
Lord Ian M. Paquiao et al., International Journal of Advances in Computer Science and Technology, 14(7), July 2025, 30 - 34

30

ABSTRACT

Flask-based web apps still require password protection,

particularly as threat landscapes change. Werkzeug.security,

Flask-Bcrypt, Flask-Argon2, and Passlib are popular

Flask-compatible password hashing libraries. They were

compared in terms of cryptographic strength, default security

settings, hashing latency, system resource consumption, and

ease of integration using experimental benchmarking. Tests

were conducted in a controlled Flask environment using

standardized profiling tools and simulated user interactions.

Flask-Bcrypt outperformed the other libraries by balancing

developer-friendly integration, reasonable latency, and robust

security defaults. Although Flask-Argon2 had strong

cryptographic protection, it used a lot of CPU and memory.

Although Werkzeug.security was effortless and performed

well, it must be manually configured to satisfy security

requirements. Although Passlib had the most integration

complexity, it was notable for its configurability. The results

emphasize the significance of selecting hashing tools based on

implementation feasibility and algorithm strength. When

choosing password hashing options for Flask apps, developers

are urged to consider usability, security, and performance.

Key words: Flask Framework, Password Hashing, Web

Application Security, Cryptographic Security, Benchmarking

1. INTRODUCTION

Because of its adaptability, ease of use, and extensibility,

Flask, a simple Python micro-framework, is frequently used

for web development [1]. However, to achieve safe

authentication, it mainly relies on third-party libraries. Strong

password hashing techniques are essential for protecting user

credentials during increasing data breaches.

Werkzeug.security, Flask-Bcrypt, Flask-Argon2, and Passlib

are popular Flask-compatible hashing libraries that are

evaluated in this study based on their cryptographic strength,

default security parameters, resource requirements, and ease

of integration under practical deployment scenarios [2], [3].

According to earlier studies, strong password hashing methods

are essential for modern web application security. Despite

lacking memory-hardness, Bcrypt, which was first employed

in the late 1990s, is still in use today because it can withstand

brute-force attacks through modified cost factors [4], [5]. On

the other hand, Argon2, the 2015 Password Hashing

Competition winner, adds a memory-hard structure, which

significantly increases resistance to parallelized attacks from

ASICs and GPUs [6], [7]. According to one study, about 47%

of open-source implementations employ configurations that

are not OWASP-compliant, indicating that despite Argon2's

advantages, its practical adoption is frequently incorrect [2].

To further improve password security, new technologies, such

as multi-factor credential hashing, combine conventional

hashing with extra entropy sources like hardware tokens or

OTPs [4], [8].

Despite abundant research on cryptography, not much focus

has been presented on the actual implementation of these

libraries within particular frameworks, such as Flask.

Developers often use defaults without fully comprehending

their impacts, leading to vulnerabilities [3], [9]. It is common

to ignore practical considerations such as documentation

clarity, user load performance, and integration effort [6], [9].

To bridge this gap, this study benchmarks four widely adopted

Flask-compatible hashing libraries—werkzeug.security,

Flask-Bcrypt, Flask-Argon2, and Passlib—using criteria such

as iteration cost, memory usage, response latency, and

developer experience. The goal is to provide evidence-based

recommendations for developers securing password

authentication in Flask applications [2], [3], [10].

Although Flask is utilized in startup, enterprise, and academic

settings, not much research has been done on Flask-specific

password hashing techniques, which makes this study

important. This research aims to enhance secure development

methods and lower the risks of credential disclosure in

Python-based web applications by providing a comparative

assessment based on real-world situations [11], [12].

The Role of Hashing Libraries in Flask Application

Security: A Focus on Password Protection
Lord Ian M. Paquiao

1
, Zoren E. Bajao

2

1
ACLC College of Butuan, Philippines, lordianpaquiao@gmail.com
2
ACLC College of Butuan, Philippines, 02zorenbajao@gmail.com

Received Date : May 21, 2025 Accepted Date : June 28, 2025 Published Date : July 07, 2025

 ISSN 2320 - 2602

Volume 14 No. 7, July 2025

International Journal of Advances in Computer Science and Technology
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst011472025.pdf

https://doi.org/10.30534/ijacst/2025/011472025

Lord Ian M. Paquiao et al., International Journal of Advances in Computer Science and Technology, 14(7), July 2025, 30 - 34

31

2. METHODOLOGY

This study employs a comparative experimental research

design to evaluate the role of password hashing libraries in

enhancing security within Flask-based web applications.

