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 
ABSTRACT 

In this work, we propose a deep neural network architecture 
with the combination of two popular applications of deep 
neural networks for Vietnamese large vocabulary continuous 
speech recognition. First, a deep neural network is trained to 
extract bottleneck features from frames of a combination of 
Mel frequency cepstral coefficient (MFCC) and tonal feature. 
This network is then applied as a nonlinear discriminative 
feature-space transformation for hybrid network training 
where acoustic modeling is performed by denoising 
auto-encoder pre-training and back-propagation algorithms. 
The experiments are carried out on the dataset containing 
speeches on Voice of Vietnam channel (VOV). The results 
show that the performance of the system using combined deep 
neural network architecture obtained relative improvements 
over the best hybrid HMM/DNN system by 4.1% and over 
baseline system by 51.4%. Adding tonal feature as input 
feature of the network reached around 18% relative 
recognition performance.  

Key words : Bottleneck feature, Deep neural network, 
Vietnamese LVCSR. 
 
1. INTRODUCTION 

Recently, deep neural network (DNN) has achieved great 
success on Large Vocabulary Continuous Speech Recognition 
(LVCSR) tasks [1][2]. There are two popular approaches 
today including hybrid and bottleneck feature. In the hybrid 
approach, a neural network is trained to estimate the emission 
probabilities for HMM [3]. In contrast, the bottleneck feature 
approach [4] uses the activations of a small hidden layer of 
neural network as input values for the common combination 
of GMM and HMMs. 

However, applying DNN in Vietnamese LVCSR is still in 
early stage. Previous study [5] has demonstrated that 
performance of Vietnamese LVCSR can be improved by 
using deep neural network with denoising auto-encoder 
pre-training method. They are still done in determining 
which speech features and network architecture are most 
useful when training deep neural network. 

 
 

Regarding tonal feature extraction for Vietnamese 
recognition, previous works [6][7][8] showed efforts toward 
Vietnamese large vocabulary continuous speech recognition 
by combining tonal features with a standard acoustic feature 
like MFCC for acoustic modeling. However their approaches 
for extracting tonal feature were based on Getf0 algorithm [9] 
which makes a hard decision whether any given frame is 
voiced or unvoiced. 

In this work, we show the way to extract the pitch feature 
using modification of the Getf0 algorithm [9] which all 
frames are treated as voiced and allow the Viterbi search to 
naturally interpolate across unvoiced regions and it can be 
combined with acoustic feature for using as input of DNN. 
Furthermore, we also proposed neural network architecture 
by combining of two popular deep neural network to see 
whether bottleneck features are useful input feature for DNN 
training. The motivation for the proposed architecture is that, 
combination of separately trained sub-networks into bigger 
networks is a well-established design principles when 
building large classifier. Bottleneck features can be regarded 
as a discriminative dimensionality reduction technique which 
is known to work well with GMM/HMM system. 

2. ACOUSTIC MODEL IN SPEECH RECOGNITION 

The acoustic model is used to model the statistics of speech 
features for each phone or sub phone. Hidden Markov Model 
(HMM) [10] is the standard used in the state-of-the-art 
acoustic models. It is a very powerful statistical method to 
model the observed data in a discrete-time series. 
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Figure 1: A left-to-right HMM model 
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An HMM is a structure that contains a group of states 
connected by transitions. Each transition is specified by its 
transition probability. In speech recognition, state transitions 
are usually connected from left to right or self repetition (the 
left-to-right model) as shown in Figure 1. 

Each state of HMMs is usually represented by a Gaussian 
Mixture Model (GMM) to model the distribution of feature 
vectors for the given state. A GMM is a weighted sum of M 
component Gaussian densities and is described by Eq. 1. 

