
International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 01-05 (2014)
 Special Issue of ICCAAC 2014 - Held on December 08,2014,Hyderbad, India

1

 ISSN 2320 -2602

Abstract : Computational grids use Branch and Bound (BB)
algorithm that requires a huge amount of computing resources.
Most of existing grid-based BB algorithms are based on the
Master-Worker paradigm. In traditional Master/Worker-based
parallel BB (MWBB) algorithms, a single master decomposes the
initial problem to be solved into multiple smaller sub problems and
distributes them among multiple workers. The workers then
perform the exploration of the different sub-problems. But, this
approach is strongly limited regarding scalability in large scale
environments. Indeed, the central master process is subject to
bottlenecks caused by the large number of requests submitted by the
different workers. I thereby use FTH-BB with Dynamic Sub
Tasking, a fault tolerant hierarchical BB. FTH-BB with Dynamic
Sub Tasking is a different mechanism that enables to efficiently
build and maintain balanced the hierarchy, and to store and recover
work units (sub-problems). 3-phase recovery mechanism is used to
overcome the failure of any node or master. Moreover, this approach
ensures to maintain a balanced and safe hierarchy during the
lifetime of the algorithm. In proposed system, utilization of any
node will be maximized by splitting the work units into random
sized sub problems and assigning the sub problems to the nodes by
analyzing their current utilization.

Key words : Computational Grid, Fault Tolerant, Master
Worker Paradigm.

INTRODUCTION
Grid computing provides the users the facility of large scale
computational and data handling capabilities by employing
large-scale sharing of resources. The importance of grid
computing lies in the fact that it provides enormous
computational power for users at a reduced cost. The grid is a
heterogeneous system as compared to the traditional clusters
or supercomputers. Computational grids are loose network of
computers linked to perform grid computing. A large
computational task is divided up among individual
machines, which then run calculations in parallel and then
return the results to the original computer. The individual
machines that run the calculations are nodes in a network,
which may belong to multiple administrative domains that
are geographically distributed. Computational grids use
computing resources that are highly unreliable, volatile, and
heterogeneous. The heterogeneous and dynamic nature of
grids requires balancing the workload in order to maximize
the resource utilization and efficiency. Combinatorial
optimization problems (COPs) are solved by finding the
optimal solution from a large set of feasible solutions [7].
However, these problems are NP-hard; they are CPU time
intensive and require a huge amount of computing resources
to be solved optimally.

RELATED WORK
Finkel have proposed DIB (Distributed Implementation of

Backtracking) algorithm [9][10] based on multiple pool
collegial strategy and use depth first search approach for
exploring the tree. Here a problem is divided into sub
problems and assigned to available machines. Each machine
maintains two tables, workGotten and workGiven. Also a
heap is maintained with each machine with the list of sub
problems yet to be completed. User can assign priorities with
each sub problem which can lead to optimal solution. The sub
problems are stored in the heap according to priority. If heap
is empty, the machine sends request for work to other
machines. A machine always sends a fixed part of its work,
usually half to the requesting machine. This minimizes the
number of messages but by increasing the message size.
However there is no mechanism to reduce the redundant
work done.

Iamnitchi have proposed a fully decentralized parallel BB
(Branch and Bound) algorithm [2][10] using a multiple pool
collegial strategy. Each process maintains its local work pool
and sends requests to others when this pool is empty. The
process receiving a work request and having enough work in
its pool sends a part of its work to the requester. Best known
solution is circulated to each process using frequently sent
messages and each process updates the value of best known
solution. FT mechanism does not attempt to detect failures of
processes and to restore their data, but rather focuses on
detecting not yet completed problems knowing completed
ones. Each process maintains a list of new locally completed
sub-problems and a table of the completed problems. When a
problem is completed, it is included in the local list. After a
period of time or after processing a fixed number of
sub-problems, the list is sent to a set of other processes,
selected randomly, as a work report message. When a process
receives a work report, it stores it. When a process runs out of
work, it chooses an uncompleted problem and solves it.
There is no central authority for quality control or
operational management. There is no mechanism to reduce
the redundant work done.

