
Nikolas Naydenov et al., International Journal of Advances in Computer Science and Technology, 12(4), April 2023, 45- 49 

45 

 

 

 

ABSTRACT 

 

This paper discusses specific technology related issues with 

the latest release of the container orchestrator Kubernetes and 

combining it with certain container runtimes. We provide a 

technology-focused state-of-the-art review, addressing 

identified research gaps in this area. Following the 

depreciation of Dockershim in the latest K8s release 1.26, 

we’ve tested the migration to another container management 

tool, that enables using the latest functions or the Containerd 

runtime (Nerdctl). At the same time this migration also allows 

running containers in a secure and resource effective way and 

managing them together with container images. The 

application we study is orchestrating a container cluster-based 

cloud NIDS service by using the latest Snort 3 system. We’ve 

also outlined directions for future research. 

 

Key words: cloud computing, container orchestration, 

container orchestrator, Kubernetes, container runtime, 

Containerd, Nerdctl, Docker, network intrusion detection 

system (NIDS), intrusion prevention system (IPS), Snort.  

 

1. INTRODUCTION - CONTAINER 

ORCHESTRATION IN THE CLOUD 

The role of container orchestration in enabling the cloud 

service model is well knows in the IT industry. It aids main 

characteristics of cloud computing like resource pooling and 

rapid elasticity, while leveraging optimal compute resource 

usage. It is appropriate to look at what major IT companies 

have to say about container orchestration, especially those that 

apply it in critical production use-cases. Currently 

containerized microservices have become the foundation for 

cloud-native applications [1]. Container orchestration 

becomes necessary to deal with the operational complexity of 

containerized microservice environments. This automated 

 
 

form of management and coordination of container cluster 

components also gives added security [2]. 

One among the container orchestrators – Kubernetes (K8s), 

“has become the industry standard.” Some of its advantages 

are extensive capabilities, portability, being highly declarative 

[2]. But for all its advantages, K8s has become quite complex 

and managing this platform is not a trivial task. 

With this work, we’ve tried to apply it to create Network 

Intrusion Detection System (NIDS), that runs as a 

containerized service in a cluster. Snort is a scalable parallel 

intrusion detection (IDS) and intrusion prevention system 

(IPS). It is considered the standard for a NIDS.  

 

2. RELATED WORK / STATE-OF-THE-ART 

 

Kubernetes is the most used container orchestration platforms 

among researchers. Many researchers use it as a base platform 

for their proposed custom container orchestration solutions, as 

we found out in our systematic mapping study of scientific 

papers dedicated to container orchestration which were 

published in 2022 [3]. We also discovered that the Docker 

container engine is coupled with Kubernetes, which is not 

advisable for several reasons, explained in section 3. 

Dockershim support was deprecated since Kubernetes 1.20, in 

2020 [4].  

We intended to use container orchestration to provide a 

state-of-the art NIDS cloud service – we found several papers 

where researchers explain the need of such a service, the 

benefits of the cloud and the role of container orchestration to 

enforce the multi-tenant flexible cloud model in an executive 

way. 

We’ve applied the following search string in Scopus: 

TITLE-ABS-KEY("container*" AND "orchestrat*" (ids OR 

ips OR "intrusion detection" OR "intrusion prevention")) 

AND (LIMIT-TO(PUBSTAGE, "final")) AND 

(LIMIT-TO(DOCTYPE, "cp") OR LIMIT-TO(DOCTYPE, 

"ar")) AND (LIMIT-TO(LANGUAGE, "English"))  

 

 

 

 

Cloud Container Service Orchestrated with Kubernetes: a 

State-of-the-Art Technology Review and Application 

Proposal 

Nikolas Naydenov1, Assoc. Prof. Stela Ruseva2 
1Sofia University, Bulgaria, nikolann@uni-sofia.bg 
2Sofia University, Bulgaria, stela@fmi.uni-sofia.bg 

 

Received  Date : February 15, 2023   Accepted  Date : March 18, 2023    Published Date : April 07, 2023 

 

                                                                                                     

ISSN   2320 - 2602 

Volume 12  No. 4, April 2023 

International Journal of Advances in Computer Science and Technology 
Available Online at http://www.warse.org/IJACST/static/pdf/file/ijacst011242023.pdf 

https://doi.org/10.30534/ijacst/2023/011242023 

 



Nikolas Naydenov et al., International Journal of Advances in Computer Science and Technology, 12(4), April 2023, 45- 49 

46 

 

 

We were looking for scientific journal and conference papers 

that employed container orchestration and applied it to create 

an intrusion detection or intrusion prevention systems. The 

specified search query returned 5 results. 