1
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Where ( | )P x  is the likelihood of a D dimensional 
continuous-valued feature vector x , given the model 
parameters , , ,i i iw    where iw  is the mixture weight 
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3. TONAL FEATURE EXTRACTION 

Vietnamese is a syllabic tonal language with six lexical tones, 
which are very important to decide on the word meanings. A 
change in tone can lead to the change in word meaning, 
which can be vastly different from the original word. 
Therefore, tonal feature extraction task in Vietnamese 
recognition is very important. In tonal languages, e.g. 
Vietnamese, Cantonese, Chinese (phonetic) pitch carries 
phonological (tone) information and needs to be modeled 
explicitly. To detect tones, one needs to detect rising, falling, 
or otherwise marked pitch contours. By themselves, pitch 
features are insufficient to distinguish all the phonemes of a 
language, but pitch (absolute height or contour) can be the 
most distinguishing feature between two sounds. 

There are various off-the-shelf pitch extractors, namely Yin 
[11], Getf0 [9], SAcC [12]. The pitch features of SAcC, Yin 
and getf0 were compared in an ASR task by Pegah et al. [13]. 
The Getf0 seemed to perform slightly better than Yin, and it is 
a relatively simple algorithm to implement (SAcC gave better 
performance but it is a complex method). Based on that 
comparison Pegah et al. proposed a method which is called 
the Kaldi pitch tracker (because they have added it to the 
Kaldi ASR toolkit [14]), it is a highly modified version of the 
getf0 algorithm [9] which is based on the Normalized Cross 

Correlation Function (NCCF) as defined in (3): 
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  , x(n) is the input speech sample, N is 

the length of the speech analysis window,   is the lag 
number in range between 0 and N-1. 

In this work, we also follow the Kaldi pitch tracker for tonal 
feature extraction because it improves pitch tracking as 
measured by Gross Pitch Error, versus the off-the-shelf 
methods they tested. A Kaldi pitch tracker algorithm is based 
on finding lag values that maximize the NCCF. The most 
important change from getf0 is that rather than making hard 
decisions about voicing on each frame, all frames are treated 
as voiced to be continuous and allow the Viterbi search to 
naturally interpolate across unvoiced regions. 

The output of the algorithm is 2-dimensional features 
consisting of pitch in Hz and NCCF on each frame, and then 
the output is post-processed for use as features for ASR, 
produces 3-dimensional features consisting of pov-feature, 
pitch-feature and delta-pitch-feature: 

1. pov-feature is warped NCCF. This method was 
designed to give the feature a reasonably Gaussian 
distribution (although there are still noticeably 
separate peaks for voiced and unvoiced frames). Let 
the NCCF on a given frame be written c. If 

1 1c    is the raw NCCF, the output feature be 
0.152((1.0001 ) 1)f c   . 

2. pitch-feature is feature that on each time t, subtraction 
of a weighted average pitch value, computed over a 
window of width 151 frames centered at t  and 
weighted by the probability of voicing value p . 
Where p is obtained by plotting the log of 
count(voiced)/count(unvoiced) on the Keele 
database [15] as a function of the NCCF and 
manually creating a function to approximate it. 

3. delta-pitch-feature is delta feature computed on raw 
log pitch. 
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4. DEEP NEURAL NETWORK FOR SPEECH 
RECOGNITION 
4.1 Deep Bottleneck Features versus Hybrid HMM and 
DNN 

The deep neural network architecture for hybrid HMM/DNN 
is briefly described as in Figure 2. The network consists of a 
variable number of moderately large, fully connected hidden 
layers which is followed by the final classification layer. 
Another deep neural network architecture for bottleneck 
feature extraction proposed in [16] that is depicted in Figure 
3. This architecture is similar to the one for hybrid 
HMM/DNN, the difference is that it has an additional small 
bottleneck layer. 

 

 
Figure 2: Deep Network Architecture for Hybrid 

HMM/DNN 

The hidden layers are initialized using unsupervised, 
layer-wise pre-training. Thanks to their success in the deep 
learning community, restricted Boltzmann machines have 
become the default choice for pre-training the individual 
layers of deep neural networks used in speech recognition. 
Gehring et al. [16] demonstrated that denoising 
auto-encoders  which are straight-forward models that have 
been successfully used for pre-training neural architectures 
for computer vision and sentiment classification [17] are 
suitable to speech data as well. 

