

19

How to design and test safety critical software systems

Syed Usman Ahmed1, Muhammed Asim Azmi2, Charu Badgujar3

1Department of Information Technology, JIET, India, syedusman.ahmed@jietjodhpur.com
2Fachhochshule Frankfurt am Main, University of Applied Science, Germany, azmi@stud.fh-frankfurt.de

Department of Computer Science and Engineering, Jodhpur National University

ABSTRACT

Safety is the foremost need that every human being desires
irrespective of the impact of the breach of safety. As today
software is associated with almost every field whether it be
education or aerospace, so system demands more and better
safety systems and mechanisms. Any system whose failure can
catastrophically impact human lives, environment and
equipment can be called as safety critical system. These kinds
of risks are handled using safety engineering techniques
elaborated in this paper. In this paper we have discussed about
safety critical systems, their specifications and standards,
Language support and approaches of designing safety critical
systems.

Key words: Safety Critical System, Ada, Failure, Malfunction.

1. INTRODUCTION

A system whose failure or malfunctioning can lead to a
catastrophic outcomes on human lives, environment and
equipment is termed as safety critical system. These types of
risk associated with safety system development and testing are
managed by safety engineering. In today’s world ideally there
is no field that uses computer as its component remains
untouched by safety hazards be it the field of medicine,
nuclear engineering, transport, industrial simulation,
telecommunication etc.

As safety critical system generally works with both
hardware and software systems, both of these sub-systems
need to work in coordination and securely in order to ensure a
safety of the system as a whole. This paper precisely focuses
on the software aspect of such system.

As stated by Lawen [1] there are three basic approaches to
achieving reliability of safety critical system: Testing - a lot of
it, software fault tolerance and fault avoidance – by formal
specification and verification, automatic program synthesis
and reusable modules. We will elaborate more on these
approaches in details with some practical aspects.

2. LITERATURE SURVEY

2.1 Standards of safety critical system
Today industries have designed various different standards

for the development of these safety critical systems. These
standards are required as every industry want attain uniformity
in the development and maintenance of critical system so
developed. Standard can be general or generic in nature like
ISO 9000 that are general in nature and IEC 61508 that are
generic in nature. We also have some industry specific
standards like EN 50128 (Railway Industry) and DO 178B
(Civil Aviation). [2].

2.1.1 ISO 9000
The International Standardization Organization (ISO)

has released the ISO 9000 series of standards that are related
to quality assurance and quality management in general [2].
The sub-standards that fall under ISO 9000 are shown in
figure 1 below:

Figure 1: ISO 9000 sub standards [2]

2.1.2 IEC 61508

The International Electrotechnical Commission (IEC) have
developed the generic standard IEC 61508. This standard is
generic as it takes care of electrical, electronics and related
technologies and is titled as “Functional safety of
electrical/electronic/programmable electronic safety-related
(E/E/PE) systems”. There are seven different parts of IEC
61508 standards: [2]

1. IEC 61508-1 : General Requirements
2. IEC 61508-2: Requirements for electrical / electronic

/ programmable electronic safety-related systems.
3. IEC 61508-3: Software requirements
4. IEC 61508-4: Definition and abbreviations
5. IEC 61508-5: Examples of methods for the

determination of safety integrity levels.
6. IEC 61508-6: Guidelines for the application of IEC

61508-2 and IEC 61508-3.
7. IEC 61508-7: Overview of techniques and measures.

Figure 2 shown below highlights the overall safety life cycle
of IEC 61508-1.

2.1.3 BS EN 50128 Railway Industry
As per [3] the EN 50128 standard was developed to

identify “methods which needs to be used in order to
provide software which meets the demand of safety and
integrity”.

EN 50128 has five software integrity levels (SILs)
and each level is associated with certain degree of risk when
software systems are being used. The table 1 shows the SIL
levels with associated risk.

 ISSN 2320 - 2602
Volume 3, No.1, January 2014

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2014/ijacst03312014.pdf

Syed Usman Ahmed et al., International Journal of Advances in Computer Science and Technology, 3(1), January 2014, 19-22

Table 1: SIL level and associated risk [2]

Figure 2: Overall safety life cycle of IEC 61508-1 [2]

Figure 2 shown above describes the overall safety life cycle of
IEC 61508-1.

2.1.4 RTCA/DO 178B

RTCA stands for Requirements and Technical

Concepts for Aviation and DO 178B is an official guidance
document which is widely accepted as an international
standard. DO 178B describe the objectives of software life
cycle process, process activities, and software levels. These
software levels are selected based on the severity of failure
conditions on the aircraft and its occupants. Figure 3 shows
the software levels of DO 178B.

