurashi, International Journal of Advances in Computer Science and Technology, 7(6), June 43-48, 2018

47

Figure 5 Elapsed Time for Processing 2 Tables/Relations

We have noticed that Pig needed three jobs to count number of
enrolled employees per profession type per area which implies
joining three relations with data size ranging from one
hundred thousand to one million rows and the time it toke is
1.7 greater than the time needed to process two relations,
while Hive showed no significant change in processing both
two and three joined tables as shown in Figure 6.

Figure 6 Elapsed Time for Processing 3 Tables/Relations

We have also evaluated the impact of data size on the
performance of both Pig and Hive as shown in Figure 7 by
analyzing the data from Table 1 and Table2, we have found
that Hive is 2.82 faster than Pig.

Figure 7 Comparison of Pig and Hive performance with respect to

data size,

Performance	 =
ܲ݅݃	∑ ݐ
	݁ݒ݅ܪ ∑ ݐ =

29 + 29 + 35
11 + 11 + 11 = 	

93
33 = 2.82

Where t is the execution time observed by Pig and Hive.

Hive also showed better performance over Pig with respect
to language complexity used to retrieve data from HDFS as it
scored 3.95 faster performance.

Performance	 =
ܲ݅݃	 ∑ ݐ
	݁ݒ݅ܪ ∑ ݐ =

35 + 41 + 66
11 + 12 + 13 = 	

142
36 = 3.95

Figure 8 Comparison of Pig and Hive performance with respect to

language complexity

6. CONCLUSION
 This paper has presented a performance evaluation of

Big Data tools, Pig and Hive. We have shown that Hive is
2.82 faster than Pig with respect to data size ranging from one
hundred thousand to one million rows. Moreover, we have
demonstrated that the more complex language used to retrieve
data from HDFS the better performance Hive achieved over
Pig which went to 3.95 faster performance. However, Pig
required special skills to write Pig scripts but no additional
configuration when loading the data to HDFS and it is capable
of processing unstructured data while Hive query is similar to
SQL and required no additional skills but implied creating a
database with schema and importing the data to the Metastore.

REFERENCES

1. T. Erl, W. Khattak and P. Buhler. Big Data Fundamentals: Concepts,

Drivers & Techniques, 1st ed. Upper Saddle River, NJ: Prentice Hall,
2016, pp. 71-72.

2. T. W. Wlodarczyk, Y. Han and C. Rong. Performance Analysis of
Hadoop for Query Processing, 2011 IEEE Workshops of International
Conference on Advanced Information Networking and Applications,
Biopolis, 2011, pp. 507-513..

3. D. Carstoui, A. Cermian and A. Olteanu. Hadoop Hbase-0.20.2
Performance Evaluation, 4th International Conference on New Trends
in Information Science and Service Science, Gyeongju, 2010, pp. 84-87

4. J. Huang, et al. High-Performance Design of HBase with RDMA over
InfiniBand, 2012 IEEE 26th International Parallel and Distributed
Processing Symposium, Shanghai, 2012, pp. 774-785.

5. Y. Khaliq, G. Abbas, A. Qureshi and F. Zeeshan. Calculation of CPU
Performance, Power and Cost using Hadoop, 2016 Sixth
International Conference on Innovative Computing Technology
(INTECH), Dublin, 2016, pp. 122-127.
https://doi.org/10.1109/INTECH.2016.7845093

 Ibrahim Rai and Fahad Al Qurashi, International Journal of Advances in Computer Science and Technology, 7(6), June 43-48, 2018

48

6. H. Alshammari, H. Bajwa and J. Lee. Enhancing Performance of
Hadoop and Mapreduce for Scientific Data using NoSQL Database,
 2015 Long Island Systems, Applications and Technology, Farmingdale,
NY, 2015, pp. 1-5.

7. M. N. Vora. Hadoop-HBase for Large-Scal Data, Proceedings of 2011
International Conference on Computer Science and Network
Technology, Harbin, 2011, pp. 601-605.
https://doi.org/10.1109/ICCSNT.2011.6182030

8. X. Dawei. Exploration on Big Data Oriented Data Analyzing and
Processing Technology, International Journal of Computer Science
Issues (IJCSI), vol. 10, no. 1, pp. 13-18, Jan. 2013.

9. V. D. Jogi and A. Sinha. Performance Evaluation of MySQL,
Cassandra and HBase for Heavy Write Operation”, 2016 3rd
International Conference on Recent Advances in Information
Technology (RAIT), Dhanbad, 2016, pp. 586-590.

10. Harleen and N. Garg. Analysis of Hadoop Performance And
Unstructured Data Using Zeppelin, 2016 International Conference on
Research Advances in Integrated Navigation Systems (RAINS),
Bangalore, 2016, pp. 1-6.

11. B. Bengfort and J. Kim. Data Analytics with Hadoop, Sebastopol, CA
:O’REILLY, 2016, pp. 131-224.

12. V. Jain. Big Data and Hadoop, New Delhi, India: Khanna Book
Publishing Co. Ltd., 2017, pp. 69-70.

13. S. Wadkar, M. Siddalingaiah and J. Venner. Pro Apache Hadoop, New
Yourk: Apress, 2014, pp. 16-17.

14. G. Turkington. Hadoop Beginner’s Guide, Birmingham, UK: Packt
Publishing Ltd.,2013, pp. 348.

15. S. Perera and T. Gunarathne. Hadoop MapReduce Cookbook,
Birmingham, UK: Packt Publishing Ltd., 2013, pp. 7-8.

16. A. Gates. Programming Pig, Sebastopol, CA: O’REILLY Media Inc.,
2011, pp. 4-5.

17. P. Pasupuleti. Pig Design Patterns, Birmingham, UK: Packt Publishing
Ltd., 2014, pp. 26-28.

18. S. Shaw, A. Vermeulen, A. Gupta and D. Kjerrumgaard. Practical
Hive: A Guide to Hadoop's Data Warehouse System, New Yourk:
Apress, 2016, pp. 37-40.

