
Usha Badhera et al., International Journal of Advances in Computer Science and Technology, 3(4), April 2014, 293 - 298

293

ABSTRACT
Specification based testing identifies test cases from software
requirement specifications. This leads to better quality
software which reduces effort and cost. Test cases generated
for Boolean specifications have been widely used to specify
requirements of safety critical softwares, avionics, medical
and other control software. Various Boolean specification
techniques have been proposed among them MC/DC and
MUMCUT techniques are the popular testing techniques.
Compliance of the MC/DC criterion has been mandated by
Federal Aviation Administration for the approval of airborne
software. According to Kaminski (2010) the Federal Aviation
Administration requires the Minimal-MUMCUT criterion
instead of MC/DC for Irredundant Disjunctive Normal Form
(IDNF). The Minimal-MUMCUT criterion provides better
logic fault detection .In this paper performance analysis of
proposed prioritized test suite generated from Minimal
MUMCUT has been done. The APFD of prioritized test suite
is computed and compared with other possible prioritized test
suites. Minimal MUMCUT identified testing techniques for
Boolean specification for which various 2n distinct Boolean
functions with n variables can be formed. To distinguish one
from all others using exhaustive testing, it would require 2n
distinct test cases. Test cases generated by Minimal
MUMCUT are less than the test cases generated by
MUMCUT Strategy. The proposed approach for prioritization
of test cases generated by Minimal MUMCUT yields higher
APFD and hence early detection of faults.

Key words: MUMCUT, MUTP, CUTPNFP, APFD

1. INTRODUCTION
Software testing and retesting occurs continuously during the
software development life cycle to detect errors as early as
possible. During the regression testing, a modified system
needs to be retested using the existing test suite. Since the test
suite may be very large, the better way is to prioritize it.
Regression testing is a necessary but expensive process in the
software lifecycle. One of the regression testing approaches,
test case prioritization, aims at sorting and executing test case
in order of potential abilities to achieve certain testing
objective. Test Case Prioritization [8] schedule test cases for
regression testing in an order that attempts to maximize some
objective function. For example, testers might wish to
schedule test cases in an order that achieves code coverage at
the fastest rate possible, exercises features in order of
expected frequency of use, or exercises sub-systems in an

order that reflects their historical propensity to fail. When the
time required to execute all test cases in a test suite is short,
test case prioritization may not be cost effective, it may be
most expedient simply to schedule test cases in any order. In
the past decade, may testing criteria have been proposed for
software characterized by complex logical decisions, such as
those in safety-critical software[1],[2].[3]. In recent years,
more sophisticated coverage criteria have been advocated,
like BOR (Boolean OpeRator Testing Strategy), BMIS (Basic
Meaningful Impact Strategy), modified condition/decision
coverage (MC/DC) ([1] [2] [4]) and the MUMCUT criteria.
[5]

MUMCUT strategy is to generate test cases that can guarantee
detection of seven types of single faults provided that the
original expression is in irredundant disjunctive normal form
(IDNF) [6]. In this strategy, there is no restriction on the
number and occurrence of variables in the given Boolean
expressions. Minimal-MUMCUT [7] that improves the
MUMCUT strategy by considering the feasibility problem of
the three testing constituents of the MUMCUT strategy, It
reduces the test suite size as compared to MUMCUT without
compromising any fault detection capability. Thus, the extra
tests required by the MUMCUT criterion are of little, if any,
value based on the theoretical and empirical studies conducted
[7].

