
Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

49

ABSTRACT

Service Oriented Architecture, and its most common
implementation method Web services, has not seen
widespread use on wireless mobile systems and smart devices
that are characterized by less computational resources such as
small computing devices and limited power and wireless
networks characteristics like low bandwidth which is often ad
hoc and unreliable. Web services are commonly realized on
computer systems where processing resources and network
bandwidth are not a limitation.

Android is one of the largest open-source operating systems
for smart devices, but lacks native support for the SOAP
protocol. Google has shown, to date, little interest in adding a
SOAP library to Android. This could be because they would
rather support the current trends in Web Services toward
REST-based services, and using JSON as a data encapsulation
format or using XMPP for messaging. However, this is a
conjecture subject to future research.

SOAP is the backbone protocol of Web services hence this
thesis will focus in supporting SOAP on the android platform.
We will explore and compare different transport protocols and
compression techniques in order to achieve an efficient
technique for SOAP messaging. The experiment will be done
on mobile broadband (second, third and fourth generations)
and Wi-Fi to examine the effects the different combinations
has on CPU load and battery usage of the Android device, and
the network load.

Key words: Android, SOAP, SOA, web services, XML,
compression techniques and transport protocols,

1 INTRODUCTION

Service Oriented Architecture (SOA) is a paradigm for
organizing and utilizing distributed capabilities that may be
under the control of different ownership domains. Central to
SOA is the principle that functionality should be broken down
into locally stand-alone services, complete with explicitly
defined and described interfaces. This principle means that the
SOA concept is well suited for building federations of

systems, as each system can be developed and operated
independently, while at the same time enabling
interoperability as long as the systems comply with the agreed
upon interfaces. SOA as a concept can be realized using a
number of different technologies, the most common being
Web services [1].

Web services provide a standard means of interoperating
between different software applications, running on a variety
of platforms and/or frameworks. Web services are usually
realized on computer systems where processing resources and
network bandwidth are not a limitation and haven’t been
widely employed to mobile systems that are characterized by
less computational resources (e.g. small computing devices
and limited power), and wireless networks characteristics
(e.g. low bandwidth, often ad hoc and unreliable)[2]. In such
cases reducing the size and frequency of messages and using
transport mechanisms that are tolerant of such conditions can
help mitigate the effects of the limited conditions.

The Mobile phone industry is enjoying an escalating growth
all over the world. Smart phones have become a part of our
daily lives and more than 80% of the world population today
owns a mobile phone. There have been significant advances in
the mobile device space during the last decade. They now
have better CPU and memory capabilities, embedded
hardware such as camera and Wi-Fi, and in-built sensors such
as GPS, accelerometer, gyroscope and magnetic field sensor,
making them usable in versatile scenarios. We also have
achieved higher data transmission rates for mobiles with the
advances in 3G, 4G and Wi-Fi, paving way for mobile
commerce and location based services. The advances in the
mobiles and the adaptation of component based SOA
everywhere have made the space for mobile web services.

While the advances in the mobiles are significant and they are
also being used as service providers, they still have certain
limitations. Battery life is one space where the advances are
not sufficient. Mobile battery still lasts only for about one or
two hours, if used for continuous computing. Wireless
charging of mobiles is a good solution to deal with the
problem [3]. Even though computing power and memory
capacities of these devices are constantly improving, the
dependency on battery power and wireless networks calls for
improved solutions when implementing SOA on wireless
systems. To interact with Web services, SOAP is used which

Efficient Simple Object Access Protocol (SOAP) Messaging for Mobile

Devices in Android Platform

Talaam K. Obadiah1, George O. Okeyo2, Michael W. Kimwele3
1 Jomo Kenyatta University of Agriculture and Technology, Kenya, obadiahtalaam@gmail.com

2 Jomo Kenyatta University of Agriculture and Technology, Kenya, gokeyo@jkuat.ac.ke
3 Jomo Kenyatta University of Agriculture and Technology, Kenya, kimwele@icsit.jkuat.ac.ke

 ISSN 2320 - 2602
Volume 7 No.9, September 2018

International Journal of Advances in Computer Science and Technology
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst01792018.pdf

https://doi.org/10.30534/ijacst/2018/01792018

Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

50

relies on the Extensible Markup Language (XML)
Information Set for its message format. XML has a large
information overhead, which is a challenge in the context of
mobile devices.

Much research has been done and is still being conducted on
how to enable Web services in the world of smart devices,
mainly on how to compress the messages being sent, but also
looking at different ways of sending the messages.

2 RELATED WORK

The integration of Web Services with mobile devices has
many useful benefits. It supports automatic and autonomous
self-configuring distributed systems without interfering with
the main functionality of the mobile host which is making
phone calls. An important motivation that leads us to this
research is the fact that mobile devices have limited battery
life and need for wireless environment which is problematic
considering the heavy weight SOAP parsers to process the
requests. Hence, the need of compressing the SOAP messages
and exploring other protocols other than HTTP/TCP.
In this chapter we will present Android, Service Oriented
Architecture, Web services and SOAP. We will describe
different protocols for SOAP, a third party SOAP library for
Android (KSOAP2) and compression techniques that focuses
on compressing XML.

