
                International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 13-18 (2014)         
                      Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand 

13 
 

 

   ISSN 2320 -2602 

 
Abstract : Cloud computing nowadays is playing major role in 

processing enterprise and personal applications. Its dynamic 
scalability enables users to scale up/down underlying infrastructure 
in response to dynamic performance behaviors. This benefit 
provides the basis for solving performance-resource mapping 
problem when deploying an application on cloud. Many researches 
on exploring efficient performance-resource mapping mechanisms 
have been launched. They generally focus on minimizing jobs’ 
makespan with limited resources but few consider budget constraint 
as a parameter for their mechanisms. However, budget constraint is 
a critical factor that should be considered especially when 
application owner has limited budget. In this paper, we present a 
HEFT based cloud auto-scaling algorithm to minimize jobs’ 
makespan within budget and evaluate it by comparing to other four 
approaches that are not or partially based on HEFT. Results have 
shown that proposed algorithm optimizes the application 
performance with limited budget compared to other four approaches 
and works well even if the budget is not enough to make sure all 
jobs finished within their deadline.  
 

Key words : Cloud Computing, DAG, HEFT, Auto-Scaling, 
Budget, Job Deadline.   

INTRODUCTION 
With the maturity of the cloud computing technology, 

more and more cloud platforms have mushroomed in the 
market. Cloud providers charge users using pay-as-you-go 
model and cloud computing is being used to deliver on 
demand storage and processing power. With the benefits of 
flexibility and security, more and more application owners 
run their applications on cloud. Most of the applications are 
based on an application model that is composed of multiple 
decoupled independent services that can run in different 
virtual machines (VMs). However, mapping performance 
requirements to the underlying resources in the cloud 
automatically is challenging especially when it comes to the 
practical considerations like multiple VM instance types, 
specific performance requirement, user budget constraints 
and etc. The key cloud platforms in cloud computing field 
including Amazon AWS [1], Microsoft Azure [2], Google 
AppEngine[3] and RightScale [4] offer a variety of 
pre-packaged services for monitoring, managing and 
provisioning resources and application services. These 
services try to help users automatically scale VMs up/down to 
solve the performance-resource mapping problem. However, 
most of them are based on resource utilization, such as“Add 
2 small instances when the average CPU is above 80% for 

 
 

more than 5 minutes.” Those simple mechanisms are far 
from user expectations when the application models are 
complex. 

A reasonable auto-scaling mechanism should be based on 
real cloud platform characteristics and consider the practical 
factors including multiple VM instance types, unique 
performance requirement, VM startup time, cost, job 
deadlines, user budget constraints, etc.  

In this paper, we propose an auto-scaling mechanism 
based on Heterogeneous-Earliest-Finish-Time algorithm 
(HEFT) [5] to minimize jobs’ makespan within predefined 
limited user budget. 

RELATED WORK 
Related work mainly focuses on researches of cloud 

auto-scaling and auto-scheduling mechanisms which deal 
with VM scaling up/down and scheduling interdependent 
tasks of a workflow application. These researches try to find 
out a mechanism to minimize makespan of the application 
job using a general application model in which an 
application is represented by a directed acyclic graph (DAG). 
Some of them go further to consider cost and deadline as a 
parameter for their algorithms. But few consider how to 
optimize application’s performance with budget constraints.  

For auto-scaling mechanisms, Marshall [6] proposes a 
model capable of monitoring the demand of applications and 
responding by acquiring or releasing cloud nodes to provide 
dynamic computing power. Assuncao and Costanzo [7] 
propose several instance acquisition policies and evaluate 
their performance under different workloads. These 
researches are only focused on improving performance and 
do not address the financial costs or user budget. A scheme is 
proposed in [8] to achieve VM level auto-scaling of cloud 
resources with cost consideration for the web application 
providers. However, it only applies to typical web application 
model without budget consideration and can’t apply to a 
general service-oriented application model. Some researches 
[9][10][11][12] take a more general application model to 
explore auto-scaling mechanisms. Ming Mao and Marty 
Humphrey [11] explore auto-scaling mechanism to minimize 
cost and meet application deadlines in cloud workflows. It 
doesn’t consider user budget constraint and doesn’t apply to 
situations when budget is limited. The mechanism proposed 
in [12] takes into account user budget, but it is only suitable 
for a batch-queue application model. Haluk and Salim [5] 
propose the HEFT algorithm which is an application 
scheduling algorithm for a bounded number of 

