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ABSTRACT 
Specification based testing identifies test cases from software 
requirement specifications. This leads to better quality 
software which reduces effort and cost. Test cases generated 
for Boolean specifications have been widely used to specify 
requirements of safety critical softwares, avionics, medical 
and other control software. Various Boolean specification 
techniques have been proposed among them MC/DC and 
MUMCUT techniques are the popular testing techniques. 
Compliance of the MC/DC criterion has been mandated by 
Federal Aviation Administration for the approval of airborne 
software. According to Kaminski (2010) the Federal Aviation 
Administration requires the Minimal-MUMCUT criterion 
instead of MC/DC for Irredundant Disjunctive Normal Form 
(IDNF). The Minimal-MUMCUT criterion provides better 
logic fault detection .In this paper performance analysis of 
proposed prioritized test suite generated from Minimal 
MUMCUT has been done. The APFD of prioritized test suite 
is computed and compared with other possible prioritized test 
suites. Minimal MUMCUT identified testing techniques for 
Boolean specification for which various 2n distinct Boolean 
functions with n variables can be formed. To distinguish one 
from all others using exhaustive testing, it would require 2n 
distinct test cases. Test cases generated by Minimal 
MUMCUT are less than the test cases generated by 
MUMCUT Strategy. The proposed approach for prioritization 
of test cases generated by Minimal MUMCUT yields higher 
APFD and hence early detection of faults. 
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1. INTRODUCTION 
Software testing and retesting occurs continuously during the 
software development life cycle to detect errors as early as 
possible. During the regression testing, a modified system 
needs to be retested using the existing test suite. Since the test 
suite may be very large, the better way is to prioritize it. 
Regression testing is a necessary but expensive process in the 
software lifecycle. One of the regression testing approaches, 
test case prioritization, aims at sorting and executing test case 
in order of potential abilities to achieve certain testing 
objective. Test Case Prioritization [8] schedule test cases for 
regression testing in an order that attempts to maximize some 
objective function. For example, testers might wish to 
schedule test cases in an order that achieves code coverage at 
the fastest rate possible, exercises features in order of 
expected frequency of use, or exercises sub-systems in an 

order that reflects their historical propensity to fail. When the 
time required to execute all test cases in a test suite is short, 
test case prioritization may not be cost effective, it may be 
most expedient simply to schedule test cases in any order. In 
the past decade, may testing criteria have been proposed for 
software characterized by complex logical decisions, such as 
those in safety-critical software[1],[2].[3]. In recent years, 
more sophisticated coverage criteria have been advocated, 
like BOR (Boolean OpeRator Testing Strategy), BMIS (Basic 
Meaningful Impact Strategy), modified condition/decision 
coverage (MC/DC) ([1] [2] [4]) and the MUMCUT criteria. 
[5] 

MUMCUT strategy is to generate test cases that can guarantee 
detection of seven types of single faults provided that the 
original expression is in irredundant disjunctive normal form 
(IDNF) [6]. In this strategy, there is no restriction on the 
number and occurrence of variables in the given Boolean 
expressions. Minimal-MUMCUT [7] that improves the 
MUMCUT strategy by considering the feasibility problem of 
the three testing constituents of the MUMCUT strategy, It 
reduces the test suite size as compared to MUMCUT without 
compromising any fault detection capability. Thus, the extra 
tests required by the MUMCUT criterion are of little, if any, 
value based on the theoretical and empirical studies conducted 
[7]. 

2. TEST CASE PRIORITIZATION  
Test case prioritization techniques schedule test cases in an 
execution order according to some criterion. Test case 
prioritization problem is defined [8] as follows: 
Given: T, a test suite; PT, the set of permutations of T; f, a 
function from PT to the real numbers 
Problem: Find T’ belongs to PT such that (for all T”) (T” 
belongs to PT) (T” ≠ T’) [f (T’) ≥ f (T”)] 
Here, PT represents the set of all possible prioritizations 
(orderings) of T and f is a function that, applied to any such 
ordering, yields an award value for that ordering. The 
performance of the prioritization technique used is known as 
effectiveness. It is necessary to assess effectiveness of the 
ordering of the test suite. Effectiveness will be measured by 
the rate of faults detected. The following metric is used to 
calculate the level of effectiveness: 