2.1 Android
There is a tremendous potential in developing smarter mobile
devices that are more aware of its owner's location and
preferences. Android being an open source platform can be
described as a complete set of software for mobile devices; it
delivers an operating system, middleware and key mobile
applications. Android is built on a Linux kernel version,
though it does not include a full set of Linux utilities. The
reason for choosing Linux was the memory and process
management Linux offers, in addition to the permission-based
security model and support for shared libraries.

Android doesn’t offer native support for consumption of Web
services, but exists useful libraries like AndroidSOAP,
WSClient++ and ksoap2-android which permits Android
applications that in an easy and efficient way to consume Web
services based on SOAP. This libraries are third-party
distributed as free source, optimized for Android [7].

2.2 Service Oriented Architecture
Service Oriented Architecture (SOA) realized by Web
services technology, provides seamless information exchange
based on different policies and loose coupling of its
components. In a military domain it enables making sensitive
information resources available in the form of services, which
can be discovered and used by all mission participants that do
not need to be aware of these services in advance.
The most mature technology for implementing SOA,
recommended by NATO and widely applied in the
commercial sector, is Web services. Web services are
described by a wide range of standards that deal with different
aspects of their realization, transport, orchestration,

semantics, etc. They provide the means to build a very flexible
environment that is able to dynamically link different system
components to each other. These standards are based on the
eXtensible Markup Language (XML) and have been designed
to operate in high bandwidth links [4].

The essential part of Web services is the interact relationship
between a Service provider and Service requestor. This is
the Web Service. Service provider is the component that
implements the web service and informs its existence to other
requester by publishing its interface and access information in
the service registry. Sometimes, the service requestor wanting
to use a Web service does not know the location of it. Hence,
Discover agencies are responsible for the availability of both
interface and implementation access information for the Web
service to any service requester. Service requester searches
the service within the discover agencies to find its service
provider then connect to the latter using specific
communication protocol [5].

2.3 SOAP
Simple Object Access Protocol (SOAP) is an XML-based
messaging protocol that is platform free, transport free and the
operating system free because of the usage of HTTP and
Extensible Markup Language (XML) as its core technologies.

There are two kinds of SOAP requests; the first one is Remote
Procedure Call (RPC) format request alike to new distributed
architectures. The format is typically synchronous; client
sends message and pauses to get any response and/or fault
message back from server. The second format type of SOAP
request is document type request. In this situation, full XML
document is supplied to/from client and private server
privately by SOAP message and vice versa [6].

It defines a set of rules for structuring messages that can be
used for simple one-way messaging but is particularly useful
for performing RPC-style (Remote Procedure Call)
request-response dialogues. It is not tied to any particular
transport protocol though HTTP is popular.

Theoretically, the clients and servers in these dialogues can be
running on any platform and written in any language as long
as they can formulate and understand SOAP messages. As
such it is an important building block for developing
distributed applications that exploit functionality published as
services over an intranet or the internet.

Rather than define a new transport protocol, SOAP works on
existing transports, such as HTTP, Simple Mail Transfer
Protocol (SMTP), and Advanced Message Queuing Protocol
(AMQP). SOAP message has a very simple structure. At the
basic functionality level, SOAP works as a simple messaging
protocol. SOAP messages are in Web service context
predominantly carried by HTTP requests and responses.
The HTTP headers are above the SOAP:Envelope element.
The POST header shows that the message uses HTTP POST,
which web browsers also use to submit forms. Following the
POST header is an optional SOAPAction header that indicates

Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

51

the messages’ intended purpose. If a response follows the
request, the HTTP response would be of type text/xml, as
declared in the Content-Type header, and could contain a
SOAP message. Alternatively, the recipient could deliver the
response message later (asynchronously) [2].

2.4 SOAP WEB SERVICES
The term web service implies “something” accessible on the
“web” that gives you a “service.” Web services applications
can be implemented with different technologies such as
SOAP, discussed in this thesis, or REST. Web service is a
technology that can be used for implementing clients and
services based on a SOA, achieving interoperability between
different systems.

Distributed software has been around for a long time, but,
unlike existing distributed systems, SOAP web services are
adapted to the Web. The default network protocol is HTTP, a
well-known and robust stateless protocol. Although other
protocols such as SMTP, TCP, UDP, AMQP can also be used,
which forms the basis of our research. Web Services
technology recognizes mobile computing as an area to which
it should expand. Through integration, Web Services enable
pervasive accessibility by allowing for user mobility as it
overcomes the physical location constraints of conventional
computing. However, mobile computing also requires a
technology that connects mobile systems to a conventional
distributed computing environment.

Web services are the proven way towards implementation of a
“Service Oriented Architecture”. Advancement in mobile
device technology has motivated researchers to explore the
possibilities of effectively hosting web services over mobile
devices, and thereby trying to realize service oriented systems
in mobile environments. There has been substantial work
towards enabling mobile devices to host web services. An
important aspect of service oriented systems, “service
discovery” described above, however, remains a challenge in
mobile environments. Several challenges specific to hosting
web services over mobile devices need to be taken into
account in such service discovery mechanisms. These include,
but are not limited to battery and network constraints, limited
computational power of mobile devices. Moreover, such
dynamic mobile services are prone to uncertainty (owing to
network outage, battery issues, physical damage) and frequent
changes in functionality (primarily owing to the change of
context), and hence make frequent service updates a necessity
to effectively function as web-services.