Dai proposed a single-level hierarchical M/W paradigm
[8]. It uses the divide and conquer strategy for exploring the
problems. A main master only communicates with some
sub-masters, and each sub-master manages a set of workers
using multiple pool collegial strategy. Both the middleware
level and application-level FT mechanisms are used. The
main drawback of this approach is the use of
middleware-level FT and then the redundant processes
which will replace the failed ones leading to the loss of
computing power. Also the middleware FT mechanism is

FTH with Dynamic Sub-tasking for Large Scale Unreliable
Environments

Mampi Bhowmik1, N. R. Wankhade2
1PG Student,L.G. N. Sapkal CoE, Nashik, India, m.mahi17@gmail.com

2 HOD, Dept. of Computer Engineering, L.G. N. Sapkal CoE, Nashik, India, nileshrw_2000@yahoo.com

International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 01-05 (2014)
 Special Issue of ICCAAC 2014 - Held on December 08,2014,Hyderbad, India

2

 ISSN 2320 -2602

only for the main master and not for inner master. If an inner
master fails, a new master is elected from among the sub
workers. Moreover, no solution is proposed to minimize the
redundant work.

Mezmaz have proposed BB Grid for large scale BB
algorithm using the master-worker Paradigm [3] [5] [6]. A
single work pool strategy is used for work distribution. Two
main modifications done here are, to evaluate several optimal
solutions instead of single one and to evaluate sub space
according to several objectives. A list of active nodes is
generated i.e. node created but not yet treated. Each active
node covers a set of tree nodes. Each node in the tree is
assigned a number. The numbers of the set of nodes covered
by an active node forms an interval. Fold and unfold
operators are used to establish relation between interval and
active nodes. Fold operator deduces interval from list of
active nodes and unfold operator vice versa.

Djamai [4], in order to overcome the limits of BB Grid by
Mezmaz in terms of scalability, designed a pure P2P
approach for the algorithm. It provides fully distributed
algorithms to deal with BB mechanisms like work sharing;
best upper bound sharing and termination detection. FT
(fault tolerance) is ensured by a check pointing mechanism.
However, this FT mechanism has been only applied to the
original BB Grid and has not been extended to the P2P
distributed version.

In this paper, we present an extension of these works: first,
the fault recovery mechanisms are presented in detail.
Second, Master Election is used to maintain the hierarchy
following the tolerance of the root-master failure. Lastly,
assignment of sub problem to any node or master is done by
checking its current utilization.

PROPOSED SYSTEM

Hierarchical Design
The FTH-BB with dynamic sub tasking is based on

Hierarchical Master Worker (HMW) paradigm [1]. Grid
Server is the root and has a centralized control of the
hierarchy. The hierarchical design deals with the scalability
issue. It is composed of several Fault Tolerant Master/Worker
sub BB. Each sub BB is having one master and several
workers. The workers in a sub BB can act as a master for lower
level sub BB. Each FTMW-BB performs parallel recursive
branching of the task. Masters (inner nodes) then assign the
tasks to worker by checking their utilization. Each master
owns a single work pool. The Workers (Leaves) actually
perform the sub tasks in parallel. The architecture is as shown
in Fig 1.

Fig 1: FTH BB Hierarchy Design

Concept of Heartbeat
The computing resources used in FTH-BB are unreliable.

Any failure of the computing resources must be detected to
ensure the connectivity of the grid and proper execution of
the task. The heartbeats [1] in the system enables the Grid
Server, Masters and Nodes to stay connected with each other
and ensure the availability of resources as shown in Fig 2.
Node sends heartbeat to their master and master sends
heartbeat to their nodes to check if the node is alive.

Fig 2: Heartbeat Mechanism

Work Management
The client assigns task to the grid server (root). The

server sends a HB to the masters, which in turn sends the
HB to the workers. The master finds out the current
utilization to the workers, with the help of which the
capacity of the worker is calculated. The server finds out the
current utilization to the master, with the help of which the
capacity of the master is calculated. The server then divides
the task into random sized sub tasks and assigns them to the
master by checking its utilization. The masters further
divides the task into further sub tasks and assigns the task to
a worker as shown in Fig 3.

International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 01-05 (2014)
 Special Issue of ICCAAC 2014 - Held on December 08,2014,Hyderbad, India

3

 ISSN 2320 -2602

Fig 3: Distribution of Work

The division of task is done as follows:

Load = f (Memory available, CPU Load)

Suppose there are n number of nodes: 1, 2,…,n.