2. TEST CASE PRIORITIZATION
Test case prioritization techniques schedule test cases in an
execution order according to some criterion. Test case
prioritization problem is defined [8] as follows:
Given: T, a test suite; PT, the set of permutations of T; f, a
function from PT to the real numbers
Problem: Find T’ belongs to PT such that (for all T”) (T”
belongs to PT) (T” ≠ T’) [f (T’) ≥ f (T”)]
Here, PT represents the set of all possible prioritizations
(orderings) of T and f is a function that, applied to any such
ordering, yields an award value for that ordering. The
performance of the prioritization technique used is known as
effectiveness. It is necessary to assess effectiveness of the
ordering of the test suite. Effectiveness will be measured by
the rate of faults detected. The following metric is used to
calculate the level of effectiveness:

2.1 Average Percentage of Faults Detected (APFD) Metric
APFD (Average Percentage Fault Detected) metric is a
measure of how rapidly a prioritized test suite detects faults,

PERFORMANCE ANALYSIS OF PRIORITIZED TEST SUITES BASED ON
FAULT DETECTION

Usha Badhera1, Annu Maheshwari2

1 Department of Computer Science, India, usha.badhera@gmail.com
2 M.Tech Scholar, India, maheshwari.annu24@gmail.com

 ISSN 2320 - 2602
Volume 3, No.4, April 2014

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2014/ijacst09342014.pdf

Usha Badhera et al., International Journal of Advances in Computer Science and Technology, 3(4), April 2014, 293 - 298

294

which measures the weighted average of percentage of faults
detected over the life of a test suite. [9], [8].The APFD used in
this paper is calculated by taking the weighted average of the
number of faults detected during the run of the test suite.
APFD can be calculated using the following notations:
Let T - The test suite under evaluation

m - The number of faults contained in the program under
test P
n - The total number of test cases and

 TFi - The position of the first test in T that exposes fault i.
APFD = 1- ………..

∗
 +

∗

APFD can be calculated when prior knowledge of faults is
available. APFD values ranges from 0 to 100; higher value
implies faster (better) fault detection rates.

3. FAULT BASED PRIORITIZATION OF MINIMAL
MUMCUT TESTS
Single faults of seven types mentioned in Section 4.1, are
generated using JAVA eclipse and JAVA collection
framework. For the given expression Minimal MUMCUT test
cases are generated and a feasibility criterion is tested. Test
cases are arranged according to the algorithm for fault based
prioritization of Minimal MUMCUT test cases. Algorithm is
given below:
Input: Test suite T and number of faults detected by a test
case
Output: Prioritized Test suite T’.

1. Begin
2. Set T’ empty
3. For each term X do
4. If MUTP criteria is feasible for X

Prioritize Multiple Unique True Points (U)
followed by overlapping Near False Points (N)

5. for each literal x in term X
6. If CUTPNFP criteria is feasible for x

Prioritize Unique True Points (U) followed by
Corresponding Unique True Points Near False
Points(C)

7. End for
8. Else

Prioritize Multiple Unique True Points (U)
followed by Corresponding Unique True Points
Near False Points(C) followed by overlapping
Near False Points (N)

9. End For
 10. End

4. PROPOSED WORK

4.1 Faults in Logical Expressions
A fault is an error in the original Boolean expression. A faulty
implementation is referred to as single-fault expression if (1)
it differs from the original expression by one syntactic
change; and (2) it is not equivalent to the original expression.
This study considers the following classes of simple faults for
logical decisions. A decision S in n variables can always be

written in disjunctive normal form (DNF) as a sum of product
(Lau, Yu [2001]).

S=푎푏 + 푐푑 + 푒

Table1: Types of Faults
Fault Description Example
Expressio

n Negation
Fault (ENF)

The expression or
sub-expression is
negated

푎푏 + 푐푑 + e

Term
Negation
Fault (TNF)

A term is negated 푎푏 + 푐푑 + 푒

Term
Omission
Fault (TOF)

A term is omitted 푐푑 + 푒

Operator
Reference
Fault (ORF)

An OR operator(+)
is implemented as the
AND operator or vice
versa

푎푏. 푐푑 + 푒 or
푎 + 푏 + 푐푑 + 푒

Literal
Negation
Fault (LNF)