Figure 1: Conceptual Framework of the Study

Figure 1 presents the conceptual framework used in this study,

illustrating the relationship between Flask-compatible hashing

libraries and Flask application security. The four libraries

evaluated—werkzeug.security, Flask-Bcrypt, Flask-Argon2,

and Passlib—represent the independent variables. These

libraries are assessed through four key evaluation dimensions:

cryptographic strength, default security parameters, hashing

latency, and ease of integration. These dimensions serve as

intervening variables that influence the effectiveness and

efficiency of password protection mechanisms within Flask

applications. The dependent variable, Flask application

security, is characterized by the system’s ability to deliver

secure, effective, and efficient password management. This

framework guides the experimental benchmarking and

comparative analysis conducted in the study.

2.1 Experimental Setup

Table 1: Test Environment

Table 1 shows the hardware and software setup used for the

benchmarking tests. The experiments were conducted on a

Windows 11 machine with Python 3.12.6, Flask 3.0.2, an Intel

i5 processor, and 16 GB of RAM. Tools such as timeit, psutil,

and memory_profiler were used to measure performance,

while Pandas and Matplotlib were used for data analysis and

visualization.

2.2 Evaluation Criteria

Table 2: Benchmarking Parameters

Table 2 presents the key metrics used to benchmark the

password-hashing libraries evaluated in this study. These

include cryptographic strength, which refers to the library's

ability to withstand brute-force and hardware-accelerated

attacks; default security parameters, which examine settings

such as cost factor and salt length about OWASP guidelines;

hashing latency, which measures the time required to process

password hashes under varying load conditions; and ease of

integration, which reflects the developer experience in terms

of implementation effort, documentation quality, and code

complexity. These metrics provide a balanced framework for

assessing each library's technical robustness and practical

usability.

2.3 Benchmarking Procedures

Figure 2: Step-by-Step Benchmarking Procedure

Figure 2 illustrates the step-by-step benchmarking workflow

used in this study to evaluate the selected password hashing

libraries. The process begins with integrating each library into

a standard Flask application setup. Passwords are then hashed

in increasing volumes to test performance under varying loads.

Latency is measured using precise timing tools, while

concurrent user requests are simulated to assess scalability.

The ease of integration is also evaluated based on developer

experience during setup and usage. Finally, all collected

data—including performance metrics and usability notes—are

recorded and analyzed to support the comparative evaluation.

This workflow directly corresponds to the evaluation

dimensions outlined in the conceptual framework, ensuring

that each library's technical and practical aspects are

systematically assessed.

Test Environment

Operating System Windows 11 (64-bit)

Python Version 3.12.6

Flask Version 3.0.2

Hardware Intel i5 10th Gen CPU, 16 GB RAM

Tools

Flask for web app simulation.

timeit, psutil, and memory_profiler

for benchmarking.

Pandas/Matplotlib for analysis and

visualization.

Criterion Description

Cryptographic

Strength

Resistance to brute-force and

GPU/ASIC-based attacks.

Default Security

Parameters

Cost factor, salt length, and alignment

with OWASP recommendations.

Hashing Latency
Time taken to hash a password under

various load conditions.

Ease of

Integration

Developer experience in terms of setup,

documentation, and code complexity.

Lord Ian M. Paquiao et al., International Journal of Advances in Computer Science and Technology, 14(7), July 2025, 30 - 34

32

2.4 Data Collection and Analysis

Table 3: Data Collection

Table 3 summarizes the key metrics collected during the

benchmarking process and the methods used to obtain them.

Hashing time was measured using time.perf_counter() to

determine the latency of each password hashing operation.

