
Smirnov Andrei, International Journal of Advances in Computer Science and Technology, 14(6), June 2025, 22 - 24

22



ABSTRACT

This article addresses the issue of efficient scaling of

microservice architecture under variable load conditions and

limited resources. Special attention is given to the use of

automatic scaling mechanisms in Kubernetes, such as the

Horizontal Pod Autoscaler and Vertical Pod Autoscaler, as

well as the selection and interpretation of load metrics that

form the basis for scaling decisions. It explores how different

scaling approaches affect system performance and

infrastructure operating costs. It also investigates how scaling

strategies, the degree of automation, and load balancing

configurations influence service stability, resource utilization,

and the overall quality of distributed system operation.

Key words: microservices, scaling, Kubernetes, autoscaling,

load metrics, Horizontal Pod Autoscaler, Vertical Pod

Autoscaler, load balancing.

1. INTRODUCTION

Modern web applications stand in need of high degrees of fault

tolerance, in addition to the ability to adapt to changing

workloads. With the expanding sizes of data volumes and user

populations, regular resource management approaches

become more and more inadequate, often resulting in either

extensive overprovisioning or severe resource shortages under

peak loads. In this context, dynamic scaling emerges as a vital

mechanism for maintaining system stability and ensuring

efficient utilization of infrastructure.

Microservice architecture is widely adopted in contemporary

application development and enables granular resource

management across individual system components. With the

use of the Kubernetes platform and its built-in autoscaling

capabilities, namely the Horizontal Pod Autoscaler (HPA) and

Vertical Pod Autoscaler (VPA), services can effectively cope

with changing workloads without leaving the system idle for

long. This is why the selection of a scaling approach has a

great impact on system performance and operational costs,

making achieving balance between the two a vital application

in design.

The goal of this research to analyze present-day methods of

dynamic microservices scaling based on load metrics, with a

particular focus on horizontal and vertical scaling approaches.

The relevance of the study is underscored by the growing

demand for flexibility and efficiency in distributed systems,

especially in cloud-native environments. The methodology

includes a comparative analysis of existing Kubernetes

autoscaling mechanisms and an assessment of their impact on

performance and infrastructure expenses.

2. MAIN PART. DYNAMIC MICROSERVICES

SCALING METHODS: APPROACHES AND LOAD

METRICS

Microservices' scalability is essential for maximizing the

performance, fault tolerance, and cost efficiency of the system

as a whole. Modern software systems cannot rely solely on

static resource allocation because of the dynamic behavior of

application workloads that constantly change in real time.

Dynamic scaling supports the elastic adjustment of the

resources for processing in line with the current operational

needs of a running service to minimize infrastructure costs and

avoid system overload risk. This is made possible by load

metrics that offer insights on whether to raise or lower

resource allocation.

Dynamic scaling involves the automatic adjustment of service

replica counts or their allocated resources in response to

observed load patterns. Unlike static approaches that

provision resources with a fixed overhead, dynamic scaling

allows the system to align more closely with actual

demand [1]. This capability is mostly crucial for

high-throughput and cloud-native applications, in which

responsiveness to changing workloads directly impacts

operational efficacy.

The core principles of dynamic scaling encompass both

reactive and predictive resource management. Reactive

scaling relies on monitoring the state of the system. When

predefined boundaries are exceeded, additional resources are

brought online and vice versa, when demand tapers off, the

resource allocation is scaled down. Predictive scaling, by

contrast, makes use of machine learning algorithms as well as

learned data to anticipate spikes in demand and allow the

system to advance-plan adjustments in capacity in line with

expected increases in workload.

Efficient Microservices Scaling: Kubernetes,

Autoscaling, and Load Balancing

Smirnov Andrei

Master’s degree, Perm National Research Polytechnic University, Russia

 drvanhelcing@rambler.ru

Received Date : April 28 , 2025 Accepted Date : May 29, 2025 Published Date : June 07, 2025

 ISSN 2320 - 2602

Volume 14 No. 6, June 2025

International Journal of Advances in Computer Science and Technology
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst011462025.pdf

https://doi.org/10.30534/ijacst/2025/011462025

mailto:drvanhelcing@rambler.ru

Smirnov Andrei, International Journal of Advances in Computer Science and Technology, 14(6), June 2025, 22 - 24

23

Effective automated scaling requires the use of objective

indicators to inform decision-making. The primary metrics

used for this purpose can include CPU utilization, latency and

others (table 1).
Table 1: Load metrics for autoscaling in microservices [2, 3]

Metric Description

CPU utilization One of the most common indicators used

for scaling containerized microservices.

High CPU utilization may indicate a lack

of computational resources, while low

utilization may suggest

overprovisioning.

