
Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(10), October 2014, 455 – 459

455

Testing Matrix when Desktop Applications move to Virtualized Environments

Tanvi Dharmarha

Adobe Systems, India, tbajajdh@adobe.com

ABSTRACT

Application virtualization has existed for almost a
decade and more and more organizations are setting
up their own virtual labs with one or more available
virtualization vendors. Choice of vendor depends
largely on their current deployment and maintenance
setup, time and cost of switch, skill level of
administrators and size of enterprise. If a product
company states that its desktop products are
supported on virtualized environments, it means that
the company is ready to offer support on all available
vendors, versions, configurations and their various
combinations. From a testers standpoint the amount
of flavors he has to test a particular product on is vast.
Certifying an entire product means testing all product
workflows and any third party dependencies
involving middleware/runtimes on all possible
virtualization technologies and hypervisor
combinations.

Apart from product features, a lot of other issues crop
up when application move from desktop environment
and enter into the virtualized space. Firstly,
application is not tuned to support multiple users
accessing the same machine and same installation of a
product at the same time leading to issues in multiple
user access scenarios. Secondly, application licensing
may get ugly as product license in tied to the system
and not to a particular user. Last but not the least;
security might get compromised as access restrictions
may not apply correctly in the new setup.

Through this paper we will unveil the major testing
parameters that comprise testing in virtualization
space and the product under test, scenarios and
workflows that get affected when we move towards
virtualization and finally how testers can smartly
choose a few combinations from an infinite matrix
and confirm application certification.

Keywords:Testing Virtualization, Application
Virtualization, Product Testing

1. STATUS QUO

In most organizations, testing is still in a phased
manner with separate environments for development,
unit tests, QA, staging and production. In each phase,
testing is focused on specific areas relevant to that
phase. Development and unit tests focus on testing
classes, functions and components that are being
developed and updated. The requisite infrastructure
resides on one developer machine. QA stage focuses
on testing features and workflows in a production
subset environment with minimal infrastructure, most
of which is provided in house. Staging phase
primarily involves testing subset of functional tests in
production like environments. With applications
getting more and more complex, with multiple
clients, servers, configurations, tokens, templates, the
challenge to understand the impact of a system’s
change increases as the number of pieces, parts, and
inter-dependencies increase. With each successive
testing phase, it becomes very difficult to maintain
configuration compatibility between the pre-
production systems and the production system.

Additionally it becomes difficult to simulate a real
world environment which includes virtual and non-
virtual infrastructure interaction when testing
applications. Absence of such hybrid environments in
test phases often leads to bugs for identified scenarios
later in development cycle thereby increasing
development costs and time.

Apart from test infrastructure, most traditional tools
used by product QA, whether third party or in house,
are not optimized to run in virtual environments.

Additionally, organizations test how their desktop
product behaves with different memory settings and
make recommendations to the customers about
minimum requirements, optimum amounts, etc. But,
in a virtualized environment, the end user does not
have any control. So, it is becomes difficult for the
tester or the virtualization provider to determine what
is an optimal amount that will meet the needs of most
(or all) of their expected users.

 ISSN 2320 – 2602
Volume 3, No.10, October 2014

International Journal of Advances in Computer Science and Technology
Available Online at http://warse.org/pdfs/2014/ijacst043102014.pdf

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(10), October 2014, 455 – 459

456

2. DEMYSTIFYING APPLICATION
VIRTUALIZATION

At a high level, application virtualization is just
redrawing the application on the client just the way it
is in its current state on the server (as shown in Figure
1). Every user input of this app's image on the client
is passed to the server for processing and the changes
are again redrawn on the client. [1]

Application virtualization in simplest terms refers to
separating the application from the underlying
operating system. This separation is usually achieved
by a layer called the virtualization layer.
Virtualization layer is implemented differently by
different vendors and managed by hypervisors that
are sometimes vendor specific or third party. With
virtualization, organizations are moving to green
computing and saving on data center space.

