
 International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 19-22 (2014)
 Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand

19

 ISSN 2320 -2602

Abstract : There are so many restaurants and also sites that try to

organize and list such restaurants. Some sites also try to provide
primitive searching of restaurants but most of them are limited to
basic lookup of restaurants by names. Ranking is a very important
part of information retrieval systems. There are some basic ranking
techniques but search engine ranking algorithms are closely
guarded secrets. Therefore we’d like to create a search engine for
restaurant using information related to seasonal and regional
specialties. We think that it is helpful to search restaurants for
seasonal specialties in a certain geographical zone. We
implemented the search engine using Lucene, MySQL, and Jsoup
and conduct a simple experiment.

Key words : Lucene, Jsoup, Search engine, Retrieval System

INTRODUCTION
There are so many restaurants in the world, and also

various types of search methods for restaurants. Most of the
search engines have ranking algorithms since ranking is also
a very important part of information retrieval systems. There
are some basic ranking techniques but search engine ranking
algorithms are closely guarded secrets. Search engine
ranking algorithms are hidden for at least two reasons:
Search engine companies want to protect their methods from
their competitors, and they also want to make it difficult for
Web site owners to manipulate their rankings.

 The purpose of our search engine is to retrieve the address
and simple description of restaurants using the information
related to seasonal and regional specialties. We think that it
is helpful to search restaurants for seasonal specialties in a
certain zone. We implemented the search engine using
Lucene, MySQL, and Jsoup and conduct a simple experiment
using the data of the restaurant blog.

 The organization of the paper is as follows. In the second
section, we will introduce the related works, and in the third
section, we will provide an explanation of the proposed
search algorithm. In fourth section, we deal with
implementation and simple experiment. In the last section,
we provide the conclusion and further study.

 This research was supported by Basic Science Research Program through

the National Research Foundation of Korea(NRF) funded by the Ministry of
Education, Science and Technology(No. 2012R1A1A2006850).

This work was also supported by the National Research Foundation of
Korea grant funded by the government (Ministry of Education, Science and
Technology) (NRF-2012M3A9D1054744).

RELATED RESEARCH

Search Engine
A web search engine is a software system that is designed

to search for information on the World Wide Web. The
search results are generally presented in a line of results often
referred to as search engine results pages. The information
may be a mix of web pages, images, and other types of files.
Some search engines also mine data available in databases or
open directories. Unlike web directories, which are
maintained only by human editors, search engines also
maintain real-time information by running an algorithm on a
web crawler.

Web search engines work by storing information about
many web pages, which they retrieve from the HTML
markup of the pages. These pages are retrieved by a Web
crawler which follows every link on the site. The site owner
can exclude specific pages by using robots.txt.

The search engine then analyzes the contents of each page
to determine how it should be indexed (for example, words
can be extracted from the titles, page content, headings, or
special fields called meta tags). Data about web pages are
stored in an index database for use in later queries. A query
from a user can be a single word. The index helps find the
information relating to the query as quickly as possible. Some
search engines, such as Google, store all or part of the source
page as well as information about the web pages, whereas
others, such as AltaVista, store every word of every page they
find. This cached page always holds the actual search text
since it is the one that was actually indexed, so it can be very
useful when the content of the current page has been updated
and the search terms are no longer in it. This problem might
be considered a mild form of link rot, and Google's handling
of it increases usability by satisfying user expectations that
the search terms will be on the returned webpage. This
satisfies the principle of least astonishment, since the user
normally expects that the search terms will be on the returned
pages. Increased search relevance makes these cached pages
very useful as they may contain data that may no longer be
available elsewhere [1].

Classic Models in Information Retrieval
There are three classic models in information retrieval: the

Boolean, the vector, and the probabilistic models. The
Boolean model is based on set theory and Boolean algebra.
Retrieval is based on whether or not the documents contain

A Search Engine for Restaurants
using Seasonal and Regional Characteristics

Yeunjung Kim1, Zhanying Jin2, Sujoung Oh3, Minsoo Lee4
1Dept. Computer Science and Engineering, Ewha Womans University, Korea, imkimyj@ewhain.net
2Dept. Computer Science and Engineering, Ewha Womans University, Korea, jxy5130@gmail.com

3Dept. Computer Science and Engineering, Ewha Womans University, Korea, crystal7862@gmail.com
4Dept. Computer Science and Engineering, Ewha Womans University, Korea, mlee@ewha.ac.kr

 International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 19-22 (2014)
 Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand

20

 ISSN 2320 -2602

the query terms and makes return exact matches. The
traditional Boolean approach does not provide a relevance
ranking of the retrieved documents, although modern
Boolean approaches can make use of the location and
frequency of keywords in document structure.