2.1 Average Percentage of Faults Detected (APFD) Metric 
APFD (Average Percentage Fault Detected) metric is a 
measure of how rapidly a prioritized test suite detects faults, 
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which measures the weighted average of percentage of faults 
detected over the life of a test suite. [9], [8].The APFD used in 
this paper is calculated by taking the weighted average of the 
number of faults detected during the run of the test suite. 
APFD can be calculated using the following notations: 
Let T - The test suite under evaluation 

m - The number of faults contained in the program under 
test P 
n - The total number of test cases and 

 TFi - The position of the first test in T that exposes fault i. 
APFD = 1- ………..

∗
 + 

∗
 

 
APFD can be calculated when prior knowledge of faults is 
available. APFD values ranges from 0 to 100; higher value 
implies faster (better) fault detection rates. 
 
3. FAULT BASED PRIORITIZATION OF MINIMAL 
MUMCUT TESTS 
Single faults of seven types mentioned in Section 4.1, are 
generated using JAVA eclipse and JAVA collection 
framework. For the given expression Minimal MUMCUT test 
cases are generated and a feasibility criterion is tested. Test 
cases are arranged according to the algorithm for fault based 
prioritization of Minimal MUMCUT test cases. Algorithm is 
given below: 
Input: Test suite T and number of faults detected by a test 
case  
Output: Prioritized Test suite T’. 

1. Begin 
2. Set T’ empty 
3. For each term X do 
4.         If MUTP criteria is feasible for X 

Prioritize Multiple Unique True Points (U) 
followed    by overlapping Near False Points (N) 

5.    for each literal x in term X 
6.         If CUTPNFP criteria is feasible for x 

Prioritize Unique True Points (U) followed by 
Corresponding Unique True Points Near False 
Points(C) 

7.    End for 
8.   Else  

Prioritize Multiple Unique True Points (U) 
followed by Corresponding Unique True Points 
Near False Points(C) followed by overlapping 
Near False Points (N) 

9.   End For 
    10. End 
 
4. PROPOSED WORK 

4.1 Faults in Logical Expressions 
A fault is an error in the original Boolean expression. A faulty 
implementation is referred to as single-fault expression if (1) 
it differs from the original expression by one syntactic 
change; and (2) it is not equivalent to the original expression. 
This study considers the following classes of simple faults for 
logical decisions. A decision S in n variables can always be 

written in disjunctive normal form (DNF) as a sum of product 
(Lau, Yu [2001]). 

S=푎푏 + 푐푑 + 푒 
 

Table1: Types of Faults 
Fault Description Example 
Expressio

n Negation 
Fault (ENF) 

The expression or 
sub-expression is 
negated 

푎푏 +  푐푑 + e 

Term 
Negation 
Fault (TNF) 

A term is negated 푎푏 +  푐푑 + 푒 

Term 
Omission 
Fault (TOF) 

A term is omitted 푐푑 + 푒 

Operator 
Reference 
Fault (ORF) 

An OR operator(+) 
is implemented as the 
AND operator or vice 
versa 

푎푏. 푐푑 + 푒    or    
푎 + 푏 + 푐푑 + 푒    

Literal 
Negation 
Fault (LNF) 

A literal is negated 푎푏 + 푐푑 + 푒     

Literal 
Omission 
Fault (LOF) 

A literal is omitted 푏 + 푐푑 + 푒        

Literal 
Insertion 
Fault (LIF) 

A literal is inserted 푎푏푐 + 푐푑 + 푒     

Literal 
Reference 
Fault (LRF) 

A literal is 
implemented as 
another literal 

푎푐 +  푐푑 + 푒 

 

4.2 Fault Generation 
Fault generation is handled by a series of complex string 
manipulations on JAVA Eclipse using JAVA Collection 
Frameworks. The general methodology of generating faults 
starts with the expression, which is just an infix string at this 
point, being passed through a tokenizer. The tokens then are 
searched for the one that will have the fault inserted before or 
after. 
Input: All the single faults take the original Boolean 
expression in IDNF form 
Output: Give all the faulty expressions as output 
 
