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ABSTRACT 
 

Image Restoration is one of the major tasks in 
Image Processing which is used to recover or restore the 
original image when it is subjected to some sort of damage. 
There are a lot of Traditional methods which deal with the 
restoration of images. In this work, we propose a work which 
reduces the blocking artifacts to a great extent and allow the 
Ridglet transform along with the Radon transform to act on 
the image. Then the Discrete Wavelet Transform is applied 
to remove the artifacts. A new method of Mean Square 
Difference of Slope (MSDS) which involves the Horizontal, 
Vertical and Diagonal components of the image is used for 
effective restoration of the image. From the experimental 
results, it is evident that the new method is more effective in 
image restoration compared to that of the application of 
Discrete Cosine Transform over the image. 
 
Key words : Ridgelet Transform, Radon Transform, Image 
restoration, blocking artifact reduction 
 
 
1. INTRODUCTION 
 

Image restoration refers to the process of recovering 
the original signal from its degraded form. Often, the terms 
Image Enhancement and Image Restoration are confused 
with one another. Image Enhancement is designed to 
emphasize the features of the image that make the image 
more pleasing to the observer, but not necessarily to produce 
realistic data from a scientific point of view. Image 
enhancement techniques provided by "Imaging packages" 
use no a priori model of the process that created the image. 
With image enhancement noise can be effectively be 
removed by sacrificing some resolution, but this is not 
acceptable in many applications. Recovering an Image object 
requires much advanced Image Processing Techniques. The 
main objective of image restoration is to remove defects 
which degrade an image. Degradation comes in many forms 
such as motion-blurs, noise etc. In cases like motion blur, it 

is possible to come up with a very good estimate of the 
actual blurring function and remove the blur to restore the 
original image. In cases where the image is corrupted by 
noise, the best approach is to compensate for the degradation 
it caused. In this work, we introduce and implement several 
of the methods used in the image processing world to restore 
images. 
Ridgelet transform is a time-frequency and multi-resolution 
analysis tool which proves to be more powerful than any 
other wavelet analysis in the signal and image processing 
domain, especially in image restoration. Due to the strain to 
impart the types of noise formed by optical imaging 
equipment, this work use independent component analysis to 
separate the independent signals from overlapping signals. 
Ridgelet transform is applied to decompose overlapping 
signals. We introduce the Mean Square Difference of Slope 
filter to reduce the blocking artifacts and then apply the 
Ridgelet Transform to reconstruct the image to obtain a 
restoration image. It is provable that the efficiency of our 
method is better than other traditional filtering approaches. 
 
2.RELATED WORKS 
 

Hunt  and  Ktiblerb  [l]  presented  that  the  
restoration  of  a  multichannel  image  is  equivalent  to  the  
independent  restoration  of  individual  channels  after  
assuming  that  the  signal  autocorrelation  is  separable. The  
multichannel  minimum  mean-square  error  (MMSE)  
restoration  scheme  and  the  Wiener  filtering  algorithm  
were  proposed  by  Galatsanos  and  Chin  [2].  By  using  
both  inter-  and  intra-channel  correlations  of  the  signal,  
the  result  is comparatively efficient.  This algorithm does 
not require any separability assumption. Still, it assumes  that  
the  image  signal  is spatially  motionless  and  the  blur  is 
space-invariant.  It  has  been  commonly  recognized that  
the  stationary  assumption  is  restrictive  and  unrealistic. To 
remove this necessity, Galatsanos  and  Chin  [3] developed  
a  Kalman  filtering algorithm  for  multichannel  image  
restoration,  which  provides  the  possibility  of  handling  
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space-variant  degradation  at  the  cost  of  complex  
implementation.  
Later on, the various reduction methods were used for 
restoration of the image. Zakhor’s CM-based method [4] 
smoothes all the pixels in a coded image by using a 5 × 5 
space-invariant filter. In Yang’s POCS-based method [5], a 
space-invariant filter, which provides the weighted sum of 
the two pixels as output, is applied at two adjacent pixels of 
each block boundary; the filtering is projections onto two 
convex sets that minimize the sum of the differences 
between horizontally adjacent block boundaries and that 
between vertically adjacent block boundaries. In Paek’s 
POCS-based method [6], a space-variant filter is used in 
which a stop band in the 1-D DCT domain varies with the 
signal. 
 