Despite the fact that the condition of mobile computing has so
much improved in recent years, applying current Web Service
communication models to mobile computing may result in
unacceptable performance overheads. This potential problem
comes from two factors. First, the encoding and decoding of
verbose XML-based SOAP messages consumes resources.
Therefore Web Service participants, particularly mobile
clients, will suffer from poor performance. Second, the
performance and quality gap between wireless and wired
communication will not close quickly. It is caused by the
mobile environment’s constraints like limited processor

speed, limited battery lifetime, and slow unreliable and
intermit connection [8].

2.5 Compression Techniques
Data compression is a process by which a file (Text, Audio,
and Video) may be transformed to another (compressed) file,
such that the original file may be fully recovered from the
original file without any loss of actual information [9].

Data Compression is divided into two parts: Lossy and
Lossless Data Compression. Data compression utilities are
critical in helping achieve energy-efficient data
communication, reducing communication latencies, and
making effective use of available storage. The general goal of
data compression is to reduce the number of bits needed to
represent information. Whereas lossy compression
approximates the original data, lossless compression enables
the exact reconstruction of the original data by the
decompressor. Lossy compression is not relevant in the SOAP
and XML context. In this thesis therefore we focused on
lossless compression, which is crucial for data such as
program code, text input, images. The compression includes
Deflate Compression (GZip, zlib) and XML-specific
compression techniques.

Deflate Compression (GZip, zlib)
GZip is an optimized, lossless, and open source compression
utility created to be a general replacement of existing
compression techniques. It has been widely used to optimize
traffic flow and optimization is achieved by requiring only a
single pass through the file without the need for backwards
seeking, and does so without knowledge about the input
media type, or file size. The result of GZip is a file renamed
with the .gz extension [12].GZip is a variation of LZ77
algorithm, which works by looking for duplicated strings in
the data. The second and subsequent occurrences of a string is
then replaced by a pointer to the first occurrence. Moreover,
GZip applies Huffman coding in order to to assign shorter
codes to more frequent characters or strings. Because of this,
GZip provides a smaller file size as a result [10].

Because of this, we used GZip in this thesis.

XML-specific compression solutions
Augeri tested a multitude of ways to compress XML, focusing
on the compressed file sizes and execution times. Among its
conclusions were that in most instances a general-purpose
compressor should be used, although if maximum parsing and
compression speed was needed an XML-specific compressor
might be useful. The results indicated that binary format was
best applied to small files [11].

In Teixeira’s paper two algorithms for XML documents
compression were discussed: Schema-aware algorithm and
Hybrid algorithm. These were compared to WAP Binary
Extensible Markup Language (WBXML), XMill and
Efficient XML Interchange (EXI), considering the metrics
compression rate and compression time. Although no method

Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

52

was good enough in all requirements, among the conclusions
were that EXI reached the best compression rate [13].

EXI schema informed mode compression delivers superior
results compared to other FI compression technique; In
essence “EXI is better performer than FI” [14].
EXI format removes redundant tags and values from XML
documents and encodes numeric content in a binary format.
This format delivers significant file size savings and
processing efficiencies. For XML-based data, a doubling of
bandwidth potential is achievable and CPU burdens
minimized when EXI is applied. Additional findings indicate
that traditional binary data formats converted to an XML
format can be smaller than their native binary format after the
application of EXI [12]

Giving credence to the comparisons above, in this thesis we
tested EXI as the XML-specific compressor.

2.6 Transport protocols for SOAP
SOAP enables exchange of SOAP messages using a variety of
underlying protocols. One of the characteristics of SOAP is
neutrality; SOAP enables exchange of SOAP messages using
any transport protocol, such as HTTP, SMTP, TCP, or User
Datagram Protocol (UDP) [2].
The formal set of rules for carrying a SOAP message within or
on top of another protocol (underlying protocol) for the
purpose of exchange is called a binding. The SOAP Protocol
Binding Framework provides general rules for the
specification of protocol bindings; the framework also
describes the relationship between bindings and SOAP nodes
that implement those bindings.
SOAP-over-HTTP
Over the Internet, HTTP is the protocol that is most widely
used for SOAP binding. Because HTTP is one of the core
protocols of the Internet and is widely supported by Web
servers, SOAP-over-HTTP is the only concrete binding
specification defined in the SOAP binding framework
proposal. Because it is often allowed to pass through
firewalls, it is a convenient candidate for transporting SOAP.
The recommended version of HTTP for SOAP binding is
HTTP/1.1 and all SOAP implementations provide this
binding.

A SOAP message can be transported using HTTP by
encapsulating the SOAP request into the message body of a
HTTP GET or HTTP POST. Similarly, a SOAP response can
be encapsulated into the body of a HTTP response. HTTP
binding provides reliable message transport, flow and
congestion control.
However, SOAP over- HTTP has some drawbacks. This
includes:

 Does not support peer-to-peer messaging exchange
between SOAP nodes.

 The response time is generally higher when using
HTTP as the transport protocol for SOAP because of
the three-way handshake process occurring at the
TCP layer between a client and a server. This is to
ensure that all the parties acknowledge the
connection and are ready to transmit data.

SOAP-over-SMTP
SOAP-over-email binding is only presented in the
specification as an example to demonstrate the realization of
the SOAP binding framework. In the SOAP-over-email
binding, SOAP messages are piggybacked on SMTP packets.

