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Abstract—The Transmission Control Protocol (TCP) is one of 
the core transport layer protocols which ensures reliable data 
delivery. In many to one communications there arise  a 
problem known as TCP Incast which is actually a drop in 
throughput. This arises due to the overflow of output buffer of 
switch and TCP’s Retransmission Timeout. Earlier solutions 
included controlling switch buffer or updating OS/hardware 
.In this work  we improve the UDP-based transmission with 
FEC and CRC. Through ns2 based simulations we can observe 
that the newly designed protocol will not degrade the 
throughput in many to one communications when the number 
of servers are increased.  LTTP when compared with DCTCP, 
performs better in maintaining overall goodput of the many to 
one communications. 
 

IndexTerms—TCP Incast, reliable, bandwidth, goodput 

INTRODUCTION 
The Transmission Control Protocol (TCP) is one of the core 

protocols of the Internet protocol suite (IP), and is so common 
that the entire suite is often called TCP/IP.TCP is known for its 
reliable data delivery, congestion control and error flow 
control. TCP entertains connection oriented communications. 
Cloud computing realizes the dream of “computing as a 
utility”. People outsource their computing and software 
capabilities to cloud providers and pay for the service usage on 
demand[1].Cloud data centers run both online services and 
back-end computations. Since most distributed computations in 
data centers are bandwidth-hungry they propose to increase 
network capacity. They thus require congestion free reliable 
data transmission. 

 
As for data transmission between servers, TCP is widely 

used in today’s data center networks, since it has been proven a 
great success in the Internet for both reliable delivery and 
congestion control. However, the specific application pattern 
and network environment in data centers pose new challenges 
to TCP to work smoothly. In such conditions a problem called 

TCP Incast arises, this is mainly due to the drop in the overall 
throughput of the communication. The actual condition here is 
that a client sends requests to multiple servers and wait to get 
reply from each of them The client waits indefinitely until it 
gets all the requested blocks from the servers to which it had 
send requests .The client will never more send requests until it 
has attained all the requested ones. [1]TCP Incast causes 
goodput collapse for two reasons. Firstly, when servers 
simultaneously send response packets back to the client, the 
response packets will overflow the output buffer of the switch 
which directly connects the client. Secondly, the default value 
of TCP’s Retransmission Timeout (RTO) is 200 milliseconds 
in most operating systems. It means that once a timeout occurs, 
the TCP connections will be idle for quite a long time period 
before the servers retransmit the dropped packets, since the 
RTT (Round-Trip Time) is only hundreds of microseconds in 
data center networks. After the retransmission timer timeouts, 
the servers will again simultaneously send the response 
packets, which causes switch buffer overflow and 
retransmission for a new round, so and so forth.[1] 

 
The goodput degradation in many-to-one communications 

will significantly delay the task finish time of distributed 
computations, which is further translated to the violation of 
SLA. Since the root cause for TCP Incast is the shallow buffer 
in switches as well as the mismatch between RTO and 
RTT.TCP incast has risen to be a critical problem recently in 
data center networks due to its catastrophic goodput collapse. 
In incast communication pattern, multiple servers concurrently 
transmit data blocks to a single client and any server can not 
send another data block until all the servers finish transmitting 
the current data block. When the number of server increases, 
the goodput of the receiver will become lower than the capacity 
of the bottleneck link in one or even two orders of magnitudes. 
The incast communication pattern exists in many popular 
applications. 
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To avoid the performance deterioration of TCP incast, lots 
of attempts have been made to find the causes of TCP 
incastand the methods to solve it.TCPincast problem attracts 
increasing attention since the client suffers drastic goodput 
drop when it simultaneously strips data over multiple servers. 
Lots of attempts have been made to address the problem 
through experiments and simulations, few solutions can solve it 
fundamentally at low cost. 

 
TCP incast has risen to be a critical problem recently in 

data center networks due to its catastrophic goodput collapse. 
In incast communication pattern, multiple servers concurrently 
transmit data blocks to a single client and any server can not 
send another data block until all the servers finish transmitting 
the current data block. When the number of server increases, 
the goodput of the receiver will become lower than the capacity 
of the bottleneck link in one or even two orders of magnitudes. 
The incast communication pattern exists in many popular 
applications. To avoid the performance deterioration of TCP 
incast, lots of attempts have been made to find the causes of 
TCP incast and the methods to solve it. TCP incast problem 
attracts increasing attention since the client suffers drastic 
goodput drop when it simultaneously strips data over multiple 
servers. Lots of attempts have been made to address the 
problem through experiments and simulations. However, to the 
best of our knowledge, few solutions can solve it 
fundamentally at low cost. 