A literal is negated 푎푏 + 푐푑 + 푒

Literal
Omission
Fault (LOF)

A literal is omitted 푏 + 푐푑 + 푒

Literal
Insertion
Fault (LIF)

A literal is inserted 푎푏푐 + 푐푑 + 푒

Literal
Reference
Fault (LRF)

A literal is
implemented as
another literal

푎푐 + 푐푑 + 푒

4.2 Fault Generation
Fault generation is handled by a series of complex string
manipulations on JAVA Eclipse using JAVA Collection
Frameworks. The general methodology of generating faults
starts with the expression, which is just an infix string at this
point, being passed through a tokenizer. The tokens then are
searched for the one that will have the fault inserted before or
after.
Input: All the single faults take the original Boolean
expression in IDNF form
Output: Give all the faulty expressions as output

4.2.1 Operator Negation Fault (ONF)
Step1: Count the number of operators in the expression. This
number indicates how many derivatives will be created from
this one expression and allows the allocation of storage for
each result.
Step 2: From this point onwards, the string is tokenized and
the tokens are copied to each of the resulting expressions.
Step 3: Do until all tokens have processed

(a) If the token is an AND operator (&) in the
Boolean expression then it is replaced by
the OR (|) operator and vice versa.

Usha Badhera et al., International Journal of Advances in Computer Science and Technology, 3(4), April 2014, 293 - 298

295

(b) If the token is an OR operator (|) in the Boolean expression then it is replaced by
(c) the AND (&) operator and vice versa.

Step 4: With this process complete, the program returns the
resulting array of faulty string expressions.

4.2.2 Expression Negation Fault (ENF):
Step 1: Insert a negation before each “opening parenthesis.”
Step 2: The program recursively searches for groups of
operands that are joined via an “and” operator, these groups
can include other scoped parts of the expression or the entire
expression itself.
Step 3: Each of the “& blocks” are surrounded by parenthesis
and then the entire “and block” is negated.
Step 4: The resulting data is optimized into an array with no
empty spaces and the program returns the resulting array of
faulty string expressions.

4.2.3 Variable Negation Fault (VNF)
Step 1: Count the number of variable in the expression. This
number indicates how many derivatives will be created from
this one expression and allows the allocation of storage for
each result.
Step 2: From this point onwards, the string is tokenized and
the tokens are copied to each of the resulting expressions.
Step 3: Do until all tokens have processed

(a) If the token is a variable, then a negation operator(!)
is inserted

(b) If the token is a negated variable, then the negation
operator is removed

Step 4: With this process complete, the program returns the
resulting array of faulty string expressions.

4.2.4 Term Negation Fault (TNF):

Step 1: Count the number of terms in the expression. This
number indicates how many derivatives will be created from
this one expression and allows the allocation of storage for
each result.
Step 2: From this point onwards, the string is tokenized and
the tokens are copied to each of the resulting expressions.
Step 3: Do until all tokens have processed

a) If the token is a term, then a negation operator (!) is
inserted

b) If the token is a negated term, then negation operator
is removed

Step 4: With this process complete, the program returns the
resulting array of faulty string expressions.

4.2.5 Term Omission Fault (TOF)

Step 1: Count the number of terms in the expression. This
number indicates how many derivatives will be created from
this one expression and allows the allocation of storage for
each result.
Step 2: From this point onwards, the string is tokenized and
the tokens are copied to each of the resulting expressions.
Step 3: Do until all tokens have processed

(a) If the token is a term, then term is omitted
Step 4: With this process complete, the program returns the
resulting array of faulty string expressions.

4.2.6 Literal Omission Fault (LOF)

Step 1: Count the number of literals in the expression. This
number indicates how many derivatives will be created from
this one expression and allows the allocation of storage for
each result.
Step 2: From this point onwards, the string is tokenized and
the tokens are copied to each of the resulting expressions.
Step 3: Do until all tokens have processed

(a) If the token is a literal, then that literal is omitted
Step 4: With this process complete, the program returns the
resulting array of faulty string expressions.