SOAP-over- TCP
In order to transport a SOAP message using TCP as a direct
underlying protocol, a SOAP message is stored in the data
octets part of a TCP packet. There is not yet any official
specification for SOAP binding with TCP, however, Apache
Axis (10) and Microsoft Web Service Enhancement (WSE)
2.0 (108) include APIs that enable the sending of SOAP
messages via TCP.

SOAP-over- UDP
SOAP-over-UDP is an OASIS standard covering the
publication of SOAP messages over UDP transport protocol,
providing for One-Way and Request-Response message
patterns. Unlike TCP, it does not provide any flow-control
mechanism and only guarantees best-effort delivery of
packets. Packets delivered by UDP may be duplicated, arrive
out of sequence or not even reach their destination at all.
However, because of its simplicity, UDP provides a number
of benefits over TCP which includes:

 UDP does not require a connection to be established
before sending a packet. Each UDP datagram carries
its own destination address and is routed
independently of other packets. This reduces the
setup time associated with sending a message.

 UDP packets are smaller than TCP packets. The
UDP header is only eight bytes in length, in
comparison to the TCP header which is at least 20
bytes in length.

 UDP supports multicasting opening up the
opportunity to create push-based and
publish/subscribe Web services, where SOAP
messages or notifications are sent to multiple clients
periodically or triggered by an event.

Given this advantages, we examined UDP as an alternative
protocol.

SOAP-over- AMQP
AMQP is a binary, application layer protocol, designed to
efficiently support a wide variety of messaging applications
and communication patterns. It can utilize different transport
protocols but it assumes an underlying reliable transport
protocol such as TCP. AMQP provides asynchronous
publish/subscribe communication with messaging. Its main
advantage is its store-and-forward feature that ensures
reliability even after network disruptions. It ensures reliability
with the message-delivery guarantees of at most once, at least
once and exactly once. Security is handled with the use of the
TLS/SSL protocols over TCP. AMQP has low success rate at
low bandwidths, but it increases as bandwidth increases.
Comparing AMQP with the aforementioned REST, AMQP
can send a larger amount of messages per second. An AMQP

Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

53

environment with 2,000 users spread across five continents
can process 300 million messages per day. For example,
JPMorgan which is an American banking and financial
services company uses AMQP to send 1 billion messages per
day [15].There are various implementations of AMQP. This
includes Apache Qpid, Apache ActiveMQ and RabbitMQ. In
this thesis however, we used the RabbitMQ implementation.
Other implementations can give different results subject to
future research.

SOAP-over-SCTP
SCTP (Stream Control Transmission Protocol) is a standard
protocol (RFC 2960) developed by the Internet Engineering
Task Force (IETF) for transmitting multiple streams of data at
the same time between two end points that have established a
connection in a network. Sometimes referred to as "next
generation TCP" (Transmission Control Protocol) - or TCPng.
SCTP was originally designed as a protocol for telephony
signaling over IP networks. It offers functionality from both
TCP and UDP, in that it is message-oriented like UDP but
ensures reliable, in-sequence transport of messages with
congestion control like TCP. A telephone connection requires
that signaling information (which controls the connection) be
sent along with voice and other data at the same time. SCTP
also is intended to make it easier to manage connections over
a wireless network and to manage the transmission of
multimedia data [16].

SCTP has been implemented for all major operating systems
and its most important enhancements are multi-homing and
multi-streaming.

Multi-homing enables the respective endpoints to
communicate over multiple IP addresses and network
interfaces, hence systems with multiple interfaces can use one
over the other without having to wait. Multi-streaming is a
technique employed to avoid head-of-line blocking by
splitting control and data into separate streams. Each message
sent to a data stream can have a different final destination, but
each must maintain message boundaries. With
multi-streaming only the affected stream would be blocked;
the other streams are allowed to continue to flow.

Johnsen et al.’s [4] study investigated using alternative
transport protocols to convey SOAP messages in order to both
reduce the bandwidth requirement and meet the challenges
related to frequent disruptions in wireless network
characterized by low bandwidth, variable throughput,
unreliable connectivity and energy constraints. This study
considered these protocols relevant for testing at that time:
TCP, UDP, SCTP, and AMQP. Among the results was that
UDP performed well compared to the other protocols with
small payloads for large bandwidths. It also stated that SCTP
was a promising new transport protocol, performing better
than TCP in many cases though was left out because was not
official [4].
Based on these results this thesis tested the same protocols
used in on Android in both advantaged and disadvantaged
networks.

2.7 SOAP Libraries for Android
As mentioned earlier the android platform does not have
native support for SOAP. Hence a third-party library needs to
be added. There exist several non-official SOAP libraries
aimed for working on Android including AndroidSOAP,
WSClient++ and ksoap2-android.

All these libraries are often created and maintained on a
voluntary basis, some tend to be outdated while others require
payment to use. Therefore, in our thesis we used the
ksoap2-android project since it’s widely used, recently
updated and actively maintained library. The ksoap2-android
project provides a lightweight and efficient SOAP client
library for the Android platform. This is good for constrained
devices such as mobile devices. Ksoap2-android provides an
API for creating SOAP envelopes in the XML format, thus
making an Android application capable of interacting with a
Web service. However, can also work well in other platforms
[2]. It is an open source SOAP API with small footprint
implementation of XML, aimed at developing applications for
the Android platform [17].
3 METHODOLOGY
In this research, we used the Experimental Approach. We
carried out an experiment to evaluate how using GZIP and
EXI compressions, different protocols like UDP, AMQP other
than HTTP/TCP will affect the battery life and bandwidth
usage of the android device. We performed the experiment on
both advantaged and disadvantaged networks to determine the
efficiency of the technique to be used to send a SOAP
Message.