One study proposes a cloud-based dynamic and scalable 

parallel Network Intrusion Detection System [6]. Another 

study proposes a cloud-based containerized Snort NIDS that 

works with big data. However, none of the two papers [6], [7] 

makes use of a fully-fledged container orchestrator. They only 

use Docker to containerize Snort workloads, and the Docker 

Compose container management software, which does not 

have the full functionality of container orchestrators. 

Nevertheless, the two publications explain the need of a NIDS 

in cloud environments and the benefits of containerization to 

implement such cloud solutions. They lay the foundations for 

further research. 

One of the studies made performance and energy consumption 

evaluation of container orchestrators on resource constrained 

IoT gateways (Raspberry Pi devices). The physical 

infrastructure and architecture of the test environment and 

evaluated metrics (creation time of a container, CPU 

utilization, memory usage, energy consumption) were 

explained clearly. The containerized services tested were two 

types: 1) IDS services: Snort and Firewall containers and 2) 

Data analytics services: containers running Pytorch, 

Tensorflow and Keras machine leaning algorithms. 

Kubernetes and Docker Swarm are the compared 

orchestrators. However, we couldn’t find a clear account of 

what version of Kubernetes was used for the tests, nor the 

container runtime. We didn’t find details about the 

configuration of the container clusters and the services running 

inside them which would help us reproduce the experiments 

and check the results. 

One of the papers was a secondary study on “Network 

Function Virtualization and Service Function Chaining 

Frameworks” that we couldn’t apply in the context of our 

study. We could not get free access to the study on the topic of 

“a programmable threat intelligence framework for 

containerized clouds”, so it was excluded from our research. 

Snort is dubbed by other researchers as the “de facto standard 

open-source intrusion detection and prevention system” [6]. 

For these reasons, we decided that the technologies we should 

explode in our research should be Kubernetes and Snort. We 

searched several well-known databases for previous research 

combining these two technologies. Below are our search 

strings and the results: 

1. Google Scholar: Kubernetes+snort (abstracts only) - 0 

results 

2. Scopus: TITLE-ABS-KEY ( kubernetes  AND  snort )  

AND  ( LIMIT-TO ( LANGUAGE ,  "English" ) )  - 0 results 

3. IEEE Explore: ("All Metadata":kubernetes) AND ("All 

Metadata":snort) - 0 results 

We didn’t find any previous research.  

 

3.  MOTIVATION 

Container orchestration in the cloud is an evolving dynamic 

area of research. As already explained, the standard container 

orchestrator is Kubernetes, but it is combined with the Docker 

engine too often. We’ll try to explain why this is no longer a 

good practice. 

The removal of Dockershim – the interface between K8s and 

the Docker engine - enables utilizing features incompatible 

with the Dockershim, e.g., cgroups v2 and user namespaces 

[5]. User namespaces are an important security enhancement. 

Sometimes it is necessary to run a container in privileged 

mode. By default, Docker uses Linux namespaces for 

isolation. This means that running in privileged mode in a 

contained also leads to gaining root privileges on the host. 

Thus, the entire host can be compromised through one 

container. With user spaces on the other hand, a process 

running as root in a container can run as a user with lower 

privileges in the host. Apart from mitigating the security risk, 

removal of the Dockershim also reduces the operational 

overhead and resource usage of communicating with the 

Docker engine. Kubernetes to directly communicate with the 

low-level runtime, e.g., Containerd. Migrating away from 

Docker also gives access to the latest features of Containerd 

that Docker doesn’t support. One of them is a time 

optimization feature - lazy pulling. There is also a new security 

feature – Ocicrypt. It allows creating encrypted container 

images and running containers from them. To ease the 

migration from Docker, new container management tools and 

high-level container runtimes support similar CLI to that of 

Docker. Examples are Podman and Nerdctl.  Of particular 

interest to us is containerd because it supports the latest 

features Containerd by design.  

We intend to create a state-of-the art container orchestration 

solution with Kubernetes. To make the solution optimized for 

the latest K8s (version 1.26), we decided we must also run 

Dockerless and use Nerdctl instead, to make use of the latest 

feature of the Containerd runtime.  

