
59

An Effective Bayes Based Anomaly Detection Mechanism in Cloud Environment

Dr. V. UMADEVI
Principal, New Prince Shri Bhavani Arts and Science College, Chennai-600100, India

Email: vumadevi76@gmail.com. Mobile: +91-6379972164

ABSTRACT

Now a days Cloud computing plays a vital role in the IT
enterprise. Statistical Process Control cloud charts sense
routine variances and their root causes are identified based on
the differential profiling strategy. Most of the manual overhead
incurred in detecting the software variances and the analysis
time are reduced to a larger extent but detailed analysis of
profiling data are not performed in most of the cases. At the
same time, Trusted Computing Base (TCB) of a computing
node does not achieve the scalability measure. This work, a
Practical Bayes approach studies the problem of detecting
software variances and ensures scalability by comparing
information at the current time to historical data. GenProg uses
an extensive structure of genetic programming to develop a
program variant that retains essential functionality but it is not
vulnerable to a known deficiency in cloud. The existing
software testing suite identifies program defects in cloud
environment. Delta debugging and Structural differencing
algorithms minimize the dissimilarity among variant and the
original program in terms of minimum repair. Subsequently,
Defect Localization based on Band (DLB) mechanism is
introduced to overcome the defects and rank the different
acceptable patches.

Keywords:Cloud Environment, Variances, Practical Bayes
approach, Gaussian mixture, Trusted Computing Base,
Genprog

1. INTRODUCTION

Cloud Computing is being altered and distorted to a new model
consisting of services that are commoditized and delivered in a
fashion analogous to conventional utilities. In such a model,
customers access services based on their necessities without
knowing from where the services are hosted or how they are
distributed. Cloud computing denotes the infrastructure as a
Cloud from which commerce and clients are experienced and
proficient to access applications from anywhere in the world
using on demand techniques. The Cloud based Computing
Service Model is based on three primary factors such as
Infrastructure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS). All IT functions with
applications, networking, security, storage space and software
are developed for users to work in a service, based on the client
server model.

An innovative remote attestation framework called DRAFT as
illustrated in [7] for efficient measuring of target system based
on an information flow-based integrity model. The high
integrity processes of a system are first measured and
established, and these processes are then confined from
accesses initiated by low integrity processes. An efficient
cryptographic protocol as shown in [12] that enforces
keystroke integrity by utilizing on-chip Trusted Computing
Platform (TCP) prevents the counterfeit of fake key events by
malware under reasonable assumptions. A reasonable
assumption is difficult in accessing a host’s kernel, and the
facility to build application-level fine-grained detection
solutions.

Collaborative provable data possession scheme as shown in [3]
uses the techniques of Homomorphic demonstrable responses
and hash index hierarchy. Collaborative fails to expand more
effective and practical CPDP constructions. First performance
of CPDP scheme, especially for large files, is seriously
affected by the bilinear mapping operations because of high
complexity. Cooperative PDP (CPDP) scheme proves the
security based on multi proving zero-knowledge proof system
in [10], which assure unity bit but it is affected by the bilinear
mapping operations due to its high complexity. Additionally,
articulate performance optimization mechanisms for CPDP
scheme present an efficient method for identifying the
parameter values to reduce the cost involved during
computation of clients and storage service providers.

Hierarchical Attribute Set Based Encryption (HASBE)
extended cipher text-policy Attribute-Set-Based Encryption
(ASBE) with a hierarchical structure of users. The ASBE
scheme as shown in [15] not only attains scalability due to its
hierarchical arrangement, but also inherits elasticity and fine-
grained accesses manage in supporting compound attributes of
ASBE. ASBE efficiently share confidential data on cloud
servers using Hierarchical Identity Based Encryption (HIBE)
system and the Cipher Text-Policy Attribute-Based Encryption
(CP-ABE) system, and finally providing performance
expressivity trade off as described in [12].

The Secure cloud storage system as depicted in [10] supports
privacy-preserving public auditing which performs audits for
multiple users concurrently and proficiently. Public auditability
for cloud storage is of serious consequence so that users resort
to a Third-Party Auditor (TPA) as shown in [13] check the

 ISSN 2320 - 2602
Volume 7 No.9, September 2018

International Journal of Advances in Computer Science and Technology
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst02792018.pdf

https://doi.org/10.30534/ijacst/2018/02792018

V. UMADEVI., International Journal of Advances in Computer Science and Technology, 7(9), September 59-65, 2018

60

integrity of outsourced data. To securely establish an efficient
TPA, the auditing process brings in novel vulnerabilities
towards user data privacy. As described in [5] bread and butter
of data forensics and post investigation in cloud computing is
characterized by providing the information privacy on sensitive
documents.