HEFT based Cloud Auto-Scaling Algorithm with Budget 
Constraints 

Jiping Zhou, Chunhua Gu, Feng Wan 
East China University of Science and Technology, China, zhoujip@yeah.net 

East China University of Science and Technology, China, chgu@ecust.edu.cn 
East China University of Science and Technology, China, vann@ecust.edu.cn 

  



                International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 13-18 (2014)         
                      Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand 

14 
 

 

   ISSN 2320 -2602 

heterogeneous processors. This algorithm provides the basis 
for the auto-scaling algorithm the paper presents. Nitish and 
Sarbjeet [13] explore HEFT based workflow scheduling 
algorithm for cost optimization in hybrid clouds. They don’t 
consider budget constraints either and ignore some practical 
factors like different VM types and VM instance startup time. 

CLOUD AUTO-SCALING ALGORITHM 

Architecture 
To support proposed algorithm in this paper, we have 

implemented our cloud auto-scaling mechanism in 
OpenStack cloud (an open source cloud platform). Figure 1 
shows the architecture of our implementation. The 
architecture includes seven components. They are 
performance monitor, status table, job dispatcher, task 
scheduler, scale worker, back worker and VM manager. 
These components work together to provide functional 
auto-scaling mechanism to scale up/down VM instances 
automatically in respond to dynamic workload pattern. 

Fig 1: Architecture of Cloud auto-scaling in OpenStack 
1) Performance monitor: it observers the current VM 

usage information and task queues status on typical services 
of VM instances, collects actual task processing time, 
updates the status table periodically. The precise dynamic 
status information provided by monitor is critical for making 
auto-scaling and auto-scheduling decisions. 

2) Status table: it contains two data structures. One is static 
configuration file, which records DAG of application, job 
deadlines, budget constraint and computation cost matrix, 
the other records dynamic information including current 
instance status, task queue, workload pattern, etc. The 
dynamic information is updated by the performance monitor, 
and is used when making scheduling and scaling policies. 

3) Job dispatcher: it’s responsible for load balance, 
classifying the incoming jobs and dispatching them to the 
corresponding job type queues. The job type queue will 
receive jobs of the same type. In this way we can manage jobs 
of the same type more efficiently. 

4) Task scheduler and scale worker: They work for making 
auto-scheduling and auto-scaling decisions based on the 
information provided by Status table. Proposed algorithm 
will be implemented in this layer. 

5) VM manager: it provides APIs to manage the VM 
instances in the VM pool. The APIs can be generally grouped 

into two categories. One is for normal VM instance 
management. The other is designed to monitor the VM 
instances running status. VM manager hides all cloud 
provider details and can be easily replaced with other cloud 
adapters. 

6) Back Worker: For tasks running on VMs, there may be a 
possibility that the task have to wait for other tasks for 
processing because of the dependency relationship in a DAG, 
the task could waste a significant portion of a purchased 
instance-hour. Back worker will find out situations like this 
and reduce task concurrency and consolidate VM instances 
to improve instance utilization rate and help users spend 
money on more urgent situations. 

Solution 
Proposed algorithm focuses on performance optimization 

with budget constraints. To get the highest VM performance, 
we have to find out a mechanism to dicide how and when to 
scale up/down a VM instance.  

A. Problem Definition 
We summarize the following notations to define the 

problem.  
 Table 1: Notations Used in Auto-Scaling Algorithm 

We use the notations above to define the problem. In 
proposed algorithm, service and task have the same meaning 
whereas are used in different context. Each job can be 
represented using a DAG, a sample for which is shown in 
Figure 2. A node in DAG represents a task (service) and the 
edge represents the communication cost required between 
tasks. DAG must preserve its dependencies at the time of 
execution, that means the child task cannot start its execution 
until their parent tasks has completed execution. 