Application virtualization makes an application
available to one or more end users by just
installing/deploying the application on one server.
Virtualization solutions enable on-demand delivery of
applications on any device. To enable applications
running seamlessly in virtualized environments,
product companies need to set up different kinds of
virtual labs and deploy the product in every virtual
lab setup. The challenge arises when a tester(s) needs
to certify the product in all available virtual setups.

3. KEY PARAMETERS
There are many parameters involved in testing of
products in virtualized environments. Testing every
combination is virtually impossible. Some high level
parameters are listed below

1. Product version
2. Middleware version
3. Host machine Operating System and

configuration
4. Guest machine Operating System and

configuration
5. Host Device

6. Virtualization solution
7. Hypervisor
8. Latency
9. Application Provisioning

3.1 Product version

A full-fledged product encapsulates multiple binaries
and libraries each of which is responsible for
executing some product workflows. All these binaries
and libraries are thoroughly tested by their domain
experts/testers and are then versioned, signed and
finally released to be integrated into the product. The
final integration results in what we call a certified
product. Any deviation observed while testing this
product in virtualized environment will require a fix,
rebuild and recertification of the requisite binary and
finally a regression of the product post integration of
the new binary.

It becomes extremely difficult to track which version
of a product works well on which version of the
virtualization setup.

For e.g. consider a product P v1.1 that work well in
one virtual setup A but does not work in another setup
B. Investigation reports a fix expected in a binary
a.dll v1.1 resulting in a new binary a.dll v1.2.
Integration of a new binary result in a minor release
of product P v1.2, which works on the latter setup B.
The problem arises when this new version P v1.2 is
released and needs to be retested for regression on the
former setup where the previous version was
seamlessly running. This typical scenario sometimes
leads to a deadlock where fix in one version causes a
break in another setup.

3.2 Middleware Version

Some features of a product require specific
middleware to be installed on the machine; failing to
do so may result in erratic behavior. Middleware is
simple terms is a piece of software that interacts with
the Operating system and the Product. Common
middleware include runtimes, plugins and other
application software.

Some desktop applications (or products) come
packaged with dependencies and automatically install
requisite software during their own installation
process while other might expect the middleware to
be pre-installed on the machine.

For example, a desktop application may have a
specific requirement of Java Runtime v1.6 or

Figure 1: Explaining ApplicationVirtualization

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(10), October 2014, 455 – 459

457

Microsoft .Net framework v3.0 with Service Pack 1.
It is very common that the product feature requiring
Java Runtime v1.6 will not work as desired on one
virtual setup because the setup may only support the
latest version of Java Runtime. As a result the product
feature would have to be tweaked/ re-implemented to
work with the latest run time that is available in the
virtualization setup.

3.3 Host machine Operating System and
configuration

Although virtualization vendors claim that their
virtualization solutions completely isolate the Host
Operating system and the guess operating system but
sometimes the behavior of host machines can
override the guess machines capabilities. Different
features of applications running in virtual space can
behave differently on different OS flavors. A feature
might work on windows OS but may be disabled for
Android OS.

For example, Windows and Android tablets both offer
zooming capabilities with touch screen. Some
applications too offer zooming capabilities when
running on touch devices. If the virtualization setup is
same and user is accessing the desktop application
from a windows tablet and Android tablet, the
zooming effect may differ. In one case it may zoom
only the document inside the application which
means that the application zoom has precedence
while in other case it may zoom the entire screen
including the application under test which means that
OS zoom has precedence.

3.4 Guest Machine Operating System and
configuration

Guest machine or virtual machine usually has virtual
components such as vCPUs (CPUs assigned to a
virtual machine), cores, virtual sockets and virtual
drives. Configuring a virtual machine depends largely
on the requirements which can be compute intensive,
memory intensive, storage or GPU intensive etc. An
application deployed on the same operating system
can behave differently if the choice of operating
system configuration is compute intensive as opposed
to memory intensive. Graphic intensive application
features might fail to run on low powered machines
with a non GPU intensive processor.