Nefeli, a virtual infrastructure gateway as demonstrated in [8]
provides deployment hints on the probable mapping of VM to
physical nodes. The existence of possible performance
bottlenecks, and the existence of underlying hardware features.
Nefeli investigate of alternative constraint satisfaction
approaches to address scalability issues present in large
infrastructures and failed to offer deployment hints that
efficiently handle the deployment of virtual infrastructures in
the background of real large cloud installations. SBSE for the
cloud as formulated in [13] challenges by way of addressing
search based software engineering. Cloud providers share
analogous goals in reducing resource usage, but they are less
focused on upholding their service level agreements on
intrusions.

An effective anomaly localization mechanism would return a
root cause using the apprehensive list program elements.
Although existing method with anomaly localization is
effective only on some of the cases, regrettably, for many other
cases, anomaly localization methods are not effectual
sufficient. GenProg as shown in [15] is an automated method
for repairing defects in off-the-shelf, legacy programs without
official condition, program annotations, or particular coding
practices. Structural differencing algorithms and delta
debugging decrease the difference between this variant and the
unique program to a least repair. Root causes are often listed
low in the record of most distrustful program elements. The
unreliability of anomaly localization tools potentially motive
many developers to distrust anomaly localization methods.

In Practical Bayes (PB) approach, two component Gaussian
mixtures are used to perform deviations. PB monitors the
massive number of cells which is useful in streaming scenarios
with Bayes per section error rate procedure. A novel feature of
PB mechanism is the capability to restrain deviations that
simplify the consequence of sharp changes in the marginal
distributions. The contribution of Practical Bayes approach is
to present a PB framework to detect software variances in
imbalanced classified data streams with potentially large
number of cells. PB framework performs multiple testing using
a hierarchical Bayesian model and suppresses redundant alerts
caused due to changes in the marginal distributions.

The structure of paper is as follows. Section 1, describes the
Practical Bayes Theoretical Framework. Section 2, describes
the Defect Localization Mechanism. Section 3 describes the
PB Experimental Approach with Parametric Factors. Section 4
describes the Illustration analysis the result through table and
graph values and section 5 describes Conclusion.

2. PRACTICAL BAYES THEORETICAL FRAMEWORK

Practical Bayes aims to detect the software anomalous
behaviour by comparing data in the current block based on
historic data. However, PB mechanisms interested in detecting
software anomalous patterns rather than detecting abnormal
software records. The design of PB mechanisms centred on the
concept of monitoring statistical measures which are computed
for combinations of definite attributes in the database. Definite
attribute combinations give rise to multi software’s testing at
each interval. In order to achieve multi software testing, Bayes
per section error rate is evaluated on each cell, where each
dimension corresponds to the levels of a categorical variable.
The framework of PB is shown in Fig 1.

Fig1.Architecture Diagram of Practical Bayes mechanism

As shown in Fig 1, PB classifies the imbalanced data streams.
Imbalanced data stream gets computed from call logs that are
added to the current database on a daily basis. Software
variances which are direct consequences of changes in a small
number of margins are detected with Gaussian mixture.

For ease of evaluation, the PB mechanism proceeds with the
assumptions that the multidimensional software tests consist of
two categorical variables with ‘A’ and ’B’ levels respectively.
‘A’ and ‘B’ levels note the generalization of higher dimensions
software variances. In practice, PB takes the suffix of the ‘A’
and ‘B’ levels for the first and second categorical variables
respectively at time ‘t’. Let ஺ܺ஻் denote the observed value to
follow a Gaussian distribution. Often, a certain level of
transformation is required for the original data to ensure
approximation of true value.

In order to ensure approximate software normality, the counts
are observed with the help of a square root transformation. In
general, PB square root transformation is denoted as

ݔ))	 + ݈)௤-1)/q) (1)
In (1), ‘l’ and ‘q’ are chosen to ’stabilize’ the variance and
depends on the mean recommended in software anomaly
detection. Moreover, ‘q’ is constrained to lie between 0 and 1,
and q0 implies a log transformation while detecting the
software variances. In fact, the values of these parameters are
chosen with a reasonable value with the help of the initial
training data. For time interval ‘t’PB mechanism detects the

V. UMADEVI., International Journal of Advances in Computer Science and Technology, 7(9), September 59-65, 2018

61

software variances after regulating the changes with marginal
means. The process of PB mechanism starts with the formal
definition of software anomaly followed by the mechanism
Practical Bayes approach explained with the help of an
algorithm.