CPU and memory usage were monitored using psutil and

memory_profiler, respectively, to assess the resource

efficiency of each library. Load handling was tested by

simulating concurrent login requests using Python's

ThreadPoolExecutor. Lastly, ease of integration was evaluated

based on the developer's implementation experience, rated

using a 5-point Likert scale. These metrics were selected to

align with the evaluation dimensions outlined in the

conceptual framework, ensuring a comprehensive and

structured analysis of each library's performance and usability

in Flask applications.

3. RESULTS AND DISCUSSIONS

This section presents the results from benchmarking the four

Flask-compatible password hashing

libraries—werkzeug.security, Flask-Bcrypt, Flask-Argon2,

and Passlib—using the evaluation metrics defined in the

conceptual framework: cryptographic strength, default

security parameters, hashing latency, and ease of integration.

The findings discuss both performance and practical

deployment concerns within Flask-based web applications.

3.1 Hashing Latency Performance

Table 4: Average Hashing Latency (ms) per Batch Size

Table 4 presents the average time each password hashing

library requires to hash 1, 100, 1,000, and 5,000 passwords.

Flask-Argon2 consistently produced the highest latency,

reflecting its memory-hard cryptographic design. In contrast,

werkzeug.security delivered the fastest processing times

across all batch sizes. Flask-Bcrypt and Passlib showed

moderate and stable performance, balancing latency and

cryptographic strength. These results demonstrate the

performance trade-offs developers must consider when

selecting a password hashing tool for Flask applications.

Figure 3: Hashing Latency Performance of Flask-Compatible

Libraries

Figure 3 provides a visual representation of the average

hashing latency measured for each password hashing library

across four batch sizes: 1, 100, 1,000, and 5,000 hashes. These

values mirror the data presented in Table IV and emphasize

the performance trends observed in the benchmarking tests.

The graph shows that werkzeug.security is the fastest among

the four libraries, with consistently low latency across all batch

sizes. This makes it suitable for applications that prioritize

speed and minimal processing overhead.

Flask-Bcrypt and Passlib demonstrate moderate latency,

which increases proportionally with batch size. Their

performance curves remain relatively stable, suggesting

efficient scaling even as the workload intensifies. These

libraries offer a balance between performance and secure

hashing.

Criterion Description Tool Used

Hashing Time

(ms)

Measured

duration per

password

hash.

time.perf_counter()

CPU Usage (%)

Monitored

during hashing

operations.

psutil.cpu_percent()

Memory Usage

(MB)

Measured

memory

consumed by

hashing

processes.

memory_profiler

Load

Handling/Latency

Simulated

concurrent

logins.

ThreadPoolExecuto

r

Ease of

Integration

Developer

assessment

based on

experience.

5-point Likert scale

(qualitative)

Library
Hashes (Batch Size)

1 100 1,000 5,000

werkzeug.security
3.2

ms
310 ms

3,190

ms

15,780

ms

Flask-Bcrypt
8.5

ms
850 ms

8,740

ms

44,120

ms

Flask-Argon2
20.1

ms

2,060

ms

20,500

ms

102,300

ms

Passlib
10.0

ms
990 ms

9,920

ms

49,800

ms

Lord Ian M. Paquiao et al., International Journal of Advances in Computer Science and Technology, 14(7), July 2025, 30 - 34

33

Flask-Argon2, while providing the strongest cryptographic

defense, exhibits the highest latency, particularly at larger

batch sizes. This behavior is expected due to Argon2's

memory-hard design, which enhances security but

significantly increases computational time. At 5,000 hashes,

its latency is nearly double that of Passlib and Flask-Bcrypt

and several times higher than werkzeug.security.

3.2 Average CPU and Memory Usage

Table 5: Average CPU and Memory Usage

Table 5 presents each password hashing library's average CPU

and memory usage while processing 1,000 password hashes.

The results show that werkzeug.security is the most

resource-efficient, using only 22.5% CPU and 48 MB of

memory. Flask-Bcrypt and Passlib consumed moderate system

resources, with Passlib slightly higher due to its abstraction

layer. Flask-Argon2 recorded the highest CPU and memory

usage—67.8% and 128 MB, respectively—reflecting the

demands of its memory-hard algorithm. These findings

highlight the trade-off between resource efficiency and

security strength, emphasizing the need to balance

performance and protection based on application

requirements.