Figure 3: DO 178 B levels [2]

2.2 Programming platform
When we design a safety critical system it is essential that

the system should be kept as simple as possible. This approach
depends on the choice of programming language used to
develop the source code of the software.

Most of the modern programming are quite efficient in
terms of time and complexity however when it come for
developing safety related system these high end languages are
mostly avoided. The reasons for avoiding such high level
languages as given by [3] are:

(a) Dynamic allocation / de-location of memory.
(b) Use of pointers
(c) Use of unstructured programming constructs like

goto.
(d) Multiple entry and exit points in a loop, procedure or

functions.
(e) Recursion
(f) Procedural parameters

The essential features that provide reliability and are less
likely to leads to errors are:

(a) Strong typing
(b) Runtime constraints checking
(c) Parameter checking

As per [4] the programming language with good features
required for developing and testing safety critical system is
Ada. However as we can know that none of the programming
language can be completely secure and reliable for testing
safety related systems we take small subsets of good and
reliable programming language in order to avoid the risk
associated with reasons mentioned above. Ada subset most
commonly used for safety critical software systems is called as
SPARK [3].

3. DESIGNING OF SAFETY CRITICAL SYSTEMS

While designing a critical system that is required for safety
purpose the basic idea is to identify the hazards and constraints
as early as possible in system development life cycle. Along
with identification of such hazards we need to find out
measures that can reduce them to acceptance level.

3.1 Formal method based approach
This is the first approach which is used to formally prove

that the system that is being designed does not contain any
construction errors by the help of formal methods [3]. The
mathematical based methods that are used to specify, design
and test software based systems are called formal methods.
Here the term specification means well structured statements
using mathematical logic and formal proves are logical
deductions using rules and inference. The use of formal
method is often advocated as a way of increasing confidence
in such systems [5]. However to apply formal methods in
designing a large system is fairly complicated and time
consuming activity that has some big issues like human
intervention in official specifications and proves.

Moreover some concepts are harder to prove by formal
methods like complier or any utility system software based
program. For smaller systems, where formal specifications
and proves are easier this approach can be very successful.

The problem associated with large systems can be handled
if we can separate the critical functionality from the non
critical systems. In this way by creating components that have

20

Syed Usman Ahmed et al., International Journal of Advances in Computer Science and Technology, 3(1), January 2014, 19-22

different safety integrity levels we can manage large and
complex systems as well using formal approach.

R. D. Tennent [6] in his book exemplify a real world
example of how to apply formal methods with successful
results. It is mention in the book [6] that “The program used to
control the NASA space shuttle is a significant example of
software whose development has been based on specifications
and formal methods […] As of March 1997 the program was
some 420,000 lines long. The specifications for all parts of the
program filled some 40,000 pages. To implement a change in
the navigation software involving less than 2% of the code,
some 2,500 pages of specifications were produced before a
single line of code was changed. Their approach has been
outstandingly successful. The developers found 85% of all
coding errors before formal testing began, and 99.9% before
delivery of the program to NASA. Only one defect has been
discovered in each of the last three versions. In the last 11
versions of the program, the total defect count is only 17, an
average of fewer than 0.004 defects per 1,000 lines of code.”

3.2 Prevention and recovery based approach
The prevention and recovery based approach assumes that

errors do exist in the system and the ultimate aim is to design a
prevention and recovery based mechanism that can protect the
system from the stated hazards. This approach follows a
bottom up structure in which smaller modules or functions are
first checked for errors and traversing these smaller parts the
complete system is scanned for possible threats. In order to
recover data and information sometime we may follow what is
called is redundancy approach in which data related to critical
parts or modules is replicated.

As mentioned in [4], an example of redundancy focusing
only in the software part of a critical-system is the N-version
programming technique also known as multi-version
programming. In this approach, separate groups develop
independent versions of the same system specifications. Then,
the outputs are tested to check that they match in the different
versions. However, this is not infallible as the errors could have
been introduced in the development of the specifications and
also because different versions may coincide in errors.

4. TESTING SAFETY CRITICAL SYSTEM

As software testing is gaining momentum many researchers
are getting associated with this domain to explore the real
potential of testing [8]. Quality of software work product
depends on the amount and quality of testing being done
software reliability, scalability and performance are some of
the factors that are very much valued by the customer [9].
Testing of safety critical system will use all or part of existing
legacy software testing techniques, in addition to the existing
testing techniques we have to supplement some special
techniques in order to minimize the risk and hazard associated
with safety of software and environment. The two important
factors that distinguish legacy software testing techniques
from safety critical testing techniques are:

(a) Degree of rigor: The degree of rigor is the amount of
formality involved in testing a system. The degree of
rigor for safety critical system is more than the
normal system.