 
3. PROPOSED SOLUTION 
 
3.1 Application of Gaussian Noise 

For a 2-dimensional image, we initially apply the 
Gaussian Noise, whose noise density follows a Gaussian 
Normal Distribution ),( xG  defined by the mean x and 
standard deviation . Usually, this process is done to 
evaluate the filtering, segmentation and restoration 
algorithms. For each input voxel inv , a sample is taken from 

the normal variate distribution )(dG and is added to the 
image. 

)(dGxvv inout      (1) 

For some mean noise x and standard deviation . d is an 
arbitrary number to start the pseudo random sequence. 
Let the outcome of the Gaussian Noise application over the 
image be )(nf which is considered as a bivariate function 
since the image is two dimensional. 
3.2 Application of Finite Ridgelet Transform. 

The Finite Ridgelet Transform is an invertible and 
non-redundant algorithm which acts fast to create 
orthonormal bases for the images. The Ridgelet Transform is 
represented as  

dnnfnbaCRT
R

baf 
2

)()(),,( ,,    (2) 

where the ridgelets   sincos yx constant in 2-D and 
the wavelet type function in )(n in 1-D is denoted as  

)/)sincos(()(,, abyxaxba     (3) 
In 2-D, the points and lines are related through the Radon 
Transform. Thus it is associated to the Wavelet Transform. 
The Radon Transform is denoted as  

 
2

)sincos(),(),(
R

f dxdytyxyxftR  (4) 

Where R denotes the real line. 
The Ridgelet transform is the application of 1-D wavelet 
transform to the slices of the Radon Transform and is defined 
as  


R

fbaf dttRtbaCRT ),()(),,( ,    (5) 

The finite Radon Transform is redundant and not orthogonal. 
The redundancy can be reduced by applying 1-D Discrete 
Wavelet Transform on the projections of the Finite Radon 
Transform. Let us assume that there are (p+1) 1-D 
orthonormal transforms on pR ,  one for each projection k
of the finite Radon Transform that have bases as 

pkZmW p
k

m ,....1,0}:{  , where pp  is the size of 
the image. 
Therefore, the Finite Ridgelet Transform can be indicated as 

[.],..],[],[ )(k
mf wkFRATmkFRIT    (6) 

On application of Discrete Wavelet Transform, 
decomposition of Radon Transform projections, the non-
orthogonality and redundancy of the FRAT is shifted into the 
scaling co-efficient. When the Discrete Wavelet is taken to 
the maximum number of levels, it results in orthonormal 
Finite Ridgelet Transform. 
Let the outcome of the input image )(nf be transformed 
using the Finite Ridgelet Transform to )(nx . 
3.3 Application of Discrete Wavelet Transform. 

The pixel or signal )(nx is processed by passing it 
through a series of filters. First, it is passed through a low 
pass filter with impulse response )(ng giving the 
approximation co-efficient. 

 
n

high nkgnxky ]2[].[][    (7) 

The signal is decomposed simultaneously using a high pass 
filter )(nh as a result of which the detailed co-efficient is 
obtained. 

 
n

low nkhnxky ]2[].[][    (8) 

Since an image is a 2-dimensional signal, it is represented as
),( MNx . Each row is filtered and sampled to obtain two

)2/,( MN images. Then each column is filtered and down 
sampled to obtain four )2/,2/( MN images. The resultant 
is one dimensional scaling function ),( yx and two 
dimensional wavelet functions

),(),(),,( yxandyxyx DVH  which represent the 
sub bands of the image. 
Now, we use the concept of Mean Square Difference of 
Slope (MSDS) to remove the artifacts. We have two MSDS 
namely 1MSDS and 2MSDS of which 1MSDS is 
comprised of vertical and horizontal blocks. 

1MSDS = )),(()),(( yxyx VH    

 = VH       (9) 

Similary, the 2MSDS involves the usage of the diagonal 
components. 

D
D yxMSDS   )),((2    (10) 

The intensity slopes of all adjacent blocks is 
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21 MSDSMSDSMSDSt     (11) 

On global minimization of tMSDS , we can reduce the 
blocking artifacts. On de-quantization and application of 
Inverse Discrete Transform, the original image is restored. 
 
4. EXPERIMENTAL RESULTS 
 

To evaluate the performance of the proposed 
method, computer simulation has been performed with 
various images.  
 