We follow their training scheme and initialize the hidden 
layers as denoising auto-encoders, too. Like regular 
auto-encoders, these models consist of one hidden layer and 
two identically-sized layers representing the input and output 
values. The network is usually trained to reconstruct its input 
at the output layer with the goal to generate a useful 
intermediate representation in the hidden layer. In denoising 
auto-encoders, the network is trained to reconstruct a 
randomly corrupted version of its input, which can be 
interpreted as a regularizing mechanism that facilitates the 
learning of large and over complete hidden representations 
[18]. 

For denoising auto-encoders working on binary data (i.e. gray 
scale images or sigmoid activation of a previous hidden 
layer), Vincent et al. proposed the use of masking noise for 
corrupting each input vector [18] in order to extract useful 
features, the network is forced to reconstruct the original 

input from a corrupted version, generated by adding random 
noise to the data. This corruption of the input data can be 
formalized as applying a stochastic process Dq  to an input 
vector x: 

~ ( | ) (4)Dx q x x   

This approach also used in our work is to apply masking noise 
to the data by setting every element of the input vector to zero 
with a fixed probability. Then the corrupted input first maps 
(with an encoder) to the hidden representation y  using the 
weight matrix W  of the hidden layer, the bias vector b of the 
hidden units and a non-linear activation function y  as 

follows: 
( ) (5)yy Wx b   

The latent representation y or code is then mapped back with 
a decoder into reconstruction z using the transposed weight 
matrix and the visible bias vector c. Because in a model using 
tied weights, the weight values are used for both encoding and 
decoding, again through a similar transformation 

z
 : 

The parameters of this model (namely , , ,TW W b c ) are 
optimized such that the average reconstruction error is 
minimized. The reconstruction error can be measured by the 
cross-entropy error objective as defined in (7) in order to 
obtain the gradients necessary for adjusting the network 
weights. 

( , ) log (1 ) log  (7)H i i i i
i

L x z x z x z    

When training a network on speech features like MFCCs, the 
first layer models real valued rather than binary data, so the 
mean squared error 2

2 ( , ) ( )i i
i

L x z x z   is selected as the 

training criterion.  In this work, we also apply masking noise 
to the first layer, although other types of noise could be used as 
well [18]. 

After a stack of auto-encoders has been pre-trained in this 
fashion, a deep neural network can be constructed. The other 
remained layers are initialized with random weights and 
connected to the hidden representation of the top-most 
auto-encoder, and the resulting network is fine-tuned with 
standard back propagation. 

In the trained network for hybrid DNN/HMM, they are used 
to compute a posteriori emission probabilities of phone states.  
If the network is trained to estimate probabilities ( | )t tp s x  of 

state ts  given observations as input feature vector tx   using a 
cross-entropy criterion, the emission probabilities can be 
obtained with Bayes’ rule: 

( | ) ( )( | )  (8)
( )

t t t
t t

t

p s x p xp x s
p s

  
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Figure 4: Combined architecture for acoustic modeling 

where ( )tp s  denotes the prior probability of a phone state, 
which is estimated using the available training data. During 
decoding, the most likely sequence of states is computed by 
the HMM. Since the observation x  is independent of the 
state sequence, therefore its probability ( )tp x  can be 
ignored. 
In the network for bottleneck features, the last two layers of 
the network can be discarded as the units in the bottleneck 
layer provide the final features used for training standard 
HMM/Gaussian mixture (GMM) acoustic models. 
 
4.2 Combination of Deep Neural Networks for Acoustic 
Modeling 
 
In this work, we combined two deep neural network 
architectures from above section to become a deeper 
architecture as illustrated in Figure 4. We also used denoising 
auto-encoder to model a window of bottleneck features which 
extracted by applying respective neural network to adjacent 
windows of acoustic features. This scheme is related to the 
frame shifting done with individual layers in time-delay 
neural networks [19][20] and forms the basis of many 
hierarchical or convolutional architectures. The weights of 
the bottleneck network are fixed during hybrid network 
training so that each network is trained in isolation. In 
practice, we can first train the bottleneck feature network, and 
then compute bottleneck features for all available training 
data for inputting of hybrid network. 