Proposed algorithm takes job instances in job queue, VM 
instances in VM pool, job deadlines, predefined budget, 
DAG of jobs and historical workload pattern as input, the 
output is a scaling policy to determine the number of 
instances of each instance type (Scaling plan = {(VV (i), CV 
(i))}) and a scheduling policy to determine the instance for 
each running task at some time point of t (Scheduling plan =  
{ J (i) T (j) →VV (i) | J (i) T (j) ∈ J (i)}). The scheduling and 
scaling policies work together to minimize AVG (J (i)). 
Proposed algorithm should also consider how to manage 
budget and define the budget management granularity 
(monthly, daily, hourly). We finally choose hourly budget 
management granularity B (h) in proposed algorithm to 
confirm to the full hour billing model. Hourly budget 
management granularity makes the budget management 

Notation Meaning  
J(i) The job class i 

JJ (i) An job instance of class i 
CJ(i) The number of job instances of class i 

V All VM instance types provided 
V (i) VM of type i 

VV (i) An VM instance of type i 
CV (i) The number of VM instances of type i 

J (i) T (j) Task T (j) in a DAG of job class J (i) 
T (JJ (i)) The execution time of JJ (i)  

 
AVG (J (i)) The average execution time of jobs of class J (i) 

B (x) B (h): budget per hour; B (d): budget per day 



                International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 13-18 (2014)         
                      Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand 

15 
 

 

   ISSN 2320 -2602 

 

Input: {(JJ (i), CJ (i))}, {(VV (i), CV (i))}, job 
deadlines, B(h), DAG of jobs, workload pattern. 

Output: Scaling policy {(VV (i), CV (i))} and 
scheduling policy { J (i) T (j) VV (i) | J (i) T (j) ∈ 
J (i)}. 

Con: Cost(VV(i))´CV(i)
V (i)ÎVå £ B(h) 

more precise and convenient. The problem is defined in 
Figure 3. 

 
 

 

Fig 2: An Example of DAG for Application Jobs 
 

Fig 3: Problem Definition 

B. Proposed Algorithm Based on HEFT 

a) Make hourly budget prediction based on the 
historical workload pattern. 

Fig 4: Daily Workload Pattern 
The budget should be allocated according to the workload 

pattern. More budgets are needed to provide more computing 
power when workload surge happens. We assume that each 
type of task has a processing weight. The bigger weight 
means more processing power needed. The job weight is the 
sum weight of a DAG of tasks shown in Figure 2. The 
workload pattern curve between hours of a day and the sum 
weight of jobs was fitted as a mathematical function to offer 
the basis for calculating the optimal hourly budget. We 
assume the mathematical function for the curve between 
hours of a day and the sum weight of jobs is y = f (h) , in 
which h stands for 24 hours of a day while y stands for the 
jobs’ weights of hour h. An example of daily workload 
pattern curve is shown in Figure 4.  

The hourly budget shares the same percentage of the daily 
budget as the percentage of weight of the day. 

B(h) = f (h)
f (h)

h=0

0£h£23å
´B(d) (1) 

b) Initialize task priority of a DAG of jobs. 
Task priority is used in our HEFT based algorithm. 

Priority is based on mean computation and mean 
communication costs. For each node in Figure 2 (a DAG of 
jobs), it should be assigned with a priority value. The 
increasing order of priority values provides a topological 
order of tasks. The tasks in task queue should be scheduled in 
sequence according to the topological order. We use the 
approach of assigning priority same as HEFT [5] algorithm 
and the tasks’ priorities in this paper are based on downward 
ranking. Following notations are used in the below task 
priority initialization algorithm.  

Table 2: Notations Used in Task Prioritizing Phase 
Notation Meaning 

T (i) Current task (successor node in DAG) 
PT (i) Dependent task (predecessor node of T (i) in 

DAG) 
P (i) Priority of task T (i) 

P (PT (i)) Priority of PT (i) 
AEET (i) Average estimated execution time of task T (i) 

 
L  

The bandwidth of the network link by which 
predecessor node sends data to successor node.  

CC (j, i) Communication cost of edge (j, i) 
Nj Threshold of number of jobs for hourly execution 

 
Following is the approach for calculating priority of tasks. 
1. Create a list of tasks T = {T1, T2, T3, ...T n} 
2. Pick task T (i). 

1) If priority P (i) is not set then calculate priority, 
else pick the next task from the list 

2) Before calculating the priority P (i) of the task T 
(i), we check if the task has a dependent task PT (i) 
whose priority is not set yet, If priority of PT (i) is 
not set yet then calculate priority of PT (i) else find 
priority of task T (i) 

3) Once all the parameters are calculated, set priority: 
P (i) = AEET (i) + CC (j, i) + P (PT (i)); Where CC 
(j, i) equals output data generated by PT (i) divided 
by L (output / L) 

It can be easily shown that the increasing order of priority 
values provides a topological order of tasks, which is a linear 
order that preserve the precedence constraints. All the 
priority information will be recorded in status table and will 
be updated periodically.  

c) Choose the best VM of job for each job class. 
In this phase, we define a new notation BV (V) for best 

VM in which V is a collection of available VM instances 
{VV1, VV2, … VVn}. BV (V) of task is the chosen VM 
instance from V for the current task based on HEFT and BV 
(V) of job is the VM instance in V that is chosen as BV (V) of 
task for most of tasks in a DAG of this job. The below 
pseudo-code describes how to calculate BV (V) for a job 
class. 