4.2.7 Literal Insertion Fault (LIF)

Step 1: Count the number of literals in the expression. This
number indicates how many derivatives will be created from
this one expression and allows the allocation of storage for
each result.
Step 2: From this point onwards, the string is tokenized and
the tokens are copied to each of the resulting expressions.
Step 3: Do until all tokens have processed

(a) If the token is a term, then a literal
(which is not present in that term) is
inserted before that same token

Step 4: With this process complete, the program returns the
resulting array of faulty string expressions.

4.2.8 Variable Reference Fault (VRF)

Step 1: Count the number of literals in the expression. This
number indicates how many derivatives will be created from
this one expression and allows the allocation of storage for
each result.
Step 2: From this point onwards, the string is tokenized and
the tokens are copied to each of the resulting expressions.
Step 3: Do until all tokens have processed

a) If the token is a literal, then this literal is replaced by
all the other literals present in the expression

Step 4: With this process complete, the program returns the
resulting array of faulty string expressions.

4.3 Total Number of Faults of Various Types for TCAS
Boolean Expressions
Total number of faults of types ONF, TNF, TOF, LIF, LOF,
ENF, VRF, and VNF are generated for TCAS Boolean
expressions and a subset of some Boolean expressions. The
result is tabulated in Table 2. According to these results the
total number of generated faults is 9087 for TCAS 20 Boolean
expressions with a subset of some Boolean expressions and
for one expression value of single faults ranges from 52 to
1470.

Usha Badhera et al., International Journal of Advances in Computer Science and Technology, 3(4), April 2014, 293 - 298

296

Table2: Number of Generated Faults

S. EXPRESSION ONF ENF LIF LOF TNF TOF VNF VRF Total
N.

1 T01 28 5 6 29 5 5 29 174 281
2 T02 105 13 12 106 13 13 106 848 1216
3 T04 6 3 8 7 3 3 7 28 65
4 T05 27 9 53 28 9 9 28 224 387
5 T06 57 6 8 58 6 6 58 580 779
6 T08 31 4 - 32 4 4 32 224 331
7 T09 13 1 - 14 2 2 14 84 130
8 T10 59 6 18 60 6 6 60 720 935
9 T11 62 9 54 63 9 9 63 756 1025

10 T12 - - - - - - - - -
11 T13 13 6 58 14 6 6 14 154 271
12 T14 15 6 26 16 6 6 16 96 187
13 T15 31 11 67 32 11 11 32 256 451
14 T16 81 23 189 87 23 23 87 957 1470
15 T17 31 6 34 32 6 6 32 320 467
16 T18 37 8 42 38 8 8 38 342 521
17 T19 19 4 12 20 4 4 20 140 223
18 T20 11 1 2 12 2 2 12 72 114
19 T21 3 1 8 4 2 2 4 28 52
20 T22 5 3 8 6 3 3 6 36 70
21 T23 5 3 6 6 3 3 6 28 60
22 T24 3 1 8 4 2 2 4 28 52

 TOTAL 642 129 610 668 131 131 668 6095 9087

*12th expression is not included due to missing right parenthesis

4.4 UTP & NFP Test Suite Size for Boolean Expressions
These test cases include Unique True Points and Near False
Points. Test case generation aims at finding test cases that
detect certain types of faults (illustrated in Section 4.1). The
result is tabulated in Table 3. According to these results the
number of test cases is increasing with the increase in number
of variables in the expression, only exception are those
expressions where variable are repeating in more than one
term. Total number of test cases generated ranges from 9 to
2744.