5. EXPERIMENTAL SETUP 
5.1 Corpora Description 
The voice of Vietnam (VOV) corpus was used in our 
experiments, which is a collection of story reading, mailbag, 
new reports, and colloquy from the radio program the Voice 
of Vietnam. There are 23424 utterances in this corpus 
including about 30 male and female broadcasters and visitors. 
The number of distinct syllables with tone is 4923 and the 

number of distinct syllables without tone is 2101. The total 
capacity of the corpus in WAV format with 16 kHz sampling 
rate and analog/digital conversion precision of 16 bits is about 
2.5 GB. The total time of the corpus is about 19hours which 
was separated into training set of 17 hours and 2 hours test 
set. All of transcriptions in the training data were used to train 
tri-gram language model. 
 
5.2 Baseline Systems 

Baseline HMM/GMM systems were performed with the Kaldi 
developed at Johns Hopkins University [16]. We extracted 
two sets of acoustic features to build baseline acoustic models. 
Those are MFCCs and PLP features, which are popular in 
speech recognition applications. In both feature extraction, 
16-KHz speech input is coded with 13-dimensional MFCCs 
with a 25ms window and a 10ms frame-shift. Each frame of 
the speech data is represented by a 39-dimensional feature 
vector that consists of 13 MFCCs with their deltas and 
double-deltas. Nine consecutive feature frames are spliced to 
40 dimensions using linear discriminant analysis (LDA) and 
maximum likelihood linear transformation (MLLT) [21] that 
is a feature orthogonalizing transform, is applied to make the 
features more accurately modeled by diagonal-covariance 
Gaussians. 

All models used 4,600 context-dependent state and 96,000 
Gaussian mixture components. The baseline systems were 
built, follow a typical maximum likelihood acoustic training 
recipe, beginning with a flat-start initialization of 
context-independent phonetic HMMs, followed by tri-phone 
system with 13-dimensional MFCCs or PLP plus their deltas 
and double-deltas and ending with tri-phone system using 
LDA+MLLT. 
5.4 Network training 

In our experiments, we extracted deep bottleneck features 
from MFCCs and PLP. The network input for these features 
was pre-processed using the splicing speaker-adapted features 
approach as in [22]. 

Shift over acoustic 
features 

State 
probabilities 
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Table 1: Recognition performance for the Vietnamese system with MFCC and PLP features 

During supervised fine-tuning, the neural network was 
trained to predict context-dependent HMM states (there were 
about 4600 states in our experiments). For pre-training the 
stack of auto-encoders in the architecture at section 4. 
Mini-batch gradient descent with a batch size of 128 and a 
learning rate of 0.01 was used. Input vectors were corrupted 
by applying masking noise to set a random 20% of their 
elements to zero. Each auto-encoder contained 1024 hidden 
units and after 20 epochs the weights were fixed and the next 
one was trained on top of it. 

The remaining layers were then added to the network, with 
the bottleneck consisting of 39 units. Again, gradients were 
computed by averaging across a mini-batch of training 
examples; for fine tuning, we used a larger batch size of 256. 
The learning rate was decided by the "newbob" schedule: for 
the first epoch, we used 0.008 as the learning rate, and this 
was kept fixed as long as the increment in cross-validation 
frame accuracy in a single epoch was higher than 0.5%. For 
the subsequent epochs, the learning rate was halved; this was 
repeated until the increase in cross-validation accuracy per 
epoch is less than a stopping threshold, of 0.1%. After each 
epoch, the current model was evaluated on a separate 
validation set, and the model performing best on this set was 
used in the speech recognition system afterwards. For these 
experiments we used GPUs for training of auto-encoder layers 
and neural networks using the Theano toolkit [23].The 
training time for each DNN architecture as describe in Table 
2. 