                International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 13-18 (2014)         
                      Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand 

16 
 

 

   ISSN 2320 -2602 

1. Initialize a job DAG of tasks T = {T1, T2, T3, ...T n} 
and a VM pool with all VM types V = {V1, V2, V3, 
...V n} 

2. Schedule tasks to VMs in the VM pool based on the 
priority of tasks calculated before using HEFT 
algorithm. We finally get a scheduling plan which can 
minimize the makespan of job execution. Count the 
total times of each VM chosen as BV (V) of task. Use 
a map data structure {VM (i)->times} to record 
mapping information between VM type and times of 
VM chosen as the best VM 

3. Choose the VM type which has the largest number of 
times in the Mapping data structure as the best VM 
for the job 

 
Job dispatcher will dispatch jobs to different job type queue 

which shown in Figure 1. In proposed algorithm, the jobs 
with the same BV (V) will be categorized as the same type. 
When considering whether or not to shut down a VM, we will 
predicate the number of incoming job types which use the 
current VM as the best VM based on information provided by 
step a). If the number exceeds the predefined threshold Nj, 
which means the current VM is urgently needed in the 
following hour, we will not shut down the current VM and 
vice versa. In Figure 5, VM0 is the best VM for job {T0, T1, 
T6, T7} and also the best VM for job {T0, T3, T6, T7}. 

Fig 5: The Schedule Plan Derived based on HEFT 

d) Make auto-scaling plan based on HEFT. 
Proposed algorithm makes the auto-scaling plan based on 

BV (V) of the incoming jobs. To get the best performance of 
the application, proposed algorithm try its best to make sure 
the tasks run on BV (V) and get the shortest response time for 
the whole job processing. Budget constraint is a main factor 
considered in allocating resources through the process of 
auto-scaling. 

In addition to the previous notations used in Table1 and 
Table2, following are the new notations used in this phase. 

Table 3: Notations Used in Auto-scaling algorithm 
Notation Meaning 

M Makespan of current job 
D Deadline of current job 

d (i) Sub-deadline of task T (i) 
e (i) Execution time of task T (i) 

EFT (i) Estimated Finish Time of task T (i) 
ED (i) EFT (i) – d (i) 

Following is the algorithm for VM scaling-up. 
1. Use a task list of a job DAG {T1, T2, T3, T4, T n} and 

an available VM instances list VL1 {VV1, VV2, 
VV3, VV m} as input for proposed algorithm, the 

VM instances in the VM pool may share the same 
VM type 

2. Calculate the d (i) for each task in the task list: 
Sub-deadline for the task = percentage of share of task in 

application * Deadline of the application + deadline 
of task’s predecessor 

3. Pick a task in the task list based on the task priority. 
For i=1 to n tasks and j=1 to m VM instances, 
Choose the BV (V = VL1) for the current task for 
execution 

4. Repeat step 3 till we have no unscheduled tasks. Till 
now, we have a schedule plan for the current job and 
can get a minimal makespan for this job. Schedule 
the tasks based on the schedule plan 

5. Compare the job’s M with the job’s D. No matter 
M>D or M=D or M<D, we have to schedule the 
current job based on the schedule plan of step 4 first. 
Because we actually cannot wait that long time of the 
VM startup which will spend more than 5 minutes 
for current job scheduling. For this step, if M>D, 
which means this type of job of current time t cannot 
be finished within the deadline and we have to scale 
up more VM instances to meet the job’s D. If M<D, 
which means the job can be finished within deadline, 
but we still have to figure out whether or not there is 
a space for the performance improvement 

6. Predict the number of jobs with the same BV (V) as 
the current job for the next hour. If the number of 
predicted jobs exceeds the threshold Nj, which 
means more jobs of the type is coming in the next 
hour, go to step 7, else go to step 1 for another job 
execution 

7. Find all the tasks {TT1, TT2, TT3, TT n} that cannot 
be finished within sub-deadline and order the tasks 
by ED (i) decreasingly 

8. Use the tasks list {TT1, TT2, TT3, TT n} and VM 
type list VL2 {V1, V2, V3, V4, V n} as input. Notice 
that VM type list here contains all the VM types the 
cloud provider provides. Initialize a scaling VM pool 
{} as null. 