A. Formulation of PB Software Anomaly
Consider a 2*2 table, the levels of the row feature being I, J
and the levels of the column feature being i, j respectively. PB
denotes the 4 cell entries corresponding to (Xx, Xy, Yx, YY)
by a vector of length 4.

ݔܺ		 ݕܺ
ݔܻ ܻܻ(2)

Two values are measured in PB mechanism to analyse the
scalability issue, namely, the expected values and the observed
values. The deviations after adjusting the changes in the row
and column means are (0, 0, 0, 0), ensuring that it produces no
software variances in cloud environment. The significant
values in the PB mechanism and the non-adjusted changes is
described to be a drop in the first row mean and a rise in the
second row mean. Hence, non-adjusted cell modification
contains redundant information which results in a situation
where the adjusting for margins is desirable.

Let ܥ௧ିଵdenote the current historical information up to time t-
1. Deviations at time t are detected by comparing the observed
values ஺ܺ஻் with the corresponding posterior analytical
Practical Bayes distributions. The PB expected distribution of
data at time t is based on current historic data until t-1.
Gaussian mixture with Practical Bayes mean and variances is
computed as given below:

஺஻்ߤ		 = ܲ(஺ܺ஻்|ܥ௧ିଵ)(3)

஺஻்ଶߪ	 =)ݎܸܽ ஺ܺ஻்|ܥ௧ିଵ) (4)

஺஻்ଶߪ ஺஻்represent the mean of PB mechanism andߤ represent
the variance factor of the PB approach. ஺ܺ஻்denote the
observed value which is assumed to follow a Gaussian
distribution mixture. The Gaussian denotes current historical
information up to time t-1 for detailed analysis of profiling
data in cloud environment.

The central idea of the Hierarchical Bayesian model is to
classify the imbalanced data streams. ܪ௠௜௫௧௨௥௘ assumes
∆஺஻்which are random samples from Gaussian mixture
distribution at time ‘t’, ܯܩ௧. The form of ܯܩ௧ is known but
depends on the density rate parameter. A Bayesian hierarchical
model is one that is written with software modularity. It is
often useful to think of the analysis of data streams using PB
inside-unit analysis, and another model for the across-unit
analysis. The inside-unit model describes the behaviour of
individual respondents over run time, while the across-unit
analysis describes the density and complexity of the units. The
two models, inside-unit and across-unitb combine to form the
hierarchical model, and Practical Bayes algorithm is used to

integrate the pieces mutually and report for all the uncertainty
and variances.

A Practical Bayes mechanism makes inference about ∆஺஻் by
using approximation of the hyper parameters in order to
perform the deviations. The software inference is obtained by
numerically integrating with respect to the posterior of
∆஺஻்using an adaptive Gaussian mixture quadrature. PB
Gaussian posterior distribution of ∆஺஻்depends directly on
 s through the posterior of the’ߜ and indirectly on the other	ߜ
hyper parameters in order to reduce the complexity issue.
Generally, such adaptation of strength makes the posterior
means of ∆஺஻்regress toward each other and automatically
builds penalty for conducting multiple software tests.

3. DEFECT LOCALIZATION MECHANISM

The goal of Defect Localization based on Band (DLB)
mechanism is to build a model that predict defect in an
effective way. To realize DLB, illustrated in Fig2, Amazon
EC2 dataset are taken for the defect localization in cloud
environment. Information from Amazon EC2 dataset is
leveraged to predict defect localization model with different set
of program execution traces with the defect being localized
based on the band. Band in DLB mechanism depends on the
spectra that contains ordered list of program elements. The
ordered list of program elements in DLB mechanism are sorted
based on the likelihood. Defect Localization based on Band
extracts features in cloud that are potentially associated to
perform effective ranking in cloud environment.