 
We propose a new transport protocol to support many-to-

one communications in data centers, which is called LTTP 
(LT-code based Transport Protocol). Since TCP’s timeout is 
the root cause of low link utilization and  goodput deterioration 
in TCP Incast, LTTP improves UDP-based LT (Luby 
Transform) code [12] for reliable delivery, which depends on 
FEC (Forward Error Correction) [13] with data redundancy. 
Since UDP cannot fairly share bandwidth with other protocols 
(such as TCP),TFRC (TCP Friendly Rate Control) [14] is also 
applied to adjust the data sending rates at servers for 
congestion control. 

 
The intuition behind LTTP’s design is that the rate-based 

congestion control scheme of TFRC ensures that the sender can 
still send data at an appropriate rate even in face of congestion, 
instead of stopping sending data for a relatively long time. In 
addition, LT code can restore the original data without 
requesting for retransmission as long as the number of packet 
losses/errors falls into a reasonable range. Each of the two 
schemes is used to overcome the other’s limitations: TFRC 
maintains reasonable bandwidth utilization, while UDP based 
LT code ensures reliable data delivery[1]. 

 
Using ns2 simulations, we can show that LTTP can 

maintain high goodput for many to one communications in 
different topologies, no matter what the number of servers is. 
Our improvement on the decoding algorithm of LT code 
effectively improves the goodput of LTTP, and controls the 
bandwidth overhead of LT-code. 

MOTIVATION 
In this work, we mainly concentrate on achieving a reliable 

UDP-based protocol though we know that UDP is 
unreliable.Through the designing of such a system we get a 
goodput guaranteed in many to one communications also in 
case where number of servers are increased. 

 
The TCP Incast problem [1] which is actually a drop in the 

overall goodput or a goodput collapse is overcome in the 
design to support any increase in number of servers.However, 
because many-to-one communication is common in both 
online services and back-end computations, LTTP shows its 
great promise, especially when the number of servers is 
large.Thus as per the proposed system a throughput oriented 
reliable protocol for many to one communications is to be 
obtained. 

 

PRIORWORKS 
In past years there have been many solutions to the TCP 

Incast problem mainly ICTCP and DCTCP ,others are FQCN 
[9] and AF-QCN [10].In ICTCP,TCP incast is studied in detail 
by focusing on the relationship among TCP throughput, round 
trip time (RTT) and receive window. The idea was to design 
an ICTCP (Incast congestion Control for TCP) scheme at the 
receiver side. In particular, the method adjusts TCP receive 
window proactively before packet drops occur. The 
implementation and experiments in the testbed demonstrated 
that zero timeout and high goodput for TCP incast was 
achieved. The implementation and evaluation of ICTCP, was 
to improve TCP performance for TCP incast in data center 
networks. Main focus was on receiver based congestion 
control algorithm to prevent packet loss. ICTCP adaptively 
adjusts TCP receive window based on the ratio of difference 
of achieved and expected per connection throughputs over 
expected ones, as well as the last-hop available bandwidth to 
the receiver. A light-weighted, high performance Window 
NDIS filter driver was made to implement ICTCP. Compared 
with directly implementing ICTCP as part of the TCP stack, 
the driver implementation can directly support virtual 
machines, which prevail in data centers. ICTCP was effective 
to avoid congestion by achieving almost zero timeout for TCP 
incast, and it provides high performance and fairness among 
competing flows. 

 
DCTCP, a TCP-like protocol for data center networks was 

designed. DCTCP leverages Explicit Congestion Notification 
(ECN) in the network to provide multi-bit feedback to the end 
hosts.ECN allows end-to-end notification of network 
congestion without dropping packets. ECN is an optional 
feature that is only used when both endpoints support it and 
are willing to use it. It is only effective when supported by the 
underlying network.DCTCP delivers the same or better 
throughput than TCP, while using much lesser buffer space. 
Unlike TCP, DCTCP also provides high burst tolerance and 
low latency for short flows. A new variant of TCP, called Data 
Center TCP (DCTCP) was designed. The work was motivated 
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by detailed traffic measurements from a thousands of server 
data center cluster, runningproduction soft real time 
applications. Several performance impairments were noticed, 
and linked these to the behavior of the commodity switches 
used in the cluster. It was found that to meet the needs of the 
observed diverse mix of short and long flows, switch buffer 
occupancies need to be persistently low, while maintaining 
high throughput for the long flows. DCTCP met these needs. 
DCTCP relies on Explicit Congestion Notification (ECN), a 
feature now available on commodity switches. DCTCP 
succeeds through use of the multi-bit feedback derived from 
the series of ECN marks, allowing it to react early to 
congestion. 