3.1 Experiment
After establishing the research procedure, we proceeded to
carry out the actual experiment. This involved application of
both software and hardware tools. The figures below show the
setup of our experiment.

Figure 3.2 Experiment Diagram Using Wi-Fi
We had an android device (TAB A) and a server (a laptop
Lenovo L460 series with 8GB RAM and 500GB HDD.)
which hosted our services and other additional softwares like
wireshark and editors like Android Studio. (Figure 3.1 and 3.2
in section 3.2 above shows the experiment diagrams using a
modem and using Wi-fi respectively).
We extended KSOAP2 to accommodate the additional
protocols. The android device received the service from the
server then send it back to the server. WireShack was used to

Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

54

test bandwidth usage. (More of this is described in section 3.3
below).
Hardware & software tools

1. Client(Android Device)
 Android 5.0.2
 1.0Ghz Dual core processor or higher
 1GB RAM
 16GB Internal Memory
 6000 mAh Battery capacity

2. Server

 2.0Ghz Quad core or higher
 4GB RAM
 128GB Storage
 Wi-Fi 802.11 b/g/n
 Wireshark - installed on the server.
 RabbitMQ – installed on the server.

3. Modem

3.2 Data Collection
In this section we described the tools used for data collection
that is profiling tools for android and the network analyser
(Wireshark) which will help us capture the network traffic.
We also describe the various tests (Web services) we will use
in our experiment.
Profiling for android
In software engineering, profiling is a form of program
analysis that measures different parameters of a software
program. Common profiling parameters includes how much
memory is used, how much CPU time is used, frequency and
duration of function calls et cetera. Profiling is a way to aid
program optimization.
Android has its own debugging tool used for software
profiling called Dalvik Debug Monitor Server (DDMS). The
same is integrated in Android Studio and it provides
port-forwarding services, screen capture on the device, thread
and heap information on the device, logcat, process, and radio
state information, incoming call and SMS spoofing, location
data spoofing, and more.
DDMS in android studio
Method profiling is a means to track certain metrics about a
method, such as number of calls, execution time, and time
spent executing the method. To do this DDMS needs to be
told when to start method profiling, and when to stop. After
the profiling DDMS will open a Traceview with the profiling
information collected. Traceview is a graphical viewer for
execution logs that you create by using the debug class to log
tracing information in your code and it helps to debug the
application and profile its performance. Traceview visualizes
the application in two panels, the timeline panel and the
profile panel.

Another way of measuring CPU load is to measure how much
time a method in the program spends before it finishes. This
time can be logged to a file for that test and then compared
with running the same method using other parameters. In this
thesis the parameters would be the different compression

methods (No compression, GZip and EXI) and different
transport methods (HTTP, AMQP and UDP).
Network traffic tool
Wireshark is the world’s foremost and widely-used network
protocol analyzer. It lets you see what’s happening on your
network at a microscopic level. Figure 3.10 and Figure 3.11
shows Wireshark’s graphical front end and graphical
illustration respectively.

3.3 Web Service
We will use the Hello Web service for testing purposes. We
tested different transport protocols and different compression
techniques against the “Hello Web service” over both mobile
(In second, third and fourth Generations) and Wi-fi (with an
average download speed of 0.22 Mbps and upload speed of
8.44Mbps)

 Test 1: “Hello Web service” over mobile network (In
2G,3G and 4G)

 Test 2: “Hello Web service” over Wi-Fi

More tests can be done with several Web services (for
example TempConvert Web service, File uploads or simply
Exchange Picture Web Service etc) so as to vary between
large and small SOAP messages, as well as having both XML
and non-XML payloads. However, since timelines for this
research is limited, we just used the “Hello Web service”. The
testing was done under normal conditions as artificial packet
loss or bad network connection were not added. In addition to
the Web service testing, the size of the compressed files were
measured in order to compare the compression of GZip and
EXI.

Hello Web service
In this Web service, the client sends a small request with a
String “Name” to a Hello Web service hosted on the Glassfish
server 4.0, which replies with a String “Hello Name!”.

Figure 3.7 Hello Web Service

The test begins with the client passing a string “Name”,
marshalling it into a SOAP envelope (possibly compressing
it) and sending it to the server. The server sends the same
string data in the reply to the client. Upon receiving the reply,
the client unmarshals the data (decompressing if needed) into

Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

55

a new string, which it saves on the device memory card. This
procedure is then repeated for the duration of the test.

3.4 Test Parameters
The testing as described in section 3.3.3 will be done in both
over wi-fi and over mobile network (2G, 3G and 4G) and we
will measure the differences in the following variables:

1. Battery Level
2. Network traffic in the form of the total amount of

data sent over the network and goodput (the number
of useful information bits delivered by the network
to a certain destination per unit of time). In goodput
the amount of data considered excludes protocol
overhead bits as well as retransmitted data packets.