9. Pick a task in the task list and find VV (i) of type V (i) 
as BV (V’ = VL2) for the current task with the 
constraint cost/hour of VV (i) < B (h). If VV (i)>B 
(h), then repeat this step till we find a reasonable VV 
(i) as BV (V’) 

10. If BV (V’) ¹BV (V) in step 3, which means the 
current VM pool doesn’t contain a VM instance of 
type V (i).  We put one VV (i) {VV (i), 1} in it for 
after VM scaling. If BV (V’) = BV (V), which means 
the current VM pool already has the best VM for the 
task, the reason for execution time exceeding 
sub-deadline may be too tasks waiting in the service 
queue. That means we have to scale up more 
instances to meet with the sub-deadline of tasks. The 
number of VV (i) = length of task queue * e (i) / d (i) 
– 1. Compute the VV (i) number under the constraint 
of cost/hour (VV (i)) * CV (i) < B (h). If the 
requirement can’t be met, CV (i) should be decreased 
by one recursively till it meets this budget constraint 
requirement. 

11. Repeat from step 9 to step 10 till all tasks executed. 



                International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 13-18 (2014)         
                      Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand 

17 
 

 

   ISSN 2320 -2602 

12. Finally we get the auto-scaling plan {(VV (i), CV 
(i))} and scale up the VM instances based on this 
plan. 

Scaling-down decisions are based on some basic rules and 
typical situations. According to our previous experimental 
data, one simple rule for scaling-down policy can be 
described as “shut down the instance when the average CPU 
is below 10% for more than 10 minutes.” However, before 
shutting down the instance, we have to make sure the current 
instances are enough for handling the incoming jobs. Back 
worker in the proposed architecture also shows capability to 
consolidate VM instances to reduce task concurrency. The 
scaling-down policy should also consider whether or not the 
number of incoming jobs using this VM type of the current 
instance as BV (V) in the next hour exceeds predefined 
threshold Nj based on prediction algorithm in step B. If it 
does, scaling-down policy should prepare the VM instance 
for the incoming job surges in the next hour. Therefore, to 
shut down a VM instance in the VM pool, we have to make 
sure all the following requirements are met 

1. Time duration for CPU usage percent below 10% > 10 
minutes  

2. Running time of the VM instance » multiples of 
hours  

3. The number of jobs using this BV (V) for the next 
hour < Nj 

PERFORMANCE ANALYSIS 
Proposed algorithm handles with performance-resource 

mapping problem using auto-scaling approach based on 
HEFT. In this section, we compare proposed algorithm with 
other three approaches that are not or partially based on 
HEFT and the “load vector” based auto-scaling approach 
proposed in [11]. The approaches are shown in the below 
table. 

Table 4: Approaches Used for Performance Analysis 
Approach Id Auto-Scaling Auto-Scheduling 

1 Rule based scaling Random scheduling 
2 Rule based scaling HEFT based scheduling 
3 HEFT based scaling Random scheduling 
4 Approach proposed in [11] 

5 Approach proposed in this paper 

Rule based scaling is based on resource utilization rules 
like “Add 2 small instances when the average CPU is above 
80% for more than 5 minutes”. This rule based auto-scaling 
algorithm is used in key cloud platforms such as Amazon 
AWS [1]. The VM type of instances here is pre-specified by 
cloud user. For random scheduling, we simply assign the task 
to a resource if it is free at the time of scheduling using greedy 
based algorithm. Neither rule based scaling algorithm nor 
random scheduling algorithm is based on HEFT.  

In Approach 1, auto-scaling phase is based on simple rules 
and auto-scheduling phase is based on random-scheduling. 
In Approach 2, auto-scaling phase is based on simple rule 
while auto-scheduling phase is based on HEFT. In approach 
3, auto-scaling phase is based on HEFT and auto-scheduling 
phase is based on random-scheduling. In Approach 4, 
Approach proposed in [11] is also here compared with 

algorithm proposed in this paper. It mainly focuses on 
minimizing cost and meeting application deadlines in cloud 
workflows without considering user budget whereas the 
proposed algorithm focused on minimizing jobs’ makespan 
within user budget. In Approach 5, both the phases are based 
on HEFT that is used in proposed algorithm. For approaches 
from one to three, they don’t consider cost or budget 
constraints while allocating resources whereas approach 4 
considers cost as the main factor in allocating resources and 
proposed algorithm in this paper is focused on meeting the 
budget constraints. After executing all tasks using above 
approaches, we compare their makespan with deadline and 
we also compare their cost with the predefined budget. 