Table 3: Size of Test Cases for TCAS 20 Boolean expressions

Expressio
n

Number
of Literal

UTP
Test

Cases

NFP
TEST
Cases Total

T01 7 8 44 52
T02 9 16 129 145
T03 7 35 813 848
T04 5 15 19 34
T05 9 181 234 415
T06 11 10 94 104
T07 8 15 64 79
T08 8 4 32 36
T09 7 2 14 16
T10 13 12 120 132

T11 13 248 1592 1840
T13 12 1284 1460 2744
T14 7 33 81 114
T15 9 83 213 296
T16 12 750 1041 1791
T17 11 186 816 1002
T18 10 78 342 420
T19 8 24 120 144
T20 7 4 24 28
T21 3 3 6 9
T22 5 10 30 40
T23 3 4 8 12
T24 4 6 12 18

5. EXPERIMENTAL SETTINGS & RESULT

5.1 When Multiple Unique True Point (U) criteria is
feasible for Boolean Expression
For the Boolean Expression (!a&b)|(c&d), MUTP criteria is
feasible that is test suite includes the test cases which covers
both values 0 and 1 for missing literals in both of the terms.

Usha Badhera et al., International Journal of Advances in Computer Science and Technology, 3(4), April 2014, 293 - 298

297

Test Cases U
 followed by N

Test Cases N
 followed by U

T1 0101 T5 1101
T2 0110 T6 0010
T3 0011 T1 0101
T4 1111 T2 0110
T5 1101 T3 0011
T6 0010 T4 1111

The comparison graph is drawn between APFD value of
Boolean expression (!a&b)|(c&d) using UN order and NU
order, which shows that value of APFD obtained using UN
order is more than NU order.(See Figure 1 and 2)

Figure 1: Graph for Boolean expression (! a&b)|(c&d) for UN

ordered test cases with 62.01% APFD

Figure 2: Graph for Boolean expression (! a&b)|(c&d) for NU

ordered test cases with 45.8% APFD

5.2 When Multiple Unique True Point (U) criteria is
infeasible for Boolean Expression
For the Boolean Expression (a&b)|(b&c) MUTP criteria is not
feasible that is test suite does not include the test cases which
covers both values 0 and 1 for missing literals in both of the
terms.

Table 5: All Test Cases For Boolean expression (a&b)|(b&c)

Test Cases U followed
by C

Test Cases C followed
by U

T1 110 T3 010
T2 011 T4 100
T3 010 T5 001
T4 100 T1 110
T5 001 T2 011

The comparison graph is drawn between APFD value of
Boolean expression (!a&b)|(c&d) using UC order and CU
order, which shows that value of APFD obtained using UC
order is more than CU order(See Figure 3 and 4) .

Figure 3: Graph for Boolean expression (!a&b)|(c&d) for UC
ordered test cases with 67.86% APFD

Figure 4: Graph for Boolean expression (! a&b)|(c&d) for CU

ordered test cases with 59.29% APFD

Thus above experiment leads to some results which are listed
in Table 6.

0
20
40
60
80

100
120

T1 T2 T3 T4 T5 T6

Pe
rc

en
ta

ge
 of

 fa
ul

ts

D
et

ec
te

d

Executed Test Cases

Test Case Order t1,t2,t3,t4,t5,t6

0

20

40

60

80

100

120

T5 T6 T1 T2 T3 T4

Pe
rc

en
ta

ge
 of

 F
au

lts
 d

et
ec

te
d

Executed Test Cases

Test Case Order t5,t6,t1,t2,t3,t4

0

20

40

60

80

100

120

T1 T2 T3 T4 T5

Pe
rc

en
ta

ge
 of

 F
au

lts
 D

et
ec

te
d

Executed Test Cases

Test Case Order t1,t2,t3,t4,t5,t6

0

20

40

60

80

100

120

T3 T4 T5 T1 T2

Pe
rc

en
ta

ge
 of

 F
au

lts
 D

et
ec

te
d

Executed Test Cases

Test case order t3,t4,t5,t1,t2

Table 4: All Test Cases for Boolean Expression (!(a&b)|(c&d)

Usha Badhera et al., International Journal of Advances in Computer Science and Technology, 3(4), April 2014, 293 - 298

298

Table 6: Comparison of APFD for some Boolean expressions

S
N
.