4.2.1 Operator Negation Fault (ONF)  
Step1: Count the number of operators in the expression. This 
number indicates how many derivatives will be created from 
this one expression and allows the allocation of storage for 
each result.  
Step 2: From this point onwards, the string is tokenized and 
the tokens are copied to each of the resulting expressions.  
Step 3: Do until all tokens have processed   

(a) If the token is an AND operator (&) in the 
Boolean expression then it is replaced by 
the OR (|) operator and vice versa.  
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(b) If the token is an OR operator (|) in the Boolean expression then it is replaced by 
(c) the AND (&) operator and vice versa.  

Step 4: With this process complete, the program returns the 
resulting array of faulty string expressions. 
 
4.2.2 Expression Negation Fault (ENF):  
Step 1: Insert a negation before each “opening parenthesis.”  
Step 2: The program recursively searches for groups of 
operands that are joined via an “and” operator, these groups 
can include other scoped parts of the expression or the entire 
expression itself.  
Step 3: Each of the “& blocks” are surrounded by parenthesis 
and then the entire “and block” is negated.  
Step 4: The resulting data is optimized into an array with no 
empty spaces and the program returns the resulting array of 
faulty string expressions.  
 
4.2.3 Variable Negation Fault (VNF)  
Step 1: Count the number of variable in the expression. This 
number indicates how many derivatives will be created from 
this one expression and allows the allocation of storage for 
each result.  
Step 2: From this point onwards, the string is tokenized and 
the tokens are copied to each of the resulting expressions. 
Step 3: Do until all tokens have processed 

(a) If the token is a variable, then a negation operator(!) 
is inserted  

(b) If the token is a negated variable, then the negation 
operator is removed  

Step 4: With this process complete, the program returns the 
resulting array of faulty string expressions. 
 
4.2.4 Term Negation Fault (TNF):  

Step 1: Count the number of terms in the expression. This 
number indicates how many derivatives will be created from 
this one expression and allows the allocation of storage for 
each result.  
Step 2: From this point onwards, the string is tokenized and 
the tokens are copied to each of the resulting expressions.  
Step 3: Do until all tokens have processed  

a) If the token is a term, then a negation operator (!) is 
inserted  

b) If the token is a negated term, then negation operator 
is removed  

Step 4: With this process complete, the program returns the 
resulting array of faulty string expressions. 

4.2.5 Term Omission Fault (TOF)  

Step 1: Count the number of terms in the expression. This 
number indicates how many derivatives will be created from 
this one expression and allows the allocation of storage for 
each result.  
Step 2: From this point onwards, the string is tokenized and 
the tokens are copied to each of the resulting expressions.  
Step 3: Do until all tokens have processed 

(a) If the token is a term, then term is omitted 
Step 4: With this process complete, the program returns the 
resulting array of faulty string expressions. 

4.2.6 Literal Omission Fault (LOF)  

Step 1: Count the number of literals in the expression. This 
number indicates how many derivatives will be created from 
this one expression and allows the allocation of storage for 
each result.  
Step 2: From this point onwards, the string is tokenized and 
the tokens are copied to each of the resulting expressions.  
Step 3: Do until all tokens have processed  

(a) If the token is a literal, then that literal is omitted 
Step 4: With this process complete, the program returns the 
resulting array of faulty string expressions. 

4.2.7 Literal Insertion Fault  (LIF)  

Step 1: Count the number of literals in the expression. This 
number indicates how many derivatives will be created from 
this one expression and allows the allocation of storage for 
each result.  
Step 2: From this point onwards, the string is tokenized and 
the tokens are copied to each of the resulting expressions.  
Step 3: Do until all tokens have processed  

(a) If the token is a term, then a literal 
(which is not present in that term) is 
inserted before that same token  

Step 4: With this process complete, the program returns the 
resulting array of faulty string expressions. 