Memory

utilization

A crucial indicator, especially for

services performing intensive data

processing. Memory shortages may

cause crashes, whereas excess usage

increases infrastructure costs.

Requests per

second (RPS)

Helps assess current load on application

programming interface and web services.

Used to scale services handling HTTP

requests and to respond appropriately to

traffic spikes.

Latency Indicates delays in request processing.

High latency may signal system overload

or insufficient network throughput.

Disk usage and

IOPS

A key metric for services working

actively with file systems and databases.

Scaling may improve performance when

disk I/O becomes a bottleneck.

Custom metrics Specific indicators that reflect business

logic, such as the number of concurrent

transactions or active users.

Which metrics are selected is a matter of the kind of workload

and architectural characteristics of the application. Such data

can be gathered and processed automatically through APIs

like Prometheus, the Metrics Server, and other tools for

observability.

Kubernetes has two primary automatic scaling tools: the HPA

and the VPA. The first one performs horizontal scaling by

increasing or decreasing the number of pods based on

predefined metrics. This method is commonly employed for

scaling microservices that operate under highly variable loads.

For instance, when average CPU utilization exceeds a certain

threshold, such as 80%, HPA can automatically create

additional pods to redistribute the load across more

instances [4].

Conversely, VPA enables vertical scaling through the

adjustment of computational resources allocated to individual

pods. While the HPA mostly deals with the number of pod

replicas, the VPA focuses on the resource allocation of

individual pods. The adjustment of pod configurations through

the VPA typically needs the restarting of pods, which can

cause temporary service disruptions during the scaling

process.

The combined use of HPA and VPA offers maximum

efficiency in managing resource allocation. In services

experiencing highly volatile traffic, HPA entitle rapid

horizontal scaling by increasing the number of pods on

demand, while VPA boosts resource utilization under more

stable workloads through adjusting the resource limits of

individual pods.

The choice of a suitable scaling approach is largely determined

by the unique nature of the application and its resource

availability needs. Applications that are subject to sudden

traffic spikes, which is the case with e-commerce websites

during special promotions, significantly benefit from

immediate horizontal scaling. Applications that require large

computational capacities, as an instance, video processing

tasks, are better supported through vertical scaling, as

increasing the resource allocation of a single pod reduces the

overhead associated with inter-process communication. A

hybrid strategy combining both types of scaling may be

especially beneficial in scenarios characterized by extended

but intermittent load patterns.

Dynamic scaling of microservices is a critical component of

their efficient operation. Employing both horizontal and

vertical scaling enables systems to adapt seamlessly to

changing runtime conditions. Load metrics form the basis of

making informed scaling decisions, and Kubernetes

mechanisms like HPA and VPA allow the automatic

implementation of those decisions. Choosing the appropriate

scaling strategy involves careful deliberation of the nature of

the application to balance between optimizing the

performance and managing infrastructure costs.

3. THE IMPACT OF SCALING ON PERFORMANCE

AND INFRASTRUCTURE COST

Once an appropriate scaling strategy has been selected, the key

question becomes its effectiveness under real-world operating

conditions. One of the primary criteria for evaluating a scaling

approach is not only the system's performance but also the cost

of the infrastructure required to support it [5]. Achieving a

well-calibrated balance between these two factors ensures

both the technical resilience of a microservice architecture and

the economic viability of its maintenance.

Horizontal scaling offers substantial benefits in terms of

service availability and the ability to handle multiple

concurrent requests. This approach can be quite valuable for

distributed systems, where microservices are packaged in

containers that can be easily replicated. Yes, the growth in

pods is accompanied by a rising need for resources, as each

instance requires its own memory and CPU. In addition,

horizontal scaling presents some obstacles in traffic

management, state consistency, and inter-service

communication. These hurdles can negate the overall benefits

of scaling, particularly in situations where there is poor

decoupling between microservices or in situations with high

interdependence.

Vertical scaling is accomplished by increasing more

computing resources to each individual instance. This

approach is often less complex to implement and does not

entail radical changes to application design. It also comes with

physical as well as financial limitations. It is often more

expensive to scale up a single node than scaling out several

instances that are less powerful but spread out. Further,

vertical scaling can be inefficient if microservices don't fully

utilize the provisioned resources, leading to resource wastage

Smirnov Andrei, International Journal of Advances in Computer Science and Technology, 14(6), June 2025, 22 - 24

24

and underutilization. It should be noted that vertical scaling in

Kubernetes using the VPA may need pod restarts, which cause

temporary service unavailability.

A comparative testing work reveals that HPA consistently

maintains lower and more stable response times under

increasing load, with median latencies ranging from 2,5 to 2,7

ms and standard deviation values remaining below 0,4 ms [6].