The container orchestration use-case of our interest is a 

containerized cloud NIDS. As shown in section 2, we didn’t 

find any previous research that combined the popular 

standards for container orchestrator (Kubernetes) and network 

intrusion detection system (Snort). We found some research 

that included containerized Snort service, but no orchestration. 

Our suggested improvements are 1) to use Kubernetes as the 

base platform for the service and 2) to test the functionality of 

the container cluster with the latest Snort 3, which was not 

examined in the previous studies. 

So, we decided to explore this new research area by creating 

an on-premises test environment where we could build our 

container cluster and NIDS service from scratch. We chose to 

test the current latest releases of Kubernetes and the other 

software for a state-of-the-art solution.  

 

 

 



Nikolas Naydenov et al., International Journal of Advances in Computer Science and Technology, 12(4), April 2023, 45- 49 

47 

 

 

We recorded the problems encountered during installation and 

configuration, because we believe this could help other 

researchers and IT professionals to adopt these technologies 

and give a basis for future research. 

 

4. FUTURE IMPROVEMENT 

As a future improvement, to make the most of the cloud 

service model, we could create a secured honeypot 

environment in our Kubernetes cluster. There we could learn 

about new (zero-day) attacks, newly compromised networks 

(botnets), etc. The gathered data could be used to generate new 

rules for our NIDS cloud service, which we can both provide 

for third parties or use it to secure out own IT infrastructure. 

The next step is to analyze gathered attack traffic for the 

creation of a behavioral IDS. Machine learning algorithms 

could be applied on the gathered data. This new functionality 

could be plugged into the existing NIDS service as a Snort 

preprocessor or used as a separate service. 

5. RESEARCH QUESTIONS 

In accordance with our goals, we formulated the following 

research questions: 

RQ1. How to manage an on-premises Kubernetes (latest 

release 1.26) cluster, to provide a private cloud container 

orchestration service? 

RQ2. Can researchers (especially who are used to working 

with the rich functionality of the Docker engine) seamlessly 

migrate to using and the Nerdctl to fully utilize the capabilities 

of Containerd? 

RQ3. Can we evaluate the benefits of running Docker less – 

performance, security? 

RQ4. How to apply container orchestration to provide a 

state-of-the art NIDS cloud service? 

We’ve partially answered RQ3 in section 3. 

6. TEST ENVIRONMENT AND IMPLEMENTATION 

An on-premises cluster of 2 virtual machines was installed, 

one of the VMs designated as a Kubernetes master node, the 

other one – as a worker node. Follows an account of the most 

important software used in our implementation. The main 

components in our test environment are presented in Table 1. 

The left column shows the role of each component, on the right 

side is the corresponding software used. During our work we 

updated some of the components. That is why some of the 

items in the table have two versions. Most of the tests were 

done with both versions. 

 

 

 

 

 

 

 

 

Table 1: Test Environment 

 

The following Bash CLI output shows the nodes in our cluster 

(Figure 1). 

 

 
Figure 1: Cluster Nodes 

 

We’ve built the Snort container image from an Ubuntu:22.04 

container image. Unlike the other study that containerized 

Snort [7], we used Snort version 3, which has some important 

differences with the previous versions. The previous work 

used Barnyard2 “to parse binary output log files that contains 

alerts created by Snort and save the alerts in a centralized 

MySQL database” [7]. We’ve assumed that Snort v3 does not 

require the Barnyard2 spooler because it is multi-threaded. 

Writes should be handled in parallel. 

7. PROBLEMS AND SOLUTIONS 

Follows a discussion of the problems we encountered while 

configuring the cluster and possible solutions. 

7.1. Securely Distribute Local Container Images in the 

Cluster.   

The issue is how to distribute locally built or cached container 

images to all Kubernetes cluster nodes.   

In our setting, we used the Nerdctl container manager in 

combination with the Buildctl software to build our own 

customized Snort v3 container images. One of the reasons is 

because we didn’t find an official, trusted contained image for 

the latest version of Snort in the public repository. However, 

Kubernetes doesn’t seem to provide built-in automated image 

cache sharing between all cluster nodes – this means that one 

might not be able to run a pod if it is scheduled on a worker 

node that doesn’t have the image in its local cache. 

A hint for troubleshooting such scenarios is to find out which 

images K8s sees via Container Runtime Interface (CRI) using 

the tool Crictl, so our advice is to make sure to configure it in 

your environment. To do that, insert the following lines in the 

Crictl configuration file on each cluster node (Fig. 2). 