In the vector model, a document and a user query are
represented as vectors in a t-dimensional space, where t
equivalent with the number of index terms in the query. The
index terms of the query are basis vectors in this space, and
the document can express linear combination of the basis
vectors. The coefficients equal 1, if the index terms are in the
document and 0 otherwise. Document relevance to the query
can be quantified by the cosine of the angle between these two
vectors.

The probabilistic model ranks the documents based on the
quotient of the probability that the document is relevant to the
query and the probability that the document is non-relevant
to the query. User relevance feedback is very important to this
model.

Lucene
Apache Lucene is a free and open source information

retrieval software library, originally created in Java by Doug
Cutting. It is supported by the Apache Software Foundation
and is released under the Apache Software License. Lucene
has been ported to other programming languages including
Delphi, Perl, C#, C++, Python, Ruby, and PHP. While
suitable for any application which requires full text indexing
and searching capability, Lucene has been widely recognized
for its utility in the implementation of Internet search engines
and local, single-site searching [2].

 At the core of Lucene's logical architecture is the idea of a
document containing fields of text. This flexibility allows
Lucene's API to be independent of the file format. Text from
PDFs, HTML, Microsoft Word, and OpenDocument
documents, as well as many others, can all be indexed as long
as their textual information can be extracted [3].

PROPOSED ALGORITHM

Basic Approach
Ranking is a very important part of information retrieval

systems. There are some ranking techniques but search
engine ranking algorithms are closely guarded secrets [4].
Our approach mainly uses the information about seasonal
and regional specialties to determine the ranking. We also
use the grade of the restaurant and the frequency of the
season.

Ranking Algorithm
The Ranking Algorithm of the search engine is as follows:
- Retrieve restaurant using season and region as keywords

(terms). This will retrieve records containing both those
terms in any order. In other words, it uses the AND
operator for the keywords and the result contains the list
of restaurants which serves seasonal food in a certain
zone.

- The higher a restaurant’s grade, the higher the ranking

of the result. The Grade is the score that is calculated by
the average of the evaluation score of a user multiplied
by the number of users who evaluated the restaurant.

- The higher the word’s frequency, the lower the ranking
of the result. If the frequency of the word for different
seasons is high it means we can eat the food any time.

IMPLEMENTATION & EXPERIMENTS

Implementation
This application is divided into three parts. One part is the

crawler which collects the web pages. The other two parts are
the indexing and searching parts using Lucene.

A. Web Page Crawler
In the ‘Web Page Crawling’ part, the necessary data of the

web page is collected and stored into the Database using
MySQL. A Web crawler starts with a list of URLs to visit,
called the seeds. Jsoup is a Java library for working with
real-world HTML. It provides a very convenient API for
extracting and manipulating data, using the best of DOM,
CSS, and jquery-like methods. We extracted necessary data
form the restaurant blog using Jsoup API. Figure 1 illustrates
the part of the source code about extracting data from an
HTML document [5].

Figure 1: Extracting data from an HTML document using Jsoup

In order to store the necessary data for indexing and

searching, we created the restaurant table in the MySQL
database and connected to the database using the JDBC
driver. Figure 2 illustrates the schema for the restaurant table.
In this part, the grade and frequency are computed in
advance and stored in the DB. As previously stated, the value
stored for ‘GRADE’ field is grade, which is the score
calculated by averaging the user’s scores multiplied by the
number of users who evaluated the restaurant. They are both
important values to decide the ranking. The value of the ‘rep’
field is the word frequency of the different words for ‘season’.
The Content field which contains restaurant theme and
address is used for searching. ADDRESS field is the web
address of the restaurant blog.