In contrast, VPA shows both higher average response times

(up to 3,5 ms) and significantly greater variability in the 99th

percentile, with deviations exceeding 240 ms in some

scenarios (figure 1).

Figure 1: Comparative 99th percentile latency for HPA and VPA

across load scenarios, ms

From an economic perspective, scaling is inherently a

trade-off. In cloud environments, where billing is based on

consumed resources, over-scaling can lead to significant

increases in operational costs, while under-scaling may result

in performance degradation and a diminished user

experience [7]. Therefore, selecting an appropriate level of

automation and properly configuring scaling triggers is

essential. Monitoring and telemetry systems not only enable

real-time observation of microservice behavior but also reveal

usage patterns that can inform predictive scaling strategies.

This is particularly valuable in scenarios with anticipated

traffic surges, such as promotional campaigns or consistent

peaks in user activity during specific hours.

An additional factor influencing the cost-efficiency of scaling

is the effectiveness of load balancers. These components

distribute incoming traffic across pods and nodes, and their

configuration directly affects the evenness of resource

utilization. Poorly optimized load balancing strategies can

lead to imbalances where some resources remain underutilized

while others become overloaded, potentially triggering

unnecessary cascading scaling actions. Modern solutions such

as Ingress controllers and service meshes enable more precise

traffic distribution, allowing for a reduction in the total number

of pods by maximizing their utilization without compromising

performance [8].Thus, the impact of scaling on both

performance and infrastructure cost depends not only on the

choice between horizontal and vertical scaling mechanisms,

but also on the degree of automation, the precision of metric

configuration, and the quality of load balancing. An effective

scaling strategy is not merely a reactive response to current

load levels, it is a carefully designed model of system-wide

coordination, informed by business objectives, traffic profiles,

and economic constraints.

4. CONCLUSION

Microservice scaling is an essential component of the effective

operation of distributed systems under variable workloads.

The use of autoscaling mechanisms in Kubernetes, such as the

HPA and VPA, enables real-time resource adaptation based on

load metrics and application behavior. A flexible scaling

approach enhances service resilience, maintains high

availability, and ensures timely responses to increases in user

demand.

However, the selection of a scaling strategy requires careful

analysis. It must take into account workload characteristics,

architectural specifics, fault tolerance requirements, and

cost-efficiency considerations. Achieving an optimal balance

between horizontal and vertical scaling, fine-tuning metrics,

and employing advanced load balancing solutions not only

improves system performance but also reduces infrastructure

costs. In the context of rapidly evolving cloud technologies,

scaling is no longer merely a technical concern, it becomes a

strategic aspect of IT infrastructure management.

REFERENCES

1. A. Dudak A. Microservice architecture in frontend

development, Norwegian Journal of development of the

International Science, no. 145, pp. 99-102, 2024. DOI:

10.5281/zenodo

2. S. Bolgov. Optimizing microservices architecture

performance in fintech projects, Bulletin of the

Voronezh Institute of High Technologies, vol. 19, no. 1,

2025.

3. M.P. Kuranage, E. Hanser, A. Bouabdallah, L. Nuaymi,

P. Bertin. CPU throttling-aware AI-based autoscaling

for Kubernetes. In2024 IEEE 35th International

Symposium on Personal, Indoor and Mobile Radio

Communications (PIMRC), pp. 1-7, 2024. DOI:

10.1109/PIMRC59610.2024.10817283

4. N. Bjørndal, L.J. de Araújo, A. Bucchiarone, N. Dragoni,

M. Mazzara, S. Dustdar. Benchmarks and performance

metrics for assessing the migration to

microservice-based architectures. J. Object Technol,

vol. 20, no. 2, pp. 3-1, 2021.

5. A. Blazhkovskii. Optimization of mobile application

performance: modern approaches and methods. ISJ

Theoretical & Applied Science, vol. 140, no. 12, pp.

290-294, 2024. DOI: 10.15863/TAS.2024.12.140.35

6. J. Nilsen. Performance Evaluation of Kubernetes

Autoscaling strategies on GKE clusters. 103 pp. 2023.

7. A. Shahidinejad, M. Ghobaei-Arani, M. Masdari.

Resource provisioning using workload clustering in

cloud computing environment: a hybrid approach.

Cluster Computing, vol. 24, no. 1, pp. 319-42, 2021. DOI:

10.1007/s10586-020-03107-0

8. G. Rathi, S. Amin, S. Jain, M. Yachawad, K. Digholkar.

Performance Analysis of Different Ingress

Controllers Within the Kubernetes Cluster. In2024

IEEE International Conference on Information

Technology, Electronics and Intelligent Communication

Systems (ICITEICS), pp. 1-6, 2024. DOI:

10.1109/ICITEICS61368.2024.10625280