Component Name & Version 

Cluster nodes OS AlmaLinux 9.1 

Container orchestrator Kubernetes v1.26.0, 

(updated to) v1.26.1 

Container runtime Containerd v1.6.12, 

(updated to) v1.6.16 

Container management Nerdctl v1.1.0,  

(updated to) v1.2.0 

Container image building Buildctl v0.10.6,  

(updated to) v0.10.6 

Container Network Interface 

plug-in implementation 

Calico v3.24.5 



Nikolas Naydenov et al., International Journal of Advances in Computer Science and Technology, 12(4), April 2023, 45- 49 

48 

 

 

 

 
Figure 2: Crictl Configuration 

 

When the configuration above is done, the command `crictl 

images` can be used to see locally cached container images. 

Pods can also be listed with the command `crictl pods`. 

Back to our Problem 1. For example, let’s say we want to start 

a K8s Pod from the locally built image “snort3”. The image is 

visible in the “k8s.io” namespace – we cloud test this both with 

Nerdctl and Crictl, as shown in Fig. 3.  
 

 
Figure 3: Locally Built Container Image 

 

For the test, we are using a simple Pod configuration (Fig. 4). 
 

 
Figure 4: K8s Pod Definition File 

We create the pod using the command `kubectl apply -f 

<pod-filename>.yaml`. The pod fails to start with 

`ErrImageNeverPull` error (Fig. 5). 
 

 
Figure 5: Container Image Pull Error 

 

Obviously K8s can't see the locally built image. The problem 

is that the pod was scheduled on another worker node 

(alma-kube2), not the node where the image is present 

(alma-kube). This can be seen on Fig. 5. 

Solutions to 7.1. 

The pod is scheduled on a worker node and the image must be 

in the cache of every worker node where it might be scheduled, 

so we have several options:  

1) Preloaded Images. 

Preload the images to all the worker nodes of the cluster 

manually or with an automated script. The distribution could 

be done by exporting the container image to a tar archive, 

securely transferring it to the other nodes and loading it in their 

image caches as exemplified on Fig. 6.  
 

 

 
Figure 6: Container Image Distribution Between Nodes 

 

2) Local Image Repository. 

Run a local repository and protect it with authentication so that 

all cluster nodes can connect to it. 

3) Ocicrypt Encryption 

Upload your locally created images in the public repository 

and, to secure them, use the capability of Containerd and 

Nerdctl to create encrypted container images (ocicrypt) [8]. 

7.2. Bugs: RPM Repository Error 

After installing Kubernetes from the RPM repository (which is 

the recommended way), we encountered an error  

`cannot install both kubelet-1.26.1-0.x86_64 and 

kubelet-1.18.4-0.x86_64` when trying to update the RPM 

packages. 

Solution to 7.2. 

This turned out to be a bug reproducible when installing 

Kubernetes on Centos 8 (there is an open issue in Github on 

this topic). We have the same issue with Alma Linux 9.1. It is 

solved by adding the following exclude to the configuration of 

the Kubernetes RPM repository, shown in Fig. 7. 
 

 
Figure 7: Kubernetes RPM Repository 

7.3. Migration from Docker to Nerdctl CLI 

As already explainer in section 2 and 3, many researchers are 

familiar with the Docker CLI and might have some difficulties 

when migrating to nerdctl. For example, running Docker 

commands with the arguments below would not produce errors 

(Fig. 8). 
 

 
Figure 8: Nerdctl Specific Error 

 

With Docker we would often use the `docker run -dit` flag 

combination. With it we could first run the container in 

“detach” mode and at the same time be able to get an 

interactive bash terminal session into the container later. That 

way we could have the container running without interruption 

and attach the standard input to the pseudo-TTY in when 

needed. This is quite convenient, because it allows a system 

administrator to manage the container in a way that’s very 

similar to a standard virtual machine (or a bare-metal server). 

This functionality is still not present in nerdctl, despite being 

requested by some IT professionals who are trying to migrate 

to nerdctl. 

 



Nikolas Naydenov et al., International Journal of Advances in Computer Science and Technology, 12(4), April 2023, 45- 49 

49 

 

 

One factor that greatly eases the migration from Docker is that 

every image form Docker Hub Container Image Library 

because of their compatibility with the OCI standard. These 

images could be used with Nerdctl, or any other high-level 

runtime that is compatible with the CRI.  