 
Quantized Congestion Notification (QCN) was been 

developed for IEEE 802.1Qau to provide congestion control at 
the Ethernet Layer or Layer 2 in data center networks (DCNs) 
by the IEEE Data Center Bridging Task Group. One drawback 
of QCN is the rate unfairness of different flows when sharing 
one bottleneck link. In FQCN, an enhanced QCN congestion 
notification algorithm, called fair QCN (FQCN), to improve 
rate allocation fairness of multiple flows sharing one 
bottleneck link in DCNs was proposed. FQCN identifies 
congestion culprits through joint queue and per flow 
monitoring, feedbacks individual congestion information to 
each culprit through multi-casting, and ensures convergence to 
statistical fairness. The stability and fairness of FQCN via 
Lyapunov functions was measured and  the performance of 
FQCN was evaluated through simulations in terms of the 
queue length stability, link throughput and rate allocations to 
traffic flows with different traffic dynamics under three 
network topologies. Simulation results confirmed the rate 
allocation unfairness of QCN, and validate that FQCN 
maintains the queue length stability, successfully allocates the 
fair share rate to each traffic source sharing the link capacity, 
and enhances TCP throughput performance in the TCP Incast 
setting. 

 
The QCN(Quantized Congestion Notification) algorithm 

was designed to be stable, responsive, and simple to 
implement. However, it does not provide weighted fairness, 
where the weights can be set by the operator on a per-flow or 
per-class basis. Such a feature can be very useful in multi-
tenanted Cloud Computing and Data Center environments. 
AFQCN addresses this issue. Specifically, we develop an 
algorithm, called AF-QCN (for Approximately Fair QCN), 
which ensures a faster convergence to fairness than QCN, 
maintains this fairness at fine-grained time scales, and 
provides programmable weighted fair bandwidth shares to 
flows/flow-classes. It combines the QCN algorithm ,and the 
AFD algorithm. AF-QCN requires no modifications to a QCN 
source (Reaction Point) and introduces a very light-weight 
addition to a QCN capable switch (Congestion Point). The 
results obtained through simulations show that AF-QCN 
retains the good congestion management performance of QCN 
while achieving rapid and programmable (approximate) 
weighted fairness. 

 
AF-QCN, an algorithm that adds a programmable 

bandwidth partitioning component based on AFD to the QCN 
Congestion Point mechanism. No changes are needed at a 
QCN Reaction Point.AF-QCN achieves weighted fairness at 
the granularity of a few milliseconds. This enables Data 
Center operators to provide programmable differential 
bandwidth allocation for flows or flow classes, a feature very 
useful in multi-tenanted Cloud Computing and Data Center 
environments. The results obtained via simulations and a 
hardware implementation showthat AF-QCN retains the good 
properties of QCN (stability ,responsiveness, and simplicity), 
while achieving rapid and programmable bandwidth 
partitioning. 
 

 

SYSTEM MODEL 
 
Every ns2 based project starts with the normal wireless or 

wired procedure. Here we design a wired many to one 
communication. A simulation environment of 10-11 nodes 
which are wired is created.T he system starts with designing a 
network topology of the described kind as depicted in Figure1. 

 
Fig 1: TCP Incastsetup[1] 
 
The nodes are created and the duplex connections are made 

between the nodes. The corresponding agents are attached and 
the flows id’s are also given.The complete framework of LTTP 
to support many-to-one communication in data centers includes 
two parts, i.e., the data channel from each server to the client, 
and the control channel between the client and each server. In 
the data channel, we improve LT code for reliable data 
transport, and adopt TFRC for controlling the traffic sending 
rate at servers. The control channel is employed by the client to 
issue data requests to servers and send terminating signals to 
the servers as soon as the requested da ta have been restored. 

 
The servers also use the control channel to send decoding 

parameters to the client. The decoding parameters include the 
original data size and block size, which are used by the client 
to execute the decoding process. For the control channel 
messages, the data size is small enough to be put into a single 
packet. Hence, it is unnecessary to employ coding for 
transmission. Instead, we establish a TCP connection for each 
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client-server pair to deliver the control channel messages 
reliably.[1] The workflow in LTTP is described as follows. 
First, the client establishes control channels (TCP connections) 
to all the servers. Second, the client sends requests to all the 
servers simultaneously through the control channel, asking the 
servers to start sending the data. Third, once receiving the 
request, the servers use control channel to send the decoding 
parameters back to the client. Meanwhile, each server starts to 
employ LT code to produce and send encoding packets 
continually. 

 
 TFRC is used by both servers and the client to control the 

sending rate. Finally, as soon as the original data is 
successfully restored, the client sends a terminating signal 
through control channel back to the corresponding server, 
which informs the server to stop encoding. 

 
When all  senders adopt digital fountain based protocols 

and act as selfish players to inject data in network as fast as 
they can, a Nash equilibrium can be reached eventually. At this 
equilibrium state, the throughput of each flow is similar to that 
when all the senders use TCP. However, in typical many-to-
one communication pattern when TCP Incast occurs, the 
transferred data volume is very small, and it is of high 
probability that the Nash equilibrium cannot be reached before 
all the data have been transferred. So we still have to spend 
extra efforts to deal with congestion control in LTTP. 