3. CPU load caused by different compression
techniques.

Battery level
The percentage battery drop is recorded before and after each
test run. The battery level is measured calling the battery level
programmatically from the Android system. Without knowing
the battery status of a device, a web developer must design the
web application with an assumption of sufficient battery level
for the task at hand. This means the battery of a device may
exhaust faster than desired because web developers are unable
to make decisions based on the battery status. Given
knowledge of the battery status, web developers are able to
craft web content and applications which are power-efficient,
thereby leading to improved user experience.
Network Load.
As described in section 3.3.2 we will use Wireshark to
monitor traffic generated by the tests, measuring the total
Megabytes transceived as described in section 3.3.3.
CPU load
The time spent on marshalling and unmarshalling was
measured (in milliseconds) to show the effect each
compression tool and on different networks both advantaged
and disadvantaged has on the CPU load. Compared to DDMS
Method profiling this method is simple and gives sufficient
results as far as this this is concerned.

4 RESULTS AND DISCUSSIONS
The Hello Web service is called 180,000 times for each
protocol in each test. This done on both wi-fi and mobile
broadband. Below are the results from each of the studied
protocols that is HTTP, UDP and RabbitMQ (implementation
of AMQP). The results for 4G network is not discussed as it’s
slightly similar to that of 3G.

Measuring the battery drop for the different configurations
was difficult, and many calls had to be done to see an effect on
the battery. It’s also impossible to measure the battery level
with decimals. The Android API only offers an Integer value
of the battery, making the ordeal more imprecise than we
would have desired. There is no apparent way to determine if
a drop of 3% in battery level is in reality 3.0% or 3.7%. The
results for the battery usage from the calls done over Wi-Fi are
not presented here since they have the same size. There was so
significant change in the battery level. More tests can be done
here with an increase in the number of calls.

Figure 4-1 Average Battery level Drop for each compression and

transport protocols.

Figure 4-1 shows that EXIficient consumes more battery
power than where there is no compression and in GZip
compression. Both UDP and RabbitMQ consume
significantly less battery power as compared to when HTTP is
used. Though close to No compression, GZip consumes less
battery.

We measured the time spent on marshalling and
unmarshalling to give an impression of the CPU load of the
different compression methods. The figures below show the
results for both mobile broadband and wireless networks.

Figure 4-2 Combined Mean Marshalling and unmarshalling times
for Hello Web service in the wireless network.

0
1
1
2
2
3
3
4

N
O

CO

M
PR

ES
SI

…

G
ZI

P

EX
I

N
O

CO

M
PR

ES
SI

…

G
ZI

P

EX
I

N
O

CO

M
PR

ES
SI

…

G
ZI

P

EX
I

HTTP UDP RABBITMQC
ha

ng
e

in
 b

at
te

ry
 le

ve
l(%

)

Average Battery level Drop for each compression
and transport protocols

Battery Drop(%)

0
10
20
30
40
50

N
o

C
om

p

gz
ip

EX
I

N
o

C
om

p

gz
ip

EX
I

N
o

C
om

p

gz
ip

EX
I

HTTP UDP RabbitMQ

Ti
m

e(
m

s)

Combined Mean Marshalling and
unmarshalling times for Hello Web service in

the wireless network

Mean Marshall Time (ms) Mean Unmarshall Time (ms)

Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

56

Figure 4-3 Combined Mean Marshalling and unmarshalling times for

Hello Web service in the mobile broadband network.

Figure 4-4 Mean Marshalling and unmarshalling times for

Hello Web service in the mobile broadband network for 2G
and 3G.

Figures 4-2, 4-3 and 4-4 shows that the marshalling and
unmarshalling time is very high when EXIficient compression
is used. It can be seen that EXIficient causes much more CPU
load since the more the time it takes for marshalling and
unmarshalling the higher the CPU load.
Figure 4-4 shows that there is less CPU load when the
network speed improves. In 3G the CPU load is lower than in
2G. Results for 4G are not presented since it’s approximately
the same as that of 4G.

The total amount of data sent over the network is presented
combining the requests and responses of all Web service calls.
This is done for both wi-fi and mobile network. The results for
4G are not presented as they are slightly similar to that of 4G.

Figure 4-4 Combined MegaBytes Transceived for Hello

webservice in the wireless network.

Figure 4-5 Combined MegaBytes Transceived for Hello

webservice in the mobile broadband network for 2G and 3G.

Figures 4-4 and 4-5 show that EXIficient has the lowest data
transceived. This means that it compresses better compared to
GZip though the difference is less using RabbitMQ. There is
no much difference in compression when using 2G or 3G.
Comparing GZip and EXI Compression techniques
This section elaborates the size of the original file compared
to the GZip and EXIficient compression files.

Figure 4-6 Percentage Compression of Hello web service messages

0
10
20
30
40
50

N
O

 C
O

M
P

G
ZI

P

EX
I

N
O

 C
O

M
P

G
ZI

P

EX
I

N
O

 C
O

M
P

G
ZI

P

EX
I

HTTP UDP RABBITMQ

Ti
m

e(
m

s)
Combined Mean Marshalling and

unmarshalling Hello Web service in the
mobile broadband network.

Mean Marshall Time (ms) Mean Unmarshall Time (ms)

0
10
20
30
40
50
60

2G 3G 2G 3G 2G 3G 2G 3G 2G 3G 2G 3G 2G 3G 2G 3G 2G 3G

NO
COMP

GZIP EXI NO
COMP

GZIP EXI NO
COMP

GZIP EXI

HTTP UDP RABBITMQ

Ti
m

e(
m

s)

Mean Marshalling and unmarshalling
Hello Web service in the mobile broadband

network for 2G and 3G.