4.2.8 Variable Reference Fault (VRF)  

Step 1: Count the number of literals in the expression. This 
number indicates how many derivatives will be created from 
this one expression and allows the allocation of storage for 
each result.  
Step 2: From this point onwards, the string is tokenized and 
the tokens are copied to each of the resulting expressions.  
Step 3: Do until all tokens have processed  

a) If the token is a literal, then this literal is replaced by 
all the other literals present in the expression  

Step 4: With this process complete, the program returns the 
resulting array of faulty string   expressions. 

4.3 Total Number of Faults of Various Types for TCAS 
Boolean Expressions 
Total number of faults of types ONF, TNF, TOF, LIF, LOF, 
ENF, VRF, and VNF are generated for TCAS Boolean 
expressions and a subset of some Boolean expressions. The 
result is tabulated in Table 2. According to these results the 
total number of generated faults is 9087 for TCAS 20 Boolean 
expressions with a subset of some Boolean expressions and 
for one expression value of single faults ranges from 52 to 
1470. 
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Table2: Number of Generated Faults 

S. EXPRESSION ONF ENF LIF LOF TNF TOF VNF VRF Total 
N.           

1 T01 28 5 6 29 5 5 29 174 281 
2 T02 105 13 12 106 13 13 106 848 1216 
3 T04 6 3 8 7 3 3 7 28 65 
4 T05 27 9 53 28 9 9 28 224 387 
5 T06 57 6 8 58 6 6 58 580 779 
6 T08 31 4 - 32 4 4 32 224 331 
7 T09 13 1 - 14 2 2 14 84 130 
8 T10 59 6 18 60 6 6 60 720    935 
9 T11 62 9 54 63 9 9 63 756 1025 

10 T12 - - - - - - - - - 
11 T13 13 6 58 14 6 6 14 154 271 
12 T14 15 6 26 16 6 6 16 96 187 
13 T15 31 11 67 32 11 11 32 256 451 
14 T16 81 23 189 87 23 23 87 957 1470 
15 T17 31 6 34 32 6 6 32 320 467 
16 T18 37 8 42 38 8 8 38 342 521 
17 T19 19 4 12 20 4 4 20 140 223 
18 T20 11 1 2 12 2 2 12 72 114 
19 T21 3 1 8 4 2 2 4 28 52 
20 T22 5 3 8 6 3 3 6 36 70 
21 T23 5 3 6 6 3 3 6 28 60 
22 T24 3 1 8 4 2 2 4 28 52 

 TOTAL 642 129 610 668 131 131 668 6095 9087 
           

*12th expression is not included due to missing right parenthesis 
 
4.4 UTP & NFP Test Suite Size for Boolean Expressions 
These test cases include Unique True Points and Near False 
Points. Test case generation aims at finding test cases that 
detect certain types of faults (illustrated in Section 4.1). The 
result is tabulated in Table 3. According to these results the 
number of test cases is increasing with the increase in number 
of variables in the expression, only exception are those 
expressions where variable are repeating in more than one 
term. Total number of test cases generated ranges from 9 to 
2744. 
 
 

Table 3: Size of Test Cases for TCAS 20 Boolean expressions 

Expressio
n 

Number 
of Literal 

UTP 
Test 

Cases 

NFP 
TEST 
Cases Total 

T01 7 8 44 52 
T02 9 16 129 145 
T03 7 35 813 848 
T04 5 15 19 34 
T05 9 181 234 415 
T06 11 10 94 104 
T07 8 15 64 79 
T08 8 4 32 36 
T09 7 2 14 16 
T10 13 12 120 132 

T11 13 248 1592 1840 
T13 12 1284 1460 2744 
T14 7 33 81 114 
T15 9 83 213 296 
T16 12 750 1041 1791 
T17 11 186 816 1002 
T18 10 78 342 420 
T19 8 24 120 144 
T20 7 4 24 28 
T21 3 3 6 9 
T22 5 10 30 40 
T23 3 4 8 12 
T24 4 6 12 18 

 
 