We initialize three small VM instances (with 512M ram, 
bandwidth of 1000 mbps and 1 cpu) in the datacenter with 
ten hosts. We simulate 6 VM types (vm.tiny, vm.small, 
vm.middle, vm.large, vm.xlarge, vm.super) for cloud 
provider in Cloudsim and each VM type has different 
resource configuration. We use a DAG of jobs in Figure 2 as 
input and each job is composed of tasks that have different 
execution time on different types of VM instances. The tasks 
are configured as different cloudlets with different length in 
CloudSim. We use an average predefined workload pattern 
for performance analysis which has two surges at 9:00 AM 
and 8:00 PM which is shown in Figure 4 in which x axis 
stand for 24 hours of a day while y axis stands for job weights. 

From the workload pattern in Figure 4, we can compute 
the average hourly weight is 220 (sum weights of the day / 
24) units. The average number of incoming jobs of one hour 
for the performance test is 110. We compute an average job 
with 2 weights (220 weights / 110 jobs) for later budget 
assignment. Say the deadline for average job is 3200 time 
units and we use gain approach in [14] to get the most 
cost-efficient VM instance type for this average job.  We 
assign all tasks of the job to a typical VM instance VV (i), 
and compute GainWeight as following: 
 

GainWeight = beforemakespan -
aftermakespan

aftercos t -
beforecost

 (2) 

 We select VV (i) with the biggest GainWeight as the most 
cost-efficient VM instance. Say that the makespan for this job 
using the VM instance is 1600 time units and VM instance 
can only execute one task at once. In this case, one VM 
instance can only handle with two jobs within jobs’ deadline 
therefore the number for this type of VM should be 55 (110 
jobs / 2). We assume that cost for VM instance of this type is 
10 cost units, the total cost should be 55 * 10 = 550 cost units. 
Then, we use an average hourly budget with 580 units (B (h) 
= 580, adequate budget) for one test and average hourly 
budget with 450 units (B (h)’ = 450, inadequate budget) for 
another test. We compare average makespan of jobs with 
deadline and compare average hourly cost when executing all 
tasks with average hourly budget. The results outputted by 
using CloudSim simulation are shown in Figure 6 and Figure 
7. We can see that jobs’ makespan and cost using Approach 5 
will change with different user budget whereas the other 
approaches will stay almost the same since they don’t 
consider user budget as a parameter. Approach 5’ in Figure 6 
and Figure 7 shows the result when testing with B (h)’. 



                International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 13-18 (2014)         
                      Special Issue of ICCECT 2014 - Held during 01-02 December, 2014,Bangkok, Thailand 

18 
 

 

   ISSN 2320 -2602 

Fig 6: Jobs’ Makespan of Five Approaches with Deadline 
 
 

Fig 7: Cost of Five Approaches with Daily Budget 
 

In Figure 6, when using adequate budget B (h), proposed 
algorithm using HEFT shows the ability to minimize jobs’ 
makespan compared to other approaches and still works well 
with inadequate budget B (h)’. Approach 2 and approach 3 
partially using HEFT has better performance than approach 
1 and HEFT based scheduling has bigger impact than HEFT 
based scaling in respect of shortening jobs’ makespan. 
Approach 4 which uses “load vector” based scaling 
mechanism and EDF based scheduling algorithm can make 
sure jobs finished near to deadline with minimum cost. Since 
it doesn’t consider user budget, its performance stays almost 
the same with different budget parameters. 

Figure 7 shows cost variations of five approaches. When 
using adequate budget B (h), proposed algorithm has cost 
near to cost of approach 4 with 41% higher performance 
improvement. But when with inadequate budget B (h)’, 
proposed algorithm will still keep cost under user budget 
while cost of approach 4 will exceed the user budget. 
Approach 3 has highest cost because HEFT based 
auto-scaling algorithm will always find the BV (V) for the 
current task while the BV (V) cannot be utilized well based 
on random scheduling algorithm which causes resource 
waste. Approach 2 will schedule more tasks to the VM which 
has higher performance and will cause more tasks waiting for 
execution and scale more random VM instances. Proposed 
algorithm considers cost as the main factor in allocating 
resources and will always keep cost under user budget. All 
the simulations are done using CloudSim simulation toolkit 
[15]. 