Load of Ni = Memory available at Ni + CPU Load of Ni
where i = 1, 2, … , n

Total Load (TL) = N1L1 + N2L2 +….+ NiLi
% Load of Ni = NiLi / TL

% Capacity of Ni = 100 - % Load of Ni

Number of nodes given to Ni for processing is:
Nodes Given to Ni = (% Capacity of Ni* Total number of
nodes) *100

Three Phase Recovery Mechanism

Both the masters and the nodes are vulnerable to failure. In
case of failure of node, the task assigned to it must be
rescheduled to a new worker. 3 phase recovery mechanism
[1] guarantees the rescheduling of task in case of failure of
worker or master without doing redundant work as shown in
Fig 4. It is divided into 3 phases as follows:
Phase 1 (between a master and its children): A master
assigns a problem to its children. The child performs
branching and sends back the branched sub-problems to the
master.
Phase 2 (between a master, its children and its
parent/server): Each time a worker finishes a sub problem, it
updates the master which in turn updates its master or the
server. The master and server know at any time the
unexplored parts of a given problem.
Phase 3 (between a master and a new free node): When a
process fails the parent of the failed process detects its failure
and saves the unexplored part of its sub-problem. When a
new safe process connects, the parent reschedules it the
unexplored part of the sub-problem.

Fig 4: 3 Phase Recovery Mechanism

Maintenance of Hierarchy
Failure of any node in the hierarchy can lead to an

unbalance hierarchy. The failure of a leaf node has not a
great impact because it is located in a leaf of the hierarchy.
No other process depends on it and its task can be partially
rescheduled by its parent using the 3- phase mechanism.
But a master failure can isolate some parts of the hierarchy
because the inner masters represent intermediary links.
When an inner master fails, the sub-BB it represents
crashes and the link between its descendants and the rest of
the hierarchy is lost. As a result orphan branches may be
created leading to the failure of the algorithm. Hence, it is
necessary to rebuild the hierarchy. Master Election ME
algorithm [1] is used to maintain the hierarchy in case of
failure shown in Fig 5. When a master fails, the nodes
under that master elect a new master among them using
bully algorithm. Each node is having a unique identifier
assigned to it. When a node pi detects the failure of its
master, it initiates an election by sending an election
message to all its neighbours with higher identifier. If no
process responds, pi becomes the master and announces its
success to the other nodes. If one of the nodes answers, it
means that there is at least a safe node which can be a
master, then pi ends its election. When a node pj receives an
election message from a node pi with a lower identifier, it
answers and initiates a new election algorithm. A newly
elected master considers all its neighbours as its children.
The new master then connects to its closest safe ascendant
using simple connection to ascendant (SCA) shown in Fig
6. It is informed by its new parent about its neighbours.
This method tolerates the failure of the server of the
hierarchy. When the server fails, the masters of the first
level select a master between them and this new selected
master behaves as the server.

International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 01-05 (2014)
 Special Issue of ICCAAC 2014 - Held on December 08,2014,Hyderbad, India

4

 ISSN 2320 -2602

Fig 5: Master Election

Fig 6: SCA Algorithm

ALGORITHM
1. Client assign task to grid server.
2. Grid server manages sub BB, each sub BB have one
master.
3. Grid server and each master checks the availability of free
resources of its subordinates by sending heartbeats.
4. Grid server distributes the task into random sized sub tasks
ex. P1, P2 etc.
5. Grid server assigns the task to its intermediate masters
who further divide the tasks into further sub tasks ex P1a,
P1b, and P1c and so on.
6. Before assignment of task to a node, the current utilization
of the node is checked and depending on the utilization
master decides which sub problem to be assigned to the node.
7. If a node fails, master reschedules the task to other free
node using 3 phase recovery.
8. If master fails, the task with highest identifier initiates an
election algorithm ME for election of new master.
9. Hierarchy is maintained by readjustment of size of sub BB.
10. Nodes perform the task and return the results to master.
11. Master combines the result from different nodes and
returns it to the server.
12. Server gives the result to the client.

RESULT ANALYSIS
FTH has been experimented on travelling salesman

problem (TSP). The size of problem to be solved is
considered as follows: (1) Small: 10*10 (2) Medium: 20*20,
30*30 (3) Large: 40*40, 50*50.

In the first experiment reported in Table 1, we evaluate the
impact of the delay induced by the proposed FT mechanisms
(the 3-phase recovery mechanism) on the performance of the
algorithm. We calculate the ratio R between the effective
execution time tExec and the idle time tI recorded on the
workers. The idle time includes the communication time tC,
the additional time of internal management tM, the time
masters take to perform the 3-phase recovery mechanism t3
which includes: time of branching, time of storing
sub-problems received from children and times of updating
the sub-problems explored by the grandchildren.