Some application software or middleware do not get
installed on virtual environments. One such example
is the coupon printing software that explicitly
prevents installation on virtual environments for
obvious reasons. Tweaks in registries are required to
bypass the virtual instance detection.

Also, some virtualization vendors do not provide
support for some operating systems that might be
relevant for the desktop application. Testing the
application in unsupported OS flavors also leads to
multiple failures. For example, Windows Virtual PC
does not officially support versions of windows
earlier than Win 7 [2]. Likewise, some video editing
applications such as Adobe Premier Pro require a lot
of monitoring and Video I/O hardware add ons on
different OS(s) that make virtualization of the
application trickier than that of other traditional
applications.

Guest machine and its device drivers dialog with a
virtual device driver instead of the real hardware.
Desktop applications may require printers, scanners,
other I/O for its workflows and testing the application
would thus requires testing interaction of the guess
machine device driver with the virtual device drivers.

3.5 Host device

Desktop Applications by default may be expected to
run seamlessly on PCs and Laptops but with the
advent of on demand application delivery anywhere
and on any device, it becomes critical that the desktop
applications work on all devices ranging from PCs,
laptops, netbooks, tablets and even smart phones.
Often a desktop application fails to launch on a tablet
or netbook due to unmet screen resolution
requirements. For example, desktop applications may
require a minimum screen size or resolution of
1024x786 and if the host device does not support that
desired resolution, the application will fail to launch.

3.6 Virtualization Solution

There are numerous organizations offering
virtualization solutions and the way they implement
virtualization is also different. Earlier the major
players in the market were Citrix, VMWare and
Microsoft but now a lot of small medium enterprises
(SMEs) are entering into this niche sector with their
virtualization solutions.

A provider can implement the virtualization

Not only application testing but also setting up the
test labs for each virtual infrastructure is a great
challenge.

Applications read from and write to various file
directories and registries and if a virtualization
solution imposes some access restrictions to the
requisite folders and directories, application will not
work correctly. Also, some application solutions
allow access to host machine’s hard drive while

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(10), October 2014, 455 – 459

458

others restrict access to only the Virtual Machine’s
file system.

3.7 Hypervisors

Implementing virtualization requires a layer that
decouples the hardware from the operating system.
This virtualization layer is managed by what is called
a hypervisor. Hypervisor manages resource allocation
of all VMs. Hypervisors can be bare metal (which
means that they sit on top of the hardware) or hosted
(which means that they are installed on the OS that
sits on the hardware).

Applications have to be tested on not just both types
of hypervisors but also their models/brands available
in the market. Some bare metal hypervisors work
only on Linux while others work on Win or Mac or
both.

3.8 Choice of Hypervisor also determines the
virtualization implementation methodology and an
enterprise can have any available hypervisor deployed
in its virtualization setup so it’s critical that the
desktop application in question should work on that
hypervisor.

3.9 Latency

Latency here has become more of an operational
parameter as opposed to an observation. The reason is
that when application is available as streamed, the
user expects the application’s performance to be
consistent with what he gets if the application was
installed on the local machine.

As infrastructure, application and storage move to the
cloud, we do not know at which location our server
will be that are hosting the application. A creative
professional based out of South East Asia could be
accessing a graphic intensive application, say
AutoCad that is deployed and published in a N. West
US location. This user could simply reject the
application if there was too much latency while
applying some graphics.

Every application virtualization applies a cap on the
number of concurrent users accessing the application,
sometimes the number spawns to hundreds. In such
scenarios there is an added challenge of simulating
load and volume that needs to be tested between the
real and virtual components.

Another aspect of latency is benchmarking and
measuring workflow turnaround time as these may
vary depending on the host and guest hardware,
network bandwidth, number of concurrent users and

number of redundant servers that host the application.
LoginVSI and SPECvirt are standard tools for
benchmarking virtual desktop environments [3].