 International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 19-22 (2014)
 Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand

21

 ISSN 2320 -2602

Figure 2: Restaurant table Schema

Figure 3: Store necessary data into restaurant table using JDBC driver

Figure 3 shows the part of the source code connecting to

the MySQL database using the JDBC driver.

B. Indexing
To search based on Korean words, the StandardAnalyzer

is first converted to the KoreanAnalyzer.

Figure 4: Adding documents to an index

A Document is Lucene’s atomic unit of indexing and

searching and Fields is a section of a Document. Each field
has two parts, a name and a value. Fields contain the “real”
content. Lucene should manipulate the Field’s value when
you add the document to the index.

 In order to index raw content sources in the restaurant
table, we first translate them into Lucene’s Documents and
Fields. The GRADE, TITLE, CONTENT, ADDRES and rep
field in restaurant table have the necessary data. We
translated the values of the fields into Lucene’s Documents
and Fields. Figure 4 shows that code iterates over the raw
content, creating Document and Fields and then adds the
Documents to the index.

C. Query Rewriting
The QueryParser translates query expressions into one of

Lucene’s built-in query types. If the Query expression is ‘java
junit’, Lucene matches documents that contain the term java
or junit, or both, in the default field. So the user’s query must
be rewritten such as ‘java AND junit’. In other words, we
have to insert the AND operator among individual words of
the user’s input value to convert it into the appropriate form.
Figure 5 shows this rewriting of the user query.

Figure 5: Rewriting the user query

D. Ranking
By default, Lucene sorts the documents in descending

relevance score order, where the most relevant documents
appear first. But, to use grade and frequency value for sorting,
we used ways which search results are sorted by multiple
field values in either ascending or descending order. Sorting
by multiple fields is important whenever your primary sort
leaves ambiguity when there are equal values. Implicitly
we’ve been sorting by multiple fields, since the Sort object
appends a sort by document ID in appropriate cases. But we
control the sort fields using an array of SortFields. This code
uses grade as a primary sort in descending order and finally,
restaurant with equal grade score are sorted by ascending
frequency of the words for season. A SortField holds the field
name, a field type, and the reverse order flag. The SortField
contains constants for several field types.

 International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 19-22 (2014)
 Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand

22

 ISSN 2320 -2602

Figure 6: Sorting by multiple fields

Experiments
For example, assume that the 1st ranking restaurant and

2nd ranking restaurant have equal value of the grade and the
primary sort is ambiguous. This code uses grade as a primary
sort in descending order and finally, restaurant with equal
grade score are sorted by ascending frequency of the words
for season. The 2nd ranking restaurant has a higher score for
the frequency of the season words than the 1st ranking
restaurant. As a result, the 1st ranking restaurant is ranked
higher than the 2nd ranking restaurant as shown in Figure 7.

Figure 7: Search Result

CONCLUSION AND FUTURE WORK
This paper proposes a ranking mechanism to be used for

searching for restaurants with seasonal and regional
characteristics. We use the CustomScoreQuery API which is
a Query API that sets document scores as a programmatic
function of several (sub) scores: the score of its subQuery and
the score of its ValueSourceQuery. Subclasses can modify the
computation by overriding getCustomScoreProvider. The
ranking is uses the grade as a primary sort in descending
order and finally, restaurant with equal grade score are sorted
by ascending frequency of the words for season.

Further work can be done for implementing more
sophisticated rankings based on additional characteristics of
restaurants based on price and atmosphere, etc. Also

rankings based on more complicated relationships among
users having evaluations of restaurants could also be
formulated.

REFERENCES
[1] Web Search Engine, Wikipedia, [Online] Available:

http://en.wikipedia.org/wiki/Web_search_engine
[2] Lucene, Apache Software Foundation, [Online]

Available: http://lucene.apache.org/core
[3] M. McCandless, E. Hatcher, O. Gospodnetic, Lucene IN

ACTION, 2nd ed., Manning Publications, 2010.
[4] M. Princz, “Search engine ranking,” in Proc. 7th

International Conference on Applied Informatics, Eger,
Hungary, 2007, Vol. 2. pp. 417–422.

[5] Jsoup: Java HTML parser, [Online] Available:
http://jsoup.org