Efficiency is calculated as:

R= (tExec / (tExec + t3)) * 100

Table 1: Impact of FT
Instance
Size

Execution
Time
tExec (ms)

3 Phase
Time
t3 (ms)

Waiting
Time
tM+tC (ms)

Efficiency
(%)

10*10 950 14 0 98.55
20*20 940 110 0 89.52
30*30 676 34 1 95.08
40*40 578 74 0 88.65
50*50 824 95 1 89.57

Average 793.6 65.4
(8.24%)

0.4
(0.05%)

92.27

Table 1 show that the use of the 3-phase recovery

mechanism is not very costly in terms of execution time.
Indeed, the masters and workers spend on average 8.24% of
their total execution time for branching and recovering of
failed processes. Moreover, the average waiting time of
workers is negligible, only 0.05% of the total time. The
parallel efficiency in the last column shows that the workers
spend on average 92.27% of their time solving sub-problems.
However, it varies from an instance size to another (98% for
small instances versus 91% for large ones).

COMPARISION WITH EXISTING SYSTEM
Table 2 shows the comparison of proposed system with the

existing systems.
Table 2: Comparison

Parameter Existing System Proposed System
Root Failure Difficult to

maintain
hierarchy

Maintain
Hierarchy using
ME

Sub Problem
Size

Fixed Variable

Resource
Utilization

Less More

Redundant
Work Done

Yes Yes

FT
Mechanism

Middleware and
Application Level

Application Level

International Journal of Advances in Computer Science and Technology (IJACST), Vol.3 , No.11, Pages : 01-05 (2014)
 Special Issue of ICCAAC 2014 - Held on December 08,2014,Hyderbad, India

5

 ISSN 2320 -2602

CONCLUSION
FTH-BB is an Application level Fault tolerant algorithm

and hence not much additional overheads are induced to the
execution time of the algorithm. Several FT-MW-based BBs
are launched hierarchically to address the issue of scalability.
Each master performs FT mechanism. 3-phase recovery
mechanism distribute, store, and recover work units in case
of failures and also tries to minimize redundant work. System
can handle the failure of Server or any master by master
election ME. The node failure does not induce much
overhead on the system, however master or server failure
may induce some amount of overhead leading to increase in 3
phase time. Server and master assign the work by checking
the current utilization of a system to increase the resource
utilization and to get optimal solution.

REFERENCES
[1] A. Bendjoudi N. Melab and E-G. Talbi FTH-B&B: a Fault-Tolerant

Hierarchical Branch and Bound for Large Scale Unreliable Environments
IEEE TRANSACTIONS ON COMPUTERS

[2] Adriana Iamnitchi. A problem-specific fault-tolerance mechanism for
asynchronous, distributed systems. In Proceedings of the International
Conference on Parallel Processing 2000, pages 414, 2000.

[3] M. Mezmaz, N. Melab, and E-G. Talbi. A Grid-based Parallel Approach
of the Multi-Objective Branch and Bound. In Fifteen Euromicro
Conference on Parallel, Distributed and Network-based Processing,
Naples, Italy, February. 7-9 2007. IEEE Computer Society Press

[4] M. Djamai, B. Derbel, and N. Melab. Distributed BB: A Pure Peerto-
Peer Approach. In Proc. of 25th IEEE LSPP/IPDPS, Anchorage, (Alaska)
USA, Mai 16th-20th 2011.

[5] A. Bendjoudi, N. Melab, and E-G. Talbi. Fault-Tolerant Mechanism for
Hierarchical Branch and Bound Algorithm. IEEE International
Symposium on Parallel and Distributed Processing Workshops and
PhdForum (IPDPSW), 1806 1814, 2011.

[6] M. Mezmaz, N. Melab, and E-G. Talbi. A Grid-enabled Branch and
Bound Algorithm for Solving Challenging Combinatorial Optimization
Problems. In Proc. of 21th IEEE Intl. Parallel and Distributed Processing
Symposium, Long Beach, California, March 26th -30th 2007.

[7] K. Aida, Y. Futakata, and T. Osumi. Parallel Branch and Bound
Algorithm with the Hierarchical Master-worker Paradigm on the Grid
(Grid). IPSJ Trans. on High Performance Computing Systems,
47(12):193206, 20060915.

[8] Z. Dai, F. Viale, X. Chi, D. Caromel, and Z. Lu. A Task-Based
Fault-Tolerance Mechanism to Hierarchical Master/Worker with
Divisible Tasks. High Performance Computing and Communications,
10th IEEE International Conference on, 0:672677, 2009

[9] R. Finkel and Udi Manber. Dib a distributed implementation of
backtracking. ACM Trans. Program. Lang. Syst., 9(2):235256, 1987

[10] M. Bhowmik and N. R. Wankhade “fault tolerant hierarchical design in
large scale unreliable environments: a review” presented at 3rd
international conference on recent trends in engineering and technology,
march 2014