3.10 Application Provisioning

A desktop application is usually not tuned to support
multiple users accessing the same machine and same
installation of a product at the same time leading to
issues in multiple user access scenarios. Users access
applications in virtual environment by establishing a
terminal session and user specific information are
stored as session properties. Tests need to be
conducted to ensure that one user does not get another
users session if their sessions closes unexpectedly
because of network glitches.

Also testing and updating of EULA becomes equally
important as some Desktop Application’s EULAs
may prohibit from deploying the software to cloud
server.

4. TESTING MATRIX FOR A DESKTOP
APPLICATION

Following table, Table 1, lists the major values
possible for each parameter discussed above. An
exhaustive list of testable scenarios will include each
and every combination from this parameter
galaxy.For simplicity let’s consider a product/desktop
application with 5 major binaries and libraries

With the above parameters list which is non
exhaustive, the number of test combinations
approximates to two hundred and twenty four
thousand (~224000). It is just humanly impossible to
test two hundred thousand virtual lab combinations
and then execute the identified test cases on each
combination.

5. SELECTING COMBINATIONS FROM
THE PARAMETER GALAXY

Before we proceed with selecting what all
combinations to test, it is important that we evaluate
and eliminate a parameter values that do not apply in
case of the product under test. For example, a java
based application will likely require a java runtime

Table 1

Tanvi Dharmarha, International Journal of Advances in Computer Science and Technology, 3(10), October 2014, 455 – 459

459

version rather than a Microsoft .Net framework.
Hence we can eliminate all the .Net framework
versions from testing. For an application that does not
support a particular operating system, we can remove
that OS from the guess operating system list.

Elimination should be followed by prioritization.
Prioritization is the key to narrowing down parameter
values that should and must be tested. For any given
parameter, we need to prioritize the most extensively
used values in the target space. This can be done
through extensive research and surveys at customer’s
end.

Priority of a parameter will differ from one desktop
application to another. So an evaluation for one
desktop application cannot be blindly applied to
another desktop application which would have to be
supported in virtualized space.

For a specific product A, here is the prioritized
parameter chart.

By prioritizing alone, testers can bring down the
number of combinations from a few hundred
thousand to a few hundreds.

Once we have a prioritized list, we must identify
redundancy points. For example, for a workflow that
we know has been implemented to behave in a similar
fashion on all windows platforms, we can split the
test cases equally among all the windows flavors
rather than duplicating tests on all flavors. In the
above table, there are two windows platforms in
Guess OS, so we can assign Win 7 and Win 8 50

redundancy points each. Or if a particular workflow
is less frequently used, we could assign less
redundancy points to it so that it tested only on few
combinations.

6. CONCLUSION AND KEY
TAKEAWAYS

In this age of green computing and cost optimization
where virtualization is becoming a matter of survival,
testing desktop application in virtualization
environment is a big challenge.

1. Focus on the above nine key parameters that
define the scope of testing in virtualized
setups strengthens our testing exercise and
reduces chances of failure and rejection.

2. Test tools like LoginVSI and SPECvirt
effectively test for performance and
scalability of the virtualization solution.

3. Prioritizing parameter values brings down
the combination matrix to 0.l%

4. Apart from the key factors, another best
practice that engineers can apply to
maximize testing rigor and maturity is to
start using virtualization in test and pre-
production environments during the product
life cycle.

REFERENCES

[1]http://www.dabcc.com/documentlibrary/file/applic
ation%20virtualization%20smackdown.pdf

[2]http://en.wikipedia.org/wiki/Windows_Virtual_PC

[3]http://www.virtualizationpractice.com/testing-
within-the-virtual-environment-22515/

[4] http://www.spec.org/virt_sc2013/

[5] http://www.loginvsi.com/

[6]http://www.citrix.com/content/dam/citrix/en_us/do
cuments/products-solutions/delivering-applications-
anywhere-anytime-with-maximum-security-and-
control-over-data.pdf