6. EXPERIMENTAL RESULTS 

In previous work [20], we compared different network 
architectures and inputs for extracting bottleneck feature on 
the Vietnamese language in terms of the word error rate 
(WER) as shown in Table 1. For the input data, we found that 
extracting deep bottleneck features from MFCC instead of 
PLP data resulted in consistently better recognition 
performance of about 0.4% WER absolute. Third column of 
Table 1 lists the WER of BNF systems which were reported 
previously in [24] and trained on Multilayer Perceptron 

(MLP) network using 3 layers (1000 units each) without using 
any pre-training technique. We also evaluated the 
experiments to extract bottleneck features from the networks 
of different depth, with and without unsupervised 
pre-training. We found the best configuration for DBNFs 
using pre-training of a stacked with 6 denoising 
auto-encoders. We decided to use MFCC acoustic features 
and pre-training for further experiments. 

Table 2 lists the recognition performance in terms of WER for 
the Vietnamese system with different type of acoustic models 
namely baseline HMM/GMM, HMM/GMM using DBNFs 
(DBNFsHMM/GMM), hybrid HMM/DNN (HMM/DNN) and 
hybrid HMM/DNN with DNN was trained using the 
combination of Deep neural network architecture as in section 
4.2.(HMM/DBNF+DNN). Regarding the performance of the 
baseline system, the MFCC number is 21.25% WER and 
combination of MFCC and tonal feature (MFCC+Pitch) 
results in systems which gives much gain in term of WER 
(about 5% absolute). 

Table 2: Recognition performance for the Vietnamese 
system with different type of acoustic models in terms of 

WER 

Acoustic Model Features Layer 
size 

WER 
(%) 

Baseline HMM/GMM 

MFCC 

- 21.25 

DBNFs-HMM/GMM 1000 13.39 

HMM/DNN 
1000 13.20 

2000 13.03 

Baseline HMM/GMM 

MFCC+
Pitch 

- 16.77 

HMM/DNN 
1000 10.96 

2000 10.71 

DBNFs-HMM/GMM 1000 10.58 

HMM/DBNF+DNN 
1000 10.43 

2000 10.27 

Systems Baseline BNF 
DBNF (DAE layer)s 

1 2 3 4 5 6 7 

PLP 22.08 14.7 17.19 14.38 13.93 13.88 13.86 13.77 13.99 

MFCC 21.25 15.5 

16.11 13.99 13.76 13.68 13.40 13.39 13.48 

No pre-training 

15.52 14.84 14.33 14.35 14.41 14.51 14.69 
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The hybrid HMM/DNN system outperforms baseline 
HMM/GMM system, resulting in relative improvements of up 
to 37.8% (13.20% WER) over the MFCC baseline. We further 
examined how the size of the hidden layers (excluding the 
fixed-size bottleneck layer and the classification layer) 
impacts the final recognition performance. It can be seen that 
increasing the layer size of neural network to 2000 is slightly 
better than the one with 1000 hidden units. Specially, when 
adding tonal feature as input of neural network give relatively 
improvement up to 49.6% (10.71% WER) over MFCC 
baseline and 17.8% over HMM/DNN without tonal feature in 
neural network input. Regarding the performance of 
DBNFs-HMM/GMM system, it is slightly worse than 
HMM/DNN system's when use MFCC feature but it is slightly 
better with MFCC+Pitch feature. 

7. CONCLUSION 

In this work, we have demonstrated that bottleneck feature are 
useful input feature for hybrid HMM/DNN aproach. It could 
be shown that proposed architecture for acoustic modeling 
obtained relative improvements over the best HMM/DNN 
system by 4.1%. The systems were tuned on a small-sized 
VOV speech corpus, which increased the relative 
improvement in word error rate over the MFCC baseline to 
51.4%. 

We showed the way to extract tonal feature using modified of 
the Getf0 algorithm [13] which could increase the recognition 
performance by 20% relative on baseline system and by 
17.8% on DNN/HMM systems. We have also evaluated the 
layer size in the DNN architectures for acoustic model. The 
gains were achieved by increasing the layer size to 2000 
hidden units. 

In the future we intend to build a strong language model using 
additional training text and deep neural network as in [25] as 
well as improve acoustic model for the systems using 
multi-lingual network training approaches [20]. 
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