Fig2.Overall Architecture Diagram of DLB Mechanism

In the special case, as depicted in fig 2, where all program
elements are given the same dishonest score values, there is a
very low likelihood that the defect localization model is
effective for those execution traces. Defect localization
comprises two phases namely instruction phase and operation
phase. In fact, the adjusted software version detects changes in
interactions among the levels of categorical variables which
are the focus of several applications. Also, in higher
dimensions PB mechanism adjust for higher order margins,
which is routine in PB mechanism framework. For instance,

V. UMADEVI., International Journal of Advances in Computer Science and Technology, 7(9), September 59-65, 2018

62

adjusting two-way margins in a three dimensional form detects
changes in third order interactions also.

Fig 3.Model for Software Anomaly using PB

Fig 3 describes the detection of software variances based on
the Practical Bayesian approach. The client count in cloud
environment identifies the CPU utilization and software usage
factor. The software stored and RAM usage is resolute. The
basic model of PB mechanism is analyzed and finally density
rate and software anomaly detection ratios are evaluated. The
cell penalty increases with software predictive variance. Also,
the general penalty of the procedure at time ‘t’ depends on the
hyper parameters which are predictable from data.

Input: Cloud servers with software’s
Output: Detect Software variances in cloud environment
Start
Step 1: Produceߤ௜ for Gaussian distribution ‘G’
Step 2: Each data from training data and fitted with a normal
Gaussian distribution
Step 3: Mean, Median and variance of cells in multiple
software testing is generated
Step 4: For each i, simulate H (ߤ஺஻் ஺஻்ଶߪ,)
Step 5: At time‘t’, PB selects the data streams, and then
software variances are generated.
Step 6: Find the software variances at time‘t’
Step 7: Hierarchical Bayesian Model classifies the imbalanced
data streams till the last row and column. End

In principle, PB model provides an estimate of posterior
Gaussian predictive means and variances to
obtainߤ஺஻் ஺஻்ଶߪ	݀݊ܽ, . However, elaborating on appropriate
Gaussian mixture on PB mechanismhas been chosen and the
software is trained analytically by the user. Also, to be useful
in data streaming scenarios, the PB model is easily adapted to
new data. Gaussian mixture effectively captures ܥ௧ and detects
the software variances in cloud environment. Then, the
posterior predictive mean ߤ஺஻் is the sample mean and the
posterior predictive variance	ߪ஺஻்ଶ replaced by its estimator	ݏ݅
஺஻்ଶݏ	 for effective variance on each ஺ܺ஻் . In order to adjust
effects, a separate Gaussian mixture is maintained for each
looping.

4. PB EXPERIMENTAL MECHANISM WITH
PARAMETRIC FACTORS

Performance metric for evaluation of PB mechanism is
measured in terms of runtime, software anomaly detection
ratio, CPU utilization and density rate. Runtime factor is
defined as the amount of time consumed to perform the
software variances detection, measured in terms of seconds.
Scalability factor measures the quality of services provided
using the Practical Bayes approach, measured in terms of
percentage. The characteristic of a PB system is that it
describes its capability to cope and perform an increased
detection service.

Software anomaly detection ratio in PB is measured as the
amount of time consumed to perform the operations on cloud
using Gaussian mixture to detect the variances whereas the
CPU utilization is amount of CPU cycles undergone to perform
the variances detection operation, measured in terms of
Kilobits per second. Finally, the density rate is the average
speed of detecting the variances, measured in terms of
percentage.

5. ILLUSTRATION

Practical Bayes (PB) mechanism in cloud environment is
compared against the existing Statistical Process Control (SPC)
framework and Trusted Computing Base (TCB) with Open
Stack prototype on Amazon EC2 dataset. The experimental
value through table and graph describes the software variances
detection parametric factors on cloud environment.

Table 1.Tabulation of Runtime

No. of users Runtime (sec)

SPC
Framework

TCB PB
approach

5 95 81 77
10 135 120 107
15 217 202 186
20 242 221 211
25 426 386 346
30 536 481 446

35 836 797 727

V. UMADEVI., International Journal of Advances in Computer Science and Technology, 7(9), September 59-65, 2018

63

 Fig 4.Measure of Runtime

Table 1 and fig 4illustrate the runtime based on the user count.
The inside unit model in PB mechanism describes the
behaviour of individual respondents over run time and reduces
the percentage by 13%- 19% when compared with SPC
Framework [1]. The models combine to form the hierarchical
model, and Practical Bayes algorithm is used to integrate the
pieces mutually and report for all the uncertainty and variances
within 5 – 10 % limited runtime when compared with TCB [2].