7.4. Designing a NIDS Service in a Kubernetes Cluster 

Our initial goal was to create a Kubernetes cluster running 

containerized Snort v3 as a cloud service. However, that is not 

a trivial task. The Kubernetes Service object is designed for 

exposing containerized applications that listen on a specific 

(TCP, UDP or SCTP) port. To our knowledge, this K8s 

feature is not suitable for Snort, which needs to do packet 

sniffing, i.e., it needs to receive all network traffic, including 

data from the lower levels of the TCP/IP stack. In this respect, 

Kubernetes Network Policies can be of help. DaemonSets can 

be employed to enforce running one or more Snort Pods on 

every cluster node. As it is known, one of the strong points of 

Kubernetes is that is highly extensible. By using the K8s 

CustomResourceDefinition (CRD), a custom resource can be 

added to the API. The networking plugin Calico has a deep 

packet inspection CRD that allows monitoring the traffic of a 

selected workload or application in the K8s cluster [8]. Further 

investigation of Calico capabilities will be part of our future 

research. 

8. CONCLUSION 

In our study we’ve discussed specific issues related to the 

latest release Kubernetes and container runtimes. We’ve given 

an overview of security and other problems of combining 

Kubernetes with Docker as a high-level runtime.  We’ve 

shown research gaps in this area. To address these issues, 

we’ve tested the migration to another container management 

tool, that enables using the latest functions or the Containerd 

runtime (Nerdctl). During our tests that we’ve run on a 

Kubernetes v1.26 cluster we’ve identified some problems, 

e.g., how to securely manage and distribute locally built 

container images and other issues that might be encountered 

during the migration. Solutions are provided in section 7. We 

examine applying container orchestration for a cloud NIDS 

service, by using the latest Snort v3. We’ve also outlined 

directions for future research. 

 

REFERENCES 

 

1. “What is container orchestration?” Red Hat. 

https://www.redhat.com/en/topics/containers/what-is-con

tainer-orchestration (accessed Jan 30, 2023). 

2. “What is container orchestration?” VMware. 

https://www.vmware.com/topics/glossary/content/contai

ner-orchestration.html (accessed Jan 30, 2023). 

3. Naydenov, N., & Ruseva, S. (2022). Cloud Container 

Orchestration Architectures, Models and Methods: a 

Systematic Mapping Study. Paper presented at the 2023 

22nd International Symposium INFOTEH-JAHORINA, 

INFOTEH 2023 - Proceedings, doi: 

4. “Dockershim Deprecation”, “Kubernetes 1.20: The 

Raddest Release” kubernetes.io. 

https://kubernetes.io/blog/2020/12/08/kubernetes-1-20-r

elease-announcement/#dockershim-deprecation 

(accessed Jan 30, 2023). 

5. “Updated: Dockershim Removal FAQ” kubernetes.io. 

https://kubernetes.io/blog/2022/02/17/dockershim-faq/ 

(accessed Mar 4, 2023). 

6. Hårek Haugerud, Huy Nhut Tran, Nadjib Aitsaadi, Anis 

Yazidi, A dynamic and scalable parallel Network 

Intrusion Detection System using intelligent rule 

ordering and Network Function Virtualization, 

Future Generation Computer Systems, Volume 124, 

2021, p. 254-267, ISSN 0167-739X, 

https://doi.org/10.1016/j.future.2021.05.037. 

7. F. A. Saputra, M. Salman, J. A. N. Hasim, I. U. Nadhori, 

and K. Ramli, “The Next-Generation NIDS Platform: 

Cloud-Based Snort NIDS Using Containers and Big 

Data,” Big Data and Cognitive Computing, vol. 6, no. 1, 

p. 19, Feb. 2022, doi: 10.3390/bdcc6010019. 

8. “OCIcrypt” github.com.  

https://github.com/containerd/nerdctl/blob/main/docs/oci

crypt.md (accessed Mar 21, 2023). 

9. “Deep packet inspection” docs.tigera.io.  

https://docs.tigera.io/calico-enterprise/latest/reference/re

sources/deeppacketinspection (accessed Mar 21, 2023). 

https://github.com/containerd/nerdctl/blob/main/docs/ocicrypt.md
https://github.com/containerd/nerdctl/blob/main/docs/ocicrypt.md
https://docs.tigera.io/calico-enterprise/latest/reference/resources/deeppacketinspection
https://docs.tigera.io/calico-enterprise/latest/reference/resources/deeppacketinspection