 
In our implementation, the upper applications on both the 

server side and the client side are responsible for making 
decisions that when to send data and which channel to be used. 
For example, when the application on the server side receives a 
request, it calls the interface of LTTP to send decoding 
parameters back to the client through control channel. Next, the 
server starts the encoding process to generate encoding data 
and calls the interface of LTTP to transport the encoding data 
to the client side through data channel. The application on the 
client side calls the interface of LTTP to receive encoding data 
and restore the original data. Once the original data is 
successfully restored, the application invokes the LTTP to send 
the terminating signal to the server through the control channel. 

 
The complete framework of LTTP to support many-to-one 

communication in data centers includes two parts, i.e., the data 
channel from each server to the client, and the control channel  
between the client and each server. In the data channel, we 
improve LT code for reliable data transport, and adopt TFRC 
for controlling the traffic sending rate at servers. The control  
channel is employed by the client to issue data requests to 
servers and send terminating signals to the servers as soon as 
the requested data have been restored. The servers also use the 
control channel to send decoding parameters to the client. The 
decoding parameters include the original data size and block 
size, which are used by the client to execute the decoding 
process . 

       For the control channel messages, the data size is small 
enough to be put into a single packet. Hence, it is unnecessary 

to employ coding for transmission. Instead, we establish a TCP 
connection for each client-server pair to deliver the control 
channel messages reliably. 

 
 
Fig 2: Workflow of the protocol [1] 
 
The working of the simulation is similar to the UDP 

simulation but the number of packets reaching the destination 
is much more than normal UDP. This simulation includes an 
error correction method FEC(forward error correction).The 
evaluation and comparisons can be made and can be inferred 
that the throughput and end to end delay is much enhanced in 
the developed scenario. 

 
The UDP protocol when used along with a forward error 

correcting code increased the overall output obtained but the 
packet loss happening is high .So we employ the cyclic 
redundancy check to control errors and packet loss. The cyclic 
redundancy check, or CRC, is a technique for detecting errors 
in digital data, but not for making corrections when errors are 
detected. It is used primarily in data transmission. In the CRC 
method, a certain number of check bits, often called a 
checksum, are appended to the message being transmitted.  

 
The receiver can determine whether or not the check bits 

agree with the data, to ascertain with a certain degree of 
probability whether or not an error occurred in transmission. 
The technique is also sometimes applied to data storage 
devices, such as a disk drive. In this situation each block on the 
disk would have check bits, and the hardware might 
automatically initiate a reread of the block when an error is 
detected, or it might report the error to software. The material 
that follows speaks in terms of a “sender” and a “receiver” of a 
“message,” but it should be understood that it applies to storage 
writing and reading as well. 
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 The Cyclic Redundancy Check is the most powerful of the 
redundancy checking techniques , the CRC is based on binary 
division. In CRC a sequence of redundant bits, called the CRC 
or the CRC remainder is appended to the end of a data stream. 
The resulting data becomes exactly divisible by a second, 
predetermined binary number. At its destination, the incoming 
data is divided by the same number. It protects the data with a 
checksum or cyclic redundancy check.[14]. 
 
EVALUATION RESULTS 
 
By using ns2 simulations we evaluate the performance of the 
developed protocol.The client is connected to many servers 
through a single switch.The client sends requests to multiple 
servers.The parameters used in the project are throughput 
calculation ,the end to end delay and the packet drops are also 
calculated.  
 
   Table1 shows the different parameters that are being 
compared when different protocols are taken into account. The 
protocol which uses Forward Error Correction has more packet 
loss than compared with the Cyclic redundancy check. The 
throughput acquired by using LTTP with CRC is considerably 
high. 
 
 
 

Protocol Throughput 
End to 

end 
delay 

Packet 
drop 

 
TCP 677.2 KB 38.211 

ms 156 

UDP 3018 KB 31.68 ms 11228 
LTTP  with 

FEC 3043.8 KB 34.3186 
ms 30130 

LTTP with 
CRC 3052 KB 37.9703 

ms 23502 

 
Table 1 . Comparison Table 
 
 
The graph has been plotted for the packet loss happening 
against time. The packet drop in LTTP using the CRC method. 
The x-axis shows the passage of time and the y-axis shows the 
number of packet dropped at each period of time 
 
 

 
 
Fig 3 . Graph plotted to compare the protocols 
 
 
CONCLUSION 
 
Throughput collapse is a severe problem faced in data centers 
in many to one communications. In this paper  the LTTP 
protocol is developed additionally employing CRC and FEC 
[14].Through ns2 based simulations the average throughput is  
increased by overcoming the problem of TCP Incast. The 
packet loss at the same time can be observed. 
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