Table 2.Tabulation for Anomaly Detection Ratio
Run Id Software Anomaly Detection Ratio

(Success %)
SPC Framework TCB PB

approach
20 65 62 72
22 70 65 74
24 75 72 82
26 81 75 85
28 85 80 87
30 90 85 97
32 92 87 97

Fig 5.Software Anomaly Detection Ratio Measure

Table 2 and fig 5 illustrate the software anomaly detection
ratio is measured based on the Run Id count. PB mechanism
improves the detection ration by 3 – 8 % when compared with
SPC Framework [1] because square root transformation is
adequate, for proportions arcsine which detect the software
anomaly. In PB approach, software track changes in the

margins separately using simple process control techniques and
run both adjusted and unadjusted versions and results in 7 – 17
%improved detection ratio when compared with TCB [2].

Table 4.Tabulation for CPU utilization

File Size
(KB)

CPU utilization (Kbps)
SPC
Framework

TCB PB
approach

35 6662 5651 4640
62 6735 6730 5720
90 7535 6526 5821
124 7852 6384 5920
189 8165 7155 6147
225 8232 7515 6596
387 9550 8528 7523

Fig 6. Performance of CPU utilization

Table 4 and fig 6 illustrate the CPU utilization based on the
File size. The size of file is measured in terms of Kilobytes
(KB). Practical Bayes approach used in process control
estimate ∆஺஻்with ߜ஺஻்and declare the ܾܽ௧௛cell of a software
anomaly to reduce the CPU utilization. Deviations at time t are
detected by comparing the observed values with the
corresponding posterior analytical Practical Bayes
distributions, so that it results in minimum CPU utilization of
15 – 32 % when compared to SPC Framework [1] and reduces
from 8-18% when compared with TCB [2].

Table 5.Tabulation for Density Rate

Performan
ce Counter

Density Rate (%)
SPC
Framework

TCB PB
approach

10 60 64 67

20 67 68 72
30 77 78 82
40 75 80 87
50 76 82 86
60 77 82 87
70 84 88 94

0
100
200
300
400
500
600
700
800
900

5 10 15 20 25 30 35

R
un

tim
e

(s
ec

)

No.of users

SPC
Framewor
k

TCB

PB
approach

0

20

40

60

80

100

120

22 24 26 28 30 32

So
ft

w
ar

e
A

no
m

al
y

D
et

ec
tio

n
R

at
io

 (%
)

Run ID

SPC
Framework

TCB

PB approach

0

2000

4000

6000

8000

10000

12000

35 62 90 124 189 225 387C
PU

 U
til

iz
at

io
n

(K
bp

s)

File Size (KB)

SPC
Framewo
rk

TCB

PB
approach

V. UMADEVI., International Journal of Advances in Computer Science and Technology, 7(9), September 59-65, 2018

64

Fig 7.Density Rate Measure

Table 5 and fig 7 illustrate the density rate which is measured
based on the performance counter. The performance count
ranges from 10, 20, 30…up to 70. The density rate is improved
by imbalanced classified data stream from call logs that are
added to the current database. When monitoring cells for
deviations, the PB mechanism regulates the marginal statistics
and increases density rate by 8 – 14 % when compared with
SPC Framework [1]. Software variances which are direct
consequences of changes in a small number of margins are
detected with Gaussian mixture, and improve the density rate
from 4 – 8 % when compared to the TCB [2].

6.CONCLUSION

In this paper, a software variances detection model called the
Practical Bayes mechanism is presented which aims to detect
the software variances in massive imbalanced classified data
streams. The values of these features from an instruction set of
defect build a discriminative model using machine learning.
DLB extracts the features in cloud that are potentially
associated for effective ranking. The PB framework then
reduces redundancy by adjusting marginal changes and solves
the multiple software testing problems using hierarchical
Bayesian model within a decision theoretic framework. PB
mechanism proves the superiority of ܪ௠௜௫௧௨௥௘ through
simulation using the two component Gaussian mixture for
deviations in cloud environment. Furthermore, the PB
mechanism works on combining adjusted and unadjusted
 .௠௜௫௧௨௥௘to automatically produce software variances detectionܪ
The Anomaly detect mechanism is then used as an ordered list
of program elements sorted based on their likelihood. The
techniques normally change program runtime states
methodically to localize anomaly program elements. It focuses
on anomaly localization tools that compare and correct and
anomaly executions. Experimental result attains the 9.256%
minimal runtime and CPU utilization. PB also improves the
density rate, scalability, and software anomaly detection ratio
on Amazon EC2 dataset.