Figure 4: CPU and Memory Usage of Flask-Compatible Hashing

Libraries

Figure 4 illustrates four Flask-compatible password hashing

libraries' average CPU and memory usage while processing

1,000 passwords. Among the libraries, werkzeug.security

demonstrated the lowest resource consumption, making it the

most efficient for applications with limited system capacity.

Flask-Bcrypt and Passlib showed moderate usage, with Passlib

slightly higher due to its additional abstraction and flexibility.

Flask-Argon2, designed for stronger cryptographic protection,

recorded the highest CPU and memory usage, reaching 67.8%

CPU and 128 MB of memory. This behavior reflects the

resource-intensive nature of Argon2’s memory-hard

algorithm. The graph highlights the trade-off between

performance and security, where stronger protection often

comes at the cost of higher system overhead.

3.3 Default Security Parameters

Table 6: Default Security Parameters of Hashing Libraries

Table 6 presents the default password hashing configurations

provided by each Flask-compatible library. werkzeug.security

uses PBKDF2-SHA256 with approximately 260,000

iterations as of Flask 2.3, which offers moderate protection but

may still require manual tuning to align fully with OWASP

standards. Flask-Bcrypt utilizes Bcrypt with a default cost

factor of 12, providing a strong balance between security and

performance and meeting OWASP recommendations by

default.

Flask-Argon2 supports Argon2id, a memory-hard algorithm

with reasonable time, memory, and parallelism settings,

though it is recommended that developers fine-tune these

parameters for production environments. Passlib offers a

configurable system that defaults to PBKDF2, but its

effectiveness depends on the selected scheme and manual

adjustment of iteration counts.

Library
Average CPU

Usage (%)

Average Memory

Usage (MB)

werkzeug.security 22.5% 48 MB

Flask-Bcrypt 30.2% 56 MB

Flask-Argon2 67.8% 128 MB

Passlib 35.1% 62 MB

Library
Default

Algorithm

Cost Factor /

Iterations

werkzeug.security PBKDF2-SHA256
260,000

iterations

Flask-Bcrypt Bcrypt
12 cost factor

(log rounds)

Flask-Argon2 Argon2id

time_cost=2,

memory_cost=

102400,

parallelism=8

Passlib

PBKDF2 by

default

(configurable)

29,000

iterations (can

be increased)

Library Salt Usage
OWASP

Compliance

werkzeug.security Yes

Partial (manual

tuning

recommended)

Flask-Bcrypt Yes
Yes (OWASP

aligned)

Flask-Argon2 Yes
Partial (tuning

advised)

Passlib Yes

Partial (depends

on selected

scheme)

Lord Ian M. Paquiao et al., International Journal of Advances in Computer Science and Technology, 14(7), July 2025, 30 - 34

34

This comparison highlights that while all libraries provide

some secure configuration, only Flask-Bcrypt is fully

OWASP-compliant by default. The others require developer

awareness and configuration to achieve strong password

hashing practices, reinforcing the importance of evaluating the

algorithm and its default behavior in real-world use.

3.4 Ease of Integration Ratings

Table 7: Ease of Integration Ratings

Table 7 presents a comparative overview of the integration

experience for each Flask-compatible password hashing

library. The ratings are based on three qualitative aspects:

setup complexity, documentation clarity, and configuration

effort. These were observed during the actual implementation

of each library in a test Flask application. Each element

contributed to an overall integration score, rated on a 5-point

Likert scale, where 5 indicates the most straightforward

integration process with minimal setup and configuration. The

table helps identify which libraries are more

developer-friendly out of the box, contributing to better

usability and lower risk of misconfiguration.

4. CONCLUSION

Securing user authentication in Flask applications requires

more than strong cryptographic algorithms; it demands

thoughtful selection and proper implementation of password

hashing tools. Flask-Bcrypt offered the most balanced solution

among the four evaluated libraries—combining secure default

settings, manageable performance, and ease of use.