5. EXPERIMENTAL SETTINGS & RESULT 

5.1 When Multiple Unique True Point (U) criteria is 
feasible for Boolean Expression 
For the Boolean Expression (!a&b)|(c&d), MUTP criteria is 
feasible that is test suite includes the test cases which covers 
both values 0 and 1 for missing literals in both of the terms. 
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Test Cases U 
 followed by N 

Test Cases N 
 followed by U 

T1 0101 T5 1101 
T2 0110 T6 0010 
T3 0011 T1 0101 
T4 1111 T2 0110 
T5 1101 T3 0011 
T6 0010 T4 1111 

 
The comparison graph is drawn between APFD value of 
Boolean expression (!a&b)|(c&d) using UN order and NU 
order, which shows that value of APFD obtained using UN 
order is more than NU order.(See Figure 1 and 2) 

 
Figure 1: Graph for Boolean expression (! a&b)|(c&d) for UN 

ordered test cases with 62.01% APFD 

 
Figure 2: Graph for Boolean expression (! a&b)|(c&d) for NU 

ordered test cases with 45.8% APFD 

5.2 When Multiple Unique True Point (U) criteria is 
infeasible for Boolean Expression 
For the Boolean Expression (a&b)|(b&c) MUTP criteria is not 
feasible that is test suite does not include the test cases which 
covers both values 0 and 1 for missing literals in both of the 
terms. 

Table 5: All Test Cases For Boolean expression (a&b)|(b&c) 

Test Cases U followed 
by C 

Test Cases C followed    
by U 

T1 110 T3 010 
T2 011 T4 100 
T3 010 T5 001 
T4 100 T1 110 
T5 001 T2 011 

 
The comparison graph is drawn between APFD value of 
Boolean expression (!a&b)|(c&d) using UC order and CU 
order, which shows that value of APFD obtained using UC 
order is more than CU order(See Figure 3 and 4) . 

 

Figure 3: Graph for Boolean expression (!a&b)|(c&d) for UC 
ordered test cases with 67.86% APFD 

 

 
Figure 4: Graph for Boolean expression (! a&b)|(c&d) for CU 

ordered test cases with 59.29% APFD 
 

Thus above experiment leads to some results which are listed 
in Table 6.  
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Table 6: Comparison of APFD for some Boolean expressions 
 
S
N
. 

Predicat
e 

Feasibili
ty 

Criteria 

APFD(%) with 
Proposed 
Approach 

APFD(%) 
with Random 

order 
1 (a&!b&d

)|(a&!c&
d)|e) 

MUTP 
 in 

-feasible 

UC 
Order 

67.63 CU 
Order 

59.5 

2 (a&b)|(a
&c)|(b&c

) 

MUTP 
 in 

-feasible 

UC 
Order 

57.10 CU 
Order 

55.09 

3 (a&b&c)| 
(d&e) 

MUTP 
 Feasible 

UN 
Order 

61.08 NU 
Order 

56.01 

4 (a&b)|(b
&!c)|(!b

&c) 

MUTP  
in 

-feasible 

UC 
Order  

60 CU 
Order 

55.89 

5  (!a&b) 
|(c&d) 

MUTP  
Feasible 

UN 
Order 

62.01 NU      
Order 

45.8 

6 (a&b)|(b
&c) 

MUTP 
 in 

-feasible 

UC 
Order 

67.86 CU 
Order 

59.29 

 
6. CONCLUSION & FUTURE WORK 
This paper illustrates the comparison between proposed 
algorithm and the random approach for Prioritization of 
Minimal MUMCUT test cases in order to improve regression 
testing. In proposed study the experiments were done on 
Boolean expressions where MUTP criteria is feasible and 
MUTP criteria is not feasible and provided higher value of 
Average Percentage of Faults Detected metric with MUTP 
(U) test cases followed by MNFP (N) i.e. UN order and 
MUTP (U) test cases followed by CUTPNFP(C) test cases i.e. 
UC order, as compared to the random order NU Order and CU 
order. In future the experiment need to be conducted on the 
Boolean expression having more no of literals and order of 
prioritization need to be validated for high rate of fault 
detection. 
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