ACKNOWLEDGEMENT

I have taken efforts in this work. However, it would not

have been possible without the kind support and help of many

individuals and organizations. I would like to extend my
sincere thanks to all of them.

I would like to express my gratitude towards my parents &
family members for their kind co-operation and encouragement
which help me in completion of this paper.

My thanks and appreciations also go to my colleague in
developing the paper and people who have willingly helped me
out with their abilities.

REFERENCES

1. Donghun Lee., Sang K. Cha., and Arthur H. Lee., “A

performance anomaly detection and analysis
framework for DBMS development,”IEEE Transactions
on Knowledge and Data Engineering, vol. 24, no. 8,
August 2012

2. Imad M. Abbadi., and Anbang Ruan., “Towards
trustworthy resource scheduling in clouds,”IEEE
Transactionson Information Forensicsand Security, vol. 8,
no. 6, June 2013

3. Flavio Lombardi., RobertoDiPietro., “Secure
virtualization for cloud computing,” Journal of Network
and Computer Applications, Elsevier journal., 2010

4. A.S.Syed Navaz., V.Sangeetha., C.Prabhadevi., “Entropy
based anomaly detection system to prevent DDoS
attacks in cloud,”International Journal of Computer
Applications (0975 – 8887) Volume 62– No.15, January
2013

5. Rongxing Lu., Xiaodong Lin., Xiaohui Liang., and Xuemin
(Sherman) Shen., “Secure provenance: The essential of
bread and butter of data forensics in cloud
computing,”ACM journal., 2010

6. Vivek Nallur., Rami Bahsoon., “A decentralized self-
adaptation mechanism for service-based applications in
the cloud,”IEEE Transactionson Software Engineering,
2012

7. Wenjuan Xu, Xinwen Zhang., Hongxin Hu., Gail-Joon
Ahn., and Jean-Pierre Seifert., “Remote attestation with
domain-based integrity model and policy
analysis,”Transactionson Dependableand Secure
Computing, vol. 9, no. 3, IEEE, 2012

8. Konstantinos Tsakalozos., Mema Roussopoulos., and Alex
Delis., “Hint-based execution of workloads in clouds
with nefeli,”IEEE Transactions on Parallel and
Distributed Systems, vol. 24, no. 7, July 2013
https://doi.org/10.1109/TPDS.2012.220

9. Alexandru Iosup., Simon Ostermann,Nezih Yigitbasi.,
Radu Prodan., Thomas Fahringer., and Dick Epema.,
“Performance analysis of cloud computing services for
many-tasks scientific computing,”IEEE TPDS, Many-
Task Computing, Nov 2010.

10. Mohamed Nabeel., Elisa Bertino., “Privacy-preserving
fine-grained access control in public clouds,”IEEE
Computer Society Technical Committee on Data
Engineering, 2012

11. Kui Xu., Huijun Xiong, Chehai Wu., Deian Stefan., and
Danfeng Yao., “Data-provenance verification for secure

0
10
20
30
40
50
60
70
80
90

100

10 20 30 40 50 60 70

D
en

si
ty

 R
at

e
(%

)

Performance Counter

SPC
Framewo
rk

TCB

PB
approach

V. UMADEVI., International Journal of Advances in Computer Science and Technology, 7(9), September 59-65, 2018

65

hosts,”IEEE Transactionson Dependableand Secure
Computing, vol. 9, no. 2, March/April 2012

12. Qian Wang., Cong Wang., Kui Ren., Wenjing Lou., and
Jin Li., “Enabling public auditability and data
dynamics for storage security in cloud
computing,”IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 5, May 2011
https://doi.org/10.1109/TPDS.2010.183

13. Dimitrios Zissis., Dimitrios Lekkas., “Addressing cloud
computing security issues,”Future Generation Computer
Systems., Elsevier journal., 2012

14. Yan Zhu., Shanbiao Wang., Hongxin Hu Gail-
Joon“Secure Collaborative Integrity Verification for
Hybrid Cloud Environments,”World Scientific
Publishing Company., International Journal of
Cooperative InformationSystems, DOI:
10.1142/S0218843012410018., Vol. 21, No. 3 (2012)
https://doi.org/10.1142/S0218843012410018

15. Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest.,
and Westley Weimer, “GenProg: A Generic Method
for Automatic Software Repair,”IEEE Transactionson
Software Engineering, vol.38, no.1, January/February
2012