 

 

 
 

 
Noisy Image PSNR =1.9236 
Noisy Image MSE= -269.9189 
DCT PSNR=27.3141 
DCT MSE= 2.8124E+003 
DWT PSNR= 38.0266 
DWT MSE=819.3116 

1(a) 1(b) 1(c) 1(d) 1(e)  

 
 

 

 
Noisy Image PSNR =1.9604 
Noisy Image MSE= 277.8392 
DCT PSNR=24.6780 
DCT MSE= 3.8096E+003 
DWT PSNR= 38.5146 
DWT MSE=774.5496 

2(a) 2(b) 2(c) 2(d) 2(e)  

 

 

 

 
Noisy Image PSNR =1.9332 
Noisy Image MSE= 74.4400 
DCT PSNR=29.9392 
DCT MSE= 2.0788E+003 
DWT PSNR= 34.3014 
DWT MSE=1.2581E+003 

3(a) 3(b) 3(c) 3(d) 3(e)  

 

 

 
Noisy Image PSNR =1.9370 
Noisy Image MSE= -345.3342 
DCT PSNR=26.2106 
DCT MSE= 3.1934E+003 
DWT PSNR= 39.2679 
DWT MSE=710.2069 

4(a) 4(b) 4(c) 4(d) 4(e)  

 

 

 
Noisy Image PSNR =1.9565 
Noisy Image MSE= 47.6341 
DCT PSNR=25.5719 
DCT MSE= 3.4370E+003 
DWT PSNR= 34.1116 
DWT MSE=1.2859E+003 

5(a) 5(b) 5(c) 5(d) 5(e)  

 

 

 
Noisy Image PSNR =1.9299 
Noisy Image MSE= -69.9042 
DCT PSNR=23.2925 
DCT MSE= 4.4684E+003 
DWT PSNR= 36.4432 
DWT MSE=984.1446 

6(a) 6(b)  6(c) 6(d) 6(e)  

 

 

 
Noisy Image PSNR =1.9216 
Noisy Image MSE= -409.2945 
DCT PSNR=29.8474 
DCT MSE= 2.1009E+003 
DWT PSNR= 35.9447 
DWT MSE=1.0412E+003 

7(a) 7(b) 7(c) 7(d) 7(e)  

 
 

 

Noisy Image PSNR =1.9534 
Noisy Image MSE= -33.6415 
DCT PSNR=30.5020 
DCT MSE= 1.9484E+003 
DWT PSNR= 35.5851 
DWT MSE=1.0852E+003 

8(a) 8(b) 8(c) 8(d) 8(e)  

 

 

 
Noisy Image PSNR =1.9449 
Noisy Image MSE= 89.3942 
DCT PSNR=24.6576 
DCT MSE= 3.8186E+003 
DWT PSNR= 36.5972 
DWT MSE=965.8764 

9(a) 9(b) 9(c) 9(d) 9(e)  

 

 

 

 
Noisy Image PSNR =1.8988 
Noisy Image MSE= 40.1426 
DCT PSNR=24.4166 
DCT MSE= 3.9260E+003 
DWT PSNR= 38.8282 
DWT MSE=747.0885 

10(a   10(a) 10(b
) 

10(c) 10(d) 10(e)  

Figure 1-10 (a)Original Image, (b) Noisy Image, (c) 
DCT Restored Image, (d) DWT image, (e) DWT Restored 
Image. 

Figure 1-10 compares the Image Restoration 
Technique using Discrete Cosine Transform with that 
restored using the application of the combination of Ridgelet 
Transform and Discrete Wavelet Transform. 

 
Figure 11. Comparison of Mean Square Error (DCT vs 

DWT) 
 

The comparison of the image restoration using 
Discrete Wavelet Transform against Discrete Cosine 
Transform is shown in Figure 11. From the compariosn 
chart, it is clearly visualised that the Mean Square Error of 
DCT is much higher than that of DWT. Hence, it is evident 
that DWT is better than DCT. 
 

 
Figure 12. Peak Signal to Noise Ratio (DWT vs DCT) 

 
Figure 12 clearly visualizes the variation in the Peak 

Signal to Noise Ratio (PSNR) between the Discrete Cosine 
Transform and the Discrete Wavelet Transform. The more is 
the PSNR value, the much efficient is the restoration 
algorithm. Here, it is found that the PSNR value is more for 
the DWT than DCT in each case. Hence it is proved that the 
DWT is better than the DCT. 

5. CONCLUSION 
The proposed algorithm introduces the novel and 

enhanced form of DWT which involves all neighboring 
blocks, including the diagonally located neighboring blocks 
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using MSDS. This work presents not only a method for the 
removal of the blocking artifacts, but also increases the 
PSNR thereby provides a much efficient and non-redundant 
method of restoration. 
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