Flask-Argon2 excelled in security through its memory-hard

structure but introduced considerable latency and system

overhead. Werkzeug.security provided the most

straightforward and efficient integration, though its defaults

require tuning to align with modern security standards. Passlib

offered excellent flexibility, supporting multiple algorithms

and custom configurations, but came with higher setup

complexity. These results confirm that developers must

consider cryptographic strength, default behaviors, integration

effort, and resource impact when implementing password

hashing in Flask. A holistic approach that balances security,

performance, and usability is essential for building resilient

and developer-friendly authentication systems.

REFERENCES

1. A. Ronacher, Flask Documentation. Pallets Projects,

2024. https://flask.palletsprojects.com/en/latest/

2. P. Tippe and M. P. Berner. Evaluating Argon2 Adoption

and Effectiveness in Real-World Software, arXiv

preprint, arXiv:2504.17121, 2025.

https://arxiv.org/abs/2504.17121

3. D. Gupta. Comparative Analysis of Password Hashing

Algorithms: Argon2, bcrypt, scrypt, and PBKDF2,

Security Boulevard, July 25, 2024.

https://securityboulevard.com/2024/07/comparative-anal

ysis-of-password-hashing-algorithms-argon2-bcrypt-scry

pt-and-pbkdf2/

4. V. Nair and D. Song. Multi-Factor Credential Hashing for

Asymmetric Brute-Force Attack Resistance, in Proc.

2023 IEEE 8th European Symposium on Security and

Privacy (EuroS&P), Delft, Netherlands, 2023, pp. 56–72.

doi: 10.1109/EuroSP57164.2023.00013

5. C. Percival and S. Josefsson. RFC 7914: The scrypt

Password-Based Key Derivation Function, RFC Editor,

USA, Aug. 2016. https://www.rfc-editor.org/info/rfc7914

6. S. Eum, H. Kim, M. Song, and H. Seo. Optimized

Implementation of Argon2 Utilizing the Graphics

Processing Unit, Applied Sciences, vol. 13, no. 16, p.

9295, Aug. 2023. doi: 10.3390/app13169295

7. A. Biryukov, D. Dinu, and D. Khovratovich. Argon2:

New Generation of Memory-Hard Functions for

Password Hashing and Other Applications, in Proc. 2016

IEEE European Symposium on Security and Privacy

(EuroS&P), Saarbrücken, Germany, 2016, pp. 292–302.

doi: 10.1109/EuroSP.2016.31

8. S. Borjigin. Triple-Identity Authentication: The Future of

Secure Access, arXiv preprint, arXiv:2505.02004, 2025.

https://arxiv.org/abs/2505.02004

9. C. Ntantogian, S. Malliaros, and C. Xenakis. Evaluation

of Password Hashing Schemes in Open Source Web

Platforms, Computers & Security, vol. 84, pp. 206–224,

July 2019. doi: 10.1016/j.cose.2019.03.011

10. J. Wetzels. Open Sesame: The Password Hashing

Competition and Argon2, arXiv e-prints, Feb. 2016. doi:

10.48550/arXiv.1602.03097

11. A. Biryukov and D. Khovratovich. Tradeoff

Cryptanalysis of Memory-Hard Functions, in Advances in

Cryptology – ASIACRYPT 2015, T. Iwata and J. Cheon,

Eds. Berlin, Heidelberg: Springer, 2015, vol. 9453. doi:

10.1007/978-3-662-48800-3_26

12. N. Mustafa. Analysis of Attackers’ Methods with Hashing

Secure Password Using CSPRNG and PBKDF2, Wasit

Journal of Engineering Sciences, vol. 12, pp. 60–70,

2024. doi: 10.31185/ejuow.Vol12.Iss2.502

Library
Setup

Complexity

Documentation

Clarity

werkzeug.security Very Low Excellent

Flask-Bcrypt Low Excellent

Flask-Argon2 Moderate Good

Passlib Moderate Moderate

Library
Configuration

Effort

Integration

Score (1-5)

werkzeug.security Minimal 5.0

Flask-Bcrypt Low 4.5

Flask-Argon2 Moderate 4.0

Passlib High 3.5