Predicat
e

Feasibili
ty

Criteria

APFD(%) with
Proposed
Approach

APFD(%)
with Random

order
1 (a&!b&d

)|(a&!c&
d)|e)

MUTP
 in

-feasible

UC
Order

67.63 CU
Order

59.5

2 (a&b)|(a
&c)|(b&c

)

MUTP
 in

-feasible

UC
Order

57.10 CU
Order

55.09

3 (a&b&c)|
(d&e)

MUTP
 Feasible

UN
Order

61.08 NU
Order

56.01

4 (a&b)|(b
&!c)|(!b

&c)

MUTP
in

-feasible

UC
Order

60 CU
Order

55.89

5 (!a&b)
|(c&d)

MUTP
Feasible

UN
Order

62.01 NU
Order

45.8

6 (a&b)|(b
&c)

MUTP
 in

-feasible

UC
Order

67.86 CU
Order

59.29

6. CONCLUSION & FUTURE WORK
This paper illustrates the comparison between proposed
algorithm and the random approach for Prioritization of
Minimal MUMCUT test cases in order to improve regression
testing. In proposed study the experiments were done on
Boolean expressions where MUTP criteria is feasible and
MUTP criteria is not feasible and provided higher value of
Average Percentage of Faults Detected metric with MUTP
(U) test cases followed by MNFP (N) i.e. UN order and
MUTP (U) test cases followed by CUTPNFP(C) test cases i.e.
UC order, as compared to the random order NU Order and CU
order. In future the experiment need to be conducted on the
Boolean expression having more no of literals and order of
prioritization need to be validated for high rate of fault
detection.

REFERENCES
[1] Chilenski, J.J., Miller, S.P., “Applicability of modified
condition/decision coverage to software testing”, Software
Engineering Journal 9 (5), 193–229, 1994
[2] Dupuy, A., Leveson, N., “An empirical evaluation of the
MC/DC coverage criterion on the HETE-2 satellite
software”, In Proceedings of Digital Aviation Systems
Conference (DASC), 2000
[3] Chilenski, J.J., “An investigation of three forms of the
modified condition decision coverage (MCDC) criterion”,
Federal Aviation Administration, US Department of
Transportation, Washington, DC, Tech. Rep. DOT/
FAA/AR-01/18, 2001
[4] Jones, J.A., Harrold, M.J.,”Test-suite reduction and
prioritization for modified condition/decision coverage”,
IEEE Transactions on Software Engineering 29 (3), 195–209,
(2003)
[5] Kaminski, G., & Ammann, P., “Using a fault hierarchy
to improve the efficiency of DNF logic mutation testing”,
In Software Testing Verification and Validation, ICST’09.
International Conference on (pp. 386-395). IEEE, 2009

[6] Lau M.F., Chen T.Y, “Test Case Selection strategies
based on Boolean Specifications” Software Testing,
Verification and Reliability, 11(3), 165-180, 2001
[7] Yu, Y.T., & Lau M.F., “Fault-based test suite
prioritization for specification-based testing” Information
and Software Technology, 54(2), 179-202, 2012
[8]Elbaum S., Malishevsky A.G., Rothermel G., “Test case
prioritization: a family of empirical studies”, IEEE
Transactions on Software Engineering 28 (2) , 159–182,2002
[9] Malishevsky, A. G., Ruthruff, J. R., Rothermel, G., &
Elbaum, S.”Cost-cognizant test case prioritization”
,Department of Computer Science and Engineering,
University of Nebraska-Lincoln, Technical Report,2006
 [10] Kaminski, G. K. “Applications of Logic Coverage
Criteria and Logic Mutation to Software Testing”
(Doctoral dissertation, George Mason University, 2010