Mean Marshall Time (ms) Mean Unmarshall Time (ms)

0

5

10

15

20

No
Comp

gzip EXI No
Comp

gzip EXI No
Comp

gzip EXI

HTTP UDP RabbitMQM
by

te
s

tra
ns

ce
iv

ed
(m

bs
)

Combined MegaBytes Transceived for Hello
webservice in the wireless network.

MegaBytes Transceived

0
2
4
6
8

10
12
14
16
18
20

2G3G2G3G2G3G 2G3G2G3G2G3G 2G3G2G3G2G3G

No
Comp

gzip EXI No
Comp

gzip EXI No
Comp

gzip EXI

HTTP UDP RabbitMQ

M
by

te
s

tra
ns

ce
iv

ed
(m

bs
)

Combined MegaBytes Transceived for
Hello web service in the mobile broadband

network for 2G and 3G.

MegaBytes Transceived

0

100

200

NO
COMP

gzip EXI

C
om

pr
es

si
on

 ra
tio

(in

%
)

Compression Techniques

Percentage Compression of Hello Web service
messages Request Response

Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

57

Compression reduces the size of data being transferred hence
reduces the time for messaging. EXIficient compresses much
better than GZip with the Hello web service. Figure 4-6 shows
that the size of the compressed data with EXI is the lower
compared to GZip. The compression ratio is also much lower
compared to GZip.

In this thesis, goodput is how fast the exchange of SOAP
messages are in megabits per second.

5 OPTIMIZING SOAP MESSAGING IN MOBILE

DEVICES – PROPOSED APPROACH

5.1 Compression techniques
Compression improves bandwidth utilization and response
time of SOAP messages. The two compression techniques
used for this thesis included: GZip compression and EXI
compression
From Figure 4-1 GZip consumes less battery as compared to
EXIficient and No Compression. Figures 4-2, 4-3 and 4-4
show that marshalling and unmarshalling time is lower when
GZip compression is used hence less CPU load.
From our results and discussion, EXIficient performed poorly
with respect to the CPU load. From Figures 4-2, 4-3 and 4-4
marshalling and unmarshalling time is very high when
EXIficient compression is used hence causes much more CPU
load since the more the time it takes for marshalling and
unmarshalling the higher the CPU load. Although figures 4-4
and figure 4-5 show that EXIficient has the lowest data
transceived. Meaning that it compresses much better than
GZip when using the Hello web service though the difference
is less when using RabbitMQ.
Because of more CPU load, EXIficient compression
consumes more battery hence we advise not to be used in
devices with less processing capabilities.

5.2 Transport protocols
SOAP over HTTP - Since HTTP is one of the core protocols
of the Internet and is widely supported by Web servers,
SOAP-over-HTTP is the only concrete binding specification
defined in the SOAP binding framework proposal. From our
experiments HTTP performed poorly as compared to UDP
and AMQP (the RabbitMQ implementation) as it consumes
more battery power, has more CPU load and network load and
in terms of goodput, it was the lowest.
The response time is generally higher when using HTTP as
the transport protocol for SOAP because of the three-way
handshake process occurring at the TCP layer between a
client and a server.
SOAP over UDP - UDP consumes less battery power as
compared to when HTTP and AMQP (RabbitMQ
implementation) is used. From figures 4-2, 4-3 and 4-4 the
mean marshalling and unmarshalling time is lowest when the
UDP protocol is used with No compression and with GZip
compression though highest when EXIficient compression is
used. More tests can be done with heavier messages.
UDP had the highest goodput compared to HTTP and
RabbitMQ although the difference is less comparing with that
of RabbitMQ.

SOAP over AMQP - RabbitMQ consume less battery power
as compared to when HTTP is used. From figures 4-2, 4-3 and
4-4 the mean marshalling and unmarshalling time is for
RabbitMQ is lower than that of HTTP with No compression
and with GZip compression though high when EXIficient
compression is used. RabbitMQ had the higher goodput
compared to the most widely used protocol HTTP.

5.3 Combination of Compression technique and
Transport protocol

Both UDP and RabbitMQ consume significantly less battery
power as compared to when HTTP is used.
In terms of the network load, figures 4-4 and 4-5 show that
EXIficient compresses better compared to GZip though the
difference is not bigger using RabbitMQ because it has the
lowest data transceived. Figures 4-7, 4-8 and 4-9 shows that
when measuring goodput, UDP and RabbitMQ are better
compared to HTTP.

In summary, when we compare different combinations of the
transport protocols (HTTP, UDP and RabbitMQ) with
compression techniques (GZip and EXI) both in wireless and
mobile broadband (advantaged (3G, 4G) and disadvantaged
(2G) networks), using GZip together with AMQP (RabbitMQ
implementation to be specific) is better than all the other
combinations for a reliable connection. GZip consumes less
battery and has less CPU load compared to EXIficient.
However, if no reliable connection is required, then using
UDP protocol together with GZip compression is the best.

6 CONCLUSION
Our main goal was to find out how to efficiently send and
receive SOAP messages in the android platform. In this thesis
we explored and compared different ways to transport and
compress SOAP messages in both wireless and advantaged
(3G, 4G) and disadvantaged (2G) networks in order to give
recommendations on how to achieve this. We extended
ksoap2-android library to allow android support the different
transport and compression methods. Our tests included
exchanging SOAP messages with payloads consisting of text
strings.