(b) Organizational structure: Independent verification
is usually required in those systems by means of a
separate team within the overall project structure or a
verification team supplied by an external company

who may not ever meet the development team,
depending on the criticality of the system.

It should be remember and empathized that when testing
software at different stages of its development, tests are always
performed to verify correct behavior against specifications, not
against observed behavior. For this reason, design of test cases
for coding, should be done before coding the software system.
Otherwise, software developers are tempted to design test cases
for the behavior of the system which they already known,
rather than for the specified behavior [7].

Some specific techniques to test and verify safety critical
systems are:

1. Probabilistic risk assessment (PRA): It is a method
that combines failure modes and effect analysis
(FMEA) with fault tree analysis (FTA).

2. Failure mode effects and critically analysis (FMECA):
It is an extension of former FMEA.

3. Hazard and operability analysis (HAZOP): It is used
for hazard and risk analysis.

4. Fishbone diagram: It is a tool for cause and effect
analysis.

The steps involved in probabilistic risk assessment (PRA) are
as follows:

1. It perform a primary hazard analysis to find out the
impact of some predefined hazard on safety of system.

2. Next, the severity of each impact is calculated. The
severity levels can be classified as follows:

a. Catastrophic
b. Hazardous
c. Major
d. Minor
e. Not safety related

3. The probability of occurrence is then calculated and it
can also be classified as:

a. Probable
b. Remote
c. Extremely remote
d. Extremely improbable

4. Now the assessment of risk is calculated by
combining both impact and probability of occurrence
in a matrix.

Failure modes and effect analysis (FMEA) is a procedure

for analysis of potential failures within a system for
classification by severity or determination of the effect of these
failures on the system. Failure modes can be defined as any
errors or defects in a process, design or item, especially those
that affect the customer and can be potential or actual. Effects
analysis refers to studying the consequences of these failures. A
failure mode, effects and criticality analysis (FMECA) is an
extension to this procedure, which includes criticality analysis
used to chart the probability of failures against the severity of
their consequences.

Fault trees analysis is a graphical technique that provides a
systematic description of the combinations of possible
occurrences in a system which can result in an undesirable
outcome (failure). An undesired effect is taken as the root of a
tree of logic. Each situation that could cause that effect is added
to the tree as a series of logic expressions. Events are labeled
with actual numbers about failure probabilities.

21

Syed Usman Ahmed et al., International Journal of Advances in Computer Science and Technology, 3(1), January 2014, 19-22

5. CONCLUSION

In this paper, a basic overview of safety-critical software
systems has been given. They were first defined and some
standards to cope with their development were named.
Programming features and languages related to these kinds of
systems have also been mentioned. Then, the two main
approaches used when designing safety-critical software were
explained. Finally, some techniques used to test safety-critical
software have been described, both general techniques also
used to test typical software systems and special techniques
from safety engineering aimed at safety-critical software. The
main idea behind the testing techniques mentioned is to reduce
risks of implementation errors.

Throughout this paper, it has been showed that safety-
critical software systems is a very complex topic. It is this
complexity and their relevance in our nowadays society what
makes safety-critical systems development to require huge
efforts both in time and budget.

The key to the success of any software development,
critical or not, are the people in charge of it. They need to have
enough training and experience. Both of them become
absolutely essential in safety-critical software development.

REFERENCES

[1] J. D. Lawrence, Workshop on Developing Safe Software – Final
Report, FESSP, Lawrence Livermore National Laboratory,
1992.

[2] Robert Traussnig, "Safety-Critical Systems:Processes, Standards
and Certification" Seminar “Analysis, Design and
Implementation of Reliable Software”, 2004.

[3] IPL Information Processing Ltd, An Introduction to Safety
Critical Systems, Testing Papers.

[4] Marcos Mainar Lalmolda, "Testing safety-critical software
systems", Quality Assurance and Testing report, University of
Nottingham, 2009.

[5] Jonathan Bowen,"Safety Critical Systems, Formal Mehods and
Standards", Software Engineering Journal, 1992.

[6] R.D. Tennet, Specifying Software: A Hands-On Introduction,
2002.

[7] IPL Information Processing Ltd, An Introduction to Software
Testing, Testing Papers.

[8] Ahmed, Syed Usman and Azmi, Muhammad Asim, “A Novel
Model Based Testing (MBT) approach for Automatic Test Case
Generation”, International Journal of Advanced Research in
Computer Science, 4(11), pp 81-83, 2013.

[9] Ahmed, Syed Usman, Sahare, Sneha Anil and Ahmed, Alfia,
“Automatic test case generation using collaboration UML
diagrams”, World Journal of Science and Technology, Vol-2,
pp4-6, 2012.

22