CONCLUSION 
In this paper, we present a mechanism to dynamically 

scale cloud computing instances based on job deadline and 
user budget information. Our mechanism optimizes the 
cloud application performance by scaling up best VM 
instances in response to dynamic performance behaviors. 
Budget constraint is a main factor when allocating cloud 
resources and our mechanism will always keep cost under 
user budget with different budget possibilities. Evaluation 
results show that our mechanism can get the best 
performance of the cloud applications within limited user 
budget compared to other approaches that are not or partially 
based on HEFT.  

Furthermore, although dynamic workload prediction is 
not our focus in this paper, effective dynamic workload 
prediction techniques could handle better with the incoming 
workload bursting, reduce the effects of delayed instance 
acquisitions and avoid VM churn. In future we are planning 
to do more researches on dynamic workload pattern 
prediction mechanisms and serve the auto-scaling algorithm 
better in real time.  

REFERENCES 
[1] Amazon EC2. http://aws.amazon.com/cn/ec2/. 
[2] Windows Azure. http://azure.microsoft.com/zh-cn/. 
[3] Google AppEngine. https://appengine.google.com. 
[4] RightScale. http://rightscale.com. 
[5] Topcuoglu, Haluk, Salim Hariri, and Min-you Wu, 

Performance-effective and low-complexity task scheduling for 
heterogeneous computing, Parallel and Distributed Systems, IEEE 
Transactions on 13, no. 3 (2002): 260-274. 

[6] P. Marshall, K. Keahey and T. Freeman, Elastic Site Using Clouds to 
Elastically Extend Site Resources, 10th IEEE/ACM International 
Symposium on Cluster, Cloud, and Grid Computing, Melbourne, 
Victoria, Australia, 2010. 

[7] [7] M.D. Assuncao, A.D. Costanzo, and R. Buyya, Evaluating the 
Cost-benefit of Using Cloud Computing to Extend the Capacity of 
Clusters; In Proceedings of the 18th ACM international symposium on 
High performance distributed computing, Munich, Germany, June 11-13, 
2009. 

[8] Jiang, Jie Lu, Guangquan Zhang, Guodong Long, “Optimal Cloud 
Resource Auto-Scaling for Web Applications,” DOI 
10.1109/CCGrid.2013.73. 

[9] D. Menasc and E. Casalicchio, “A Framework for Resource Allocation in 
Grid Computing,” In Proc. of the 12th Annual International Symposium 
on Modeling, Analysis, and Simulation of Computer and 
Telecommunications Systems, pp. 259-267, 2004. 

[10] J. Yu, R. Buyya and C. Tham, “A Cost-based Scheduling of Scientific 
Workflow Applications on Utility Grids,” In Proceedings of the First 
IEEE International Conference on e-Science and Grid Computing. 
Melbourne, Australia, Dec. 2005, pp. 140-147. 

[11] Ming Mao, Marty Humphrey, “Auto-Scaling to Minimize Cost and Meet 
Application Deadlines in Cloud Workflows,” SC11, November 12-18, 
2011, Seattle, Washington, USA. 

[12] Ming Mao, Jie Li, Marty Humphrey, “Cloud Auto-scaling with Deadline 
and Budget Constraints,” 11th IEEE/ACM International Conference on 
Grid Computing. 

[13] Nitish Chopra, Sarbjeet Singh, “HEFT based Workflow Scheduling 
Algorithm for Cost Optimization within Deadline in Hybrid Clouds,” 4th 
ICCCNT 2013 July 4-6, 2013, Tiruchengode, India. 

[14] R. Sakellariou and H. Zhao, “Scheduling Workflows with Budget 
Constraints,” Integrated Research in Grid Computing. CoreGrid series, 
Springer-Verlag, 2005. 

[15] Calheiros, Rodrigo N, Rajiv Ranjan, Anton Beloglazov, César AF De 
Rose, and Rajkumar Buyya, “CloudSim: a toolkit for modeling and 
simulation of cloud computing environments and evaluation of resource 
provisioning algorithms,” Software: Practice and Experience 41, no. 1 
(2011): 23-50. 