From our tests EXIficient performed poorly with respect to
the CPU load and consumes more battery since the
marshalling and unmarshalling times of EXIficient were
much higher than when GZip or no compression are used.
Universal Datagram Protocol (UDP and AMQP preserve
more battery life than HTTP does.

A combination of GZip with AMQP (RabbitMQ
implementation to be specific) performs better than all the
other combinations for a reliable connection. However, if no
reliable connection is required, then a combination of UDP
together with GZip is the best choice.

7 FUTURE WORK
As long as Android does not provide a SOAP library of its
own in the near future, ksoap2-android is a viable option.
ksoap2-android should be expanded with WS-Addressing to

Talaam K. Obadiah et al., International Journal of Advances in Computer Science and Technology, 7(9), September 49-58, 2018

58

support other transport protocols, and should have an
alternative to JAXB in order to be more user-friendly.

It will be interesting to test SOAP-over-SCTP because of its
important enhancements of multi-homing and
multi-streaming. Android has not yet made it available in the
official API. Security issues will need to be addressed in the
future since we used third party library, KSOAP2 with
additional code.There exists other SOAP Optimization
techniques that were not covered in this thesis which can be
considered in future research. This includes: client caching
algorithms and SOAP Parsing.

Further testing with the proposed solution presented in this
thesis is also possible, with for example adding more web
services with higher payloads (e.g. image uploads) and also
making more calls to the web services. The addition of more
web services with much bigger SOAP messages might have
different results.

8 REFERENCES

1. Bloebaum, T. H., Johnsen, F. T., Brannsten, M. R.,

Alcaraz-Calero, J., Wang, Q., & Nightingale, J. (2016,
May). Recommendations for realizing SOAP
publish/subscribe in tactical networks. In Military
Communications and Information Systems (ICMCIS),
2016 International Conference on (pp. 1-8). IEEE.

2. Eggum, D. O. (2014). Efficient SOAP messaging for
Android.

3. Srirama, S. N. (2017). Mobile web and cloud services
enabling Internet of Things. CSI Transactions on ICT,
1-9.
https://doi.org/10.1007/s40012-016-0139-3

4. Johnsen, F. T., Bloebaum, T. H., & Eggum, D. O. (2015,
May). Efficient SOAP messaging for Android.
In Military Communications and Information Systems
(ICMCIS), 2015 International Conference on (pp. 1-9).
IEEE.

5. AbdAllah, M. M., & Mahjoub, W. H. (2013). A Quick
Introduction to SOA.Software Engineering
Competence Center.

6. Mohsin, A., Asghar, S., & Naeem, T. (2016, December).
Intelligent security cycle: A rule based run time
malicious code detection technique for SOAP
messages. In Multi-Topic Conference (INMIC), 2016
19th International (pp. 1-10). IEEE.

7. Shabani, I., Sejdiu, B., & Jasharaj, F. (2015). Consuming
Web Services on Android Mobile Platform for
Finding Parking Lots. University of Prishtina, Republic
of Kosovo, IJACSA, 6(2).

8. Hamad, H., Saad, M., & Abed, R. (2010). Performance
Evaluation of RESTful Web Services for Mobile
Devices. Int. Arab J. e-Technol., 1(3), 72-78.

9. Sidhu, A. S., & Garg, M. (2014). Research Paper on
Text Data Compression Algorithm using Hybrid
Approach. International Journal of Computer Science
and Mobile Computing, 3(12), 01-10.

10. Boonkrong, S., & Dinh, P. C. (2015, October). Reducing
battery consumption of data polling and pushing
techniques on Android using GZip. In Information
Technology and Electrical Engineering (ICITEE), 2015
7th International Conference on (pp. 565-570). IEEE.

11. Augeri, C.J., et al. An Analysis of XML Compression
Efficiency in 2007 Workshop on Experimental
Computer Science (ExpCS). 2007. New York, NY,
USA.

12. Snyder, S. L. (2010). Efficient XML Interchange (EXI)
compression and performance benefits: development,
implementation and evaluation. NAVAL
POSTGRADUATE SCHOOL MONTEREY CA.

13. Teixeira, M. A., Miani, R. S., Breda, G. D., Zarpelão, B.
B., & de Souza Mendes, L. (2012). New Approaches for
XML Data Compression. In WEBIST (pp. 233-237).

14. Jaiswal, G., & Mishra, M. (2013, February). Why use
Efficient XML Interchange instead of Fast Infoset. In
Advance Computing Conference (IACC), 2013 IEEE
3rd International (pp. 925-930). IEEE.

15. Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F.,
& Alonso-Zarate, J. (2015). A survey on application
layer protocols for the internet of things. Transaction
on IoT and Cloud Computing, 3(1), 11-17.

16. Belkhode, V. V., & Dakhane, D. M. (2014). UDP-Based
Multi-Stream Communication Protocol Using
NS2. International Journal on Recent and Innovation
Trends in Computing and Communication, 2(3).

17. Shen, Z., Man, K. L., Liang, H. N., Zhang, N., Fleming,
C., Afolabi, D. O., & Poon, S. H. (2013). A light mobile
web service framework based on axis2. In Future
Information Communication Technology and
Applications (pp. 977-985). Springer Netherlands.
https://doi.org/10.1007/978-94-007-6516-